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Abstract

Conventional resistance equations (such as those of Manning, Chézy and Darcy-Weisbach) are

inappropriate for flow through emergent vegetation, where resistance is exerted primarily by stem

drag throughout the flow depth rather than by shear stress at the bed.  An alternative equation

form is proposed, in which the resistance coefficient is related to measurable vegetation

characteristics and can incorporate bed roughness when this is significant.  Equation performance

is confirmed by comparison of predicted and measured stage-discharge relationships for flow

through artificial cylindrical stems, and by comparison of calibrated and measured drag

coefficient values for natural vegetation.

Introduction

Emergent vegetation is a common feature in wetlands and rivers, and has a strong influence on

physical and biological processes.  Management of vegetated waterways requires the ability to

relate these processes to the discharge regime.  This entails establishing the relationship between

discharge and hydraulic variables, such as velocity and flow depth, through resistance equations.

Conventional resistance equations, such as those of Manning, Chézy and Darcy-Weisbach

account for resistance arising from boundary shear, and the resistance coefficients can be related
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to the size of roughness elements.  In natural rivers, resistance arises also from a variety of other

energy loss mechanisms associated with channel characteristics, including vegetation.  The

Manning equation has become the most popular for natural rivers, with the resistance coefficient,

n, constituting a lumped parameter to account for all energy loss influences and estimated largely

on the basis of qualitative descriptions and “judgement” (e.g. Soil Conservation Service, 1963).

More fundamental approaches for estimating overall resistance coefficient values that account

for the drag force on vegetation stems have been proposed (e.g. by Petryk and Bosmajian, 1975).

Use of the conventional equations for vegetated channels has been criticized because they really

apply to situations where flow is resisted by boundary shear and not by drag exerted through the

flow depth (e.g. Kadlec, 1990).  In the latter situation velocity is essentially uniform over the

flow depth (Lindner, 1982), rather than being depth-dependent as in the former.   The consequent

dependence on depth of average velocity implied by these equations requires compensation

through depth-dependent resistance coefficients in vegetated channels.  Manning’s n, for

example, has been shown to vary with the product of average velocity (V) and hydraulic radius

(R) (as discussed by Smith et al, 1990).  Although relationships between n and VR have been

established, this approach is not satisfactory because VR does not uniquely specify a flow

condition, and the n-VR relationship is not independent of slope (Smith et al, 1990).  Kadlec

(1990) also points out that flow through vegetation is often transitional between laminar and

turbulent, for which Manning’s equation does not apply, even in unvegetated channels.

To address these difficulties, a more general form of resistance equation has been suggested

(Turner and Chanmeesri, 1984; Smith et al, 1990; Kadlec, 1990), viz

in which q is the unit width discharge, y is the flow depth, S is the bed slope, and a, b and c are

empirical parameters that depend on vegetation type and flow condition.  Kadlec (1990) proposed

some rationale for the exponent and coefficient values, attributing variation of c to vertical

variation in vegetation density and  bed topography.  He suggested that b should be 1.0 for stem

Reynolds numbers in the laminar range and 0.5 for the turbulent range.
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More fundamental analyses of flow through emergent vegetation have been presented by

Thompson and Roberson (1976) and James et al (2001).  These elucidate the resistance

phenomena quite rigorously, but require considerable computational effort and are not suitable

for direct practical application.

In this paper we propose a simple equation for flow through emergent vegetation that has an

appropriate form and a rational basis.  It is developed from a simple force balance analysis

similar to that of Petryk and Bosmajian (1975), and is confirmed through experimentation with

both idealized and reasonably realistic conditions.

Experimental Investigation

An experimental program was carried out to investigate the influence of vegetation

characteristics on resistance under emergent conditions.  Tests were carried out with artificial

stems in two different flumes to assess the influences of stem density and flow depth, and tests

on real reed stems were carried out in one of the flumes.  Resistance through vegetation is

dominated by stem drag, which depends strongly on the morphology of the stems.  Drag

coefficient values were therefore measured for single stems with different foliage conditions.

The experimental conditions are summarized in Tables 1 and 2, and the procedures and results

are described in the following paragraphs.  Further details are presented by James et al (2001).

Series A Experiments

Experimental Series A was conducted to establish the effects of stem density on flow resistance

under different hydraulic conditions determined by bed slope and discharge.  The experiments

were done in a 0.10 m wide, 3.0 m long, glass-sided tilting flume, with the bed  roughened with

a layer of angular, 2.4 mm to 4.8 mm diameter sand.  Uniform flow  was ensured by adjustment

of a downstream weir.  Discharge was measured volumetrically and water surface levels were

measured with a pointer gauge.  Vegetation stems were simulated using round, 5 mm diameter,

rigid steel rods arranged in a staggered grid pattern with equal longitudinal and transverse
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spacings.  Three different stem spacings and two different bed slopes were used, and a range of

discharges tested for each condition (Table 1).  The effective roughness of the bed was

established without stems (Tests A1).  Darcy-Weisbach f values of 0.105 and 0.110 were

determined for the greater and lesser discharges respectively, using the side-wall correction

procedure of Vanoni and Brooks (1957).  A representative value of effective bed roughness (ks)

was determined as 0.0125 m from the Colebrook-White equation. 

Tests A3, A4 and A5 were conducted with the same bed slope but different stem spacings.  Flow

resistance (represented by Manning’s n) increased significantly with stem density, and also

varied significantly with flow depth (Fig.1).  (In this analysis n was calculated using the flow

depth in place of the hydraulic radius, implying an assumption that the resistance afforded by the

glass side walls was relatively insignificant).  Tests A2 and A3 were conducted with the same

stem density (25 mm spacing), but different bed slopes, showing that slope has a small effect on

resistance, with n being slightly lower for the steeper slope (Fig. 1).  This could reflect  a

response to a change in velocity, Reynolds number, or stem drag coefficient.  (The n value for

the lowest measured depth for Test A2 is clearly erroneous, and is omitted from further

consideration).

Series B Experiments

Further flow resistance data were obtained from an associated study of sediment movement

through stems (James et al, 2001) (Series B).  The experiments were conducted in a 0.38 m wide

tilting flume with a mobile bed of sand with a mean diameter of 0.45 mm.  Bed slope was a

dependent variable and experiments were run until equilibrium slopes were established.  Uniform

flow was ensured by a downstream weir, and water levels were measured on scales fixed to the

glass sides of the flume.  Discharge was measured using a V-notch weir below the flume outlet

and controlled by valves in the supply line.  The stems were as used in Series A, but with only

the 25 mm spacing.  Bed roughness could not be determined  because mobile bed experiments

were only conducted with the stems in place. The full experimental procedure is described by

James et al (2001) and the tests relevant to resistance are listed in Table 1.  It is not possible to

compile stage-discharge relationships from the Series B data because of the variable slope
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(ranging from 0.0118 to 0.0184 with an average of  0.0145).  The resistance can, however, be

represented by Manning’s n, which shows variation with flow depth similar to the Series A

results (Fig.1), and consistency with the results of Test A2 for which the slope was similar.

Series C Experiments

A series of experiments were carried out using harvested reed (Phragmites australis) stems in

the 0.38 m wide flume.  The experimental set-up was similar to that for the Series B experiments,

but flow depth was measured using 6 stilling pots connected to tapping points at 1.0 m spacing

along the centre of the flume.  The reeds were secured in a  0.05 m thick layer of 6 mm to 7 mm

angular stones, by a wire mesh stretched between wooden battens spanning the flume width at

regular intervals.  The stems were arranged in a staggered pattern with centre spacings of 60 mm

longitudinally and 90 mm transversely.  The first tests (C1) were conducted with fully foliated

stems, as harvested.  For Tests C2 the leaves were stripped off, and for Tests C3 the stems were

removed completely,  to obtain an estimate of the resistance of the bed on its own.  The variations

of Manning’s n with flow condition are presented in Fig. 2.

Stem Drag Measurements

Drag force tests were carried out in a 24 m long, 0.915 m wide, horizontal flume.  A  length of

the stem to be tested was secured at the lower end of a rectangular frame  mounted in a pivoting

support above the water level.  The force required to balance rotation of the frame under the

influence of drag on the stem was used to calculate the drag force by moment equilibrium.   Flow

velocities were measured with an electromagnetic flow meter at three locations at the stem level,

and the average value used in the calculation of drag coefficient.  The stems tested included the

5 mm round rod used in test Series A and B, as well as two reed (Phragmites australis) and one

bulrush (Typha capensis) stems (Table 2).   In Tests D6 to D9, reed 2 was progressively stripped

of foliage.  First, the stem was tested with all leaves and branches (Test D6), then with just 6

leaves (Test D7), then with 3 leaves (Test D8) and finally with only the bare stem (Test D9).  The

foliage areas of the stems were measured by tracing the outlines on to squared paper.



6

F C A VD D=
1
2

2ρ     (2)

The drag force (FD) of a stem is related to local flow velocity (V) by

in which A is the stem area projected in the flow direction, D is the water density, and CD is the

drag coefficient.  CD depends on the stem size and shape and the Reynolds number (Re = Vd/<,

where d is the stem diameter and <  is the kinematic viscosity of the water, equal to 1.14x10-6

m2/s for the measured temperature of about 20oC).

Values of CD are commonly presented graphically as functions of Re (e.g. Albertson et al, 1960).

Similar relationships were established for the round rod, and the reed and bulrush stems, by

calculating CD from equation (2) and Re.  For the real stems the projected area was defined by

the main stem length and diameter only.  The derived values of CD and corresponding Re are

plotted in Figs 3 and 4, together with the standard relationship for infinitely long circular

cylinders presented by Albertson et al (1960).  The measured values for the round rod coincide

closely with the standard curve for Re > 200 (Fig. 3), confirming the reliability of the

experiments in this range.  The amount of foliage increases the value of CD considerably (Fig.

4).  For the natural stems, CD  shows dependence on Re at higher values than for the cylinders

presented in the standard relationship; this could be at least partially attributable to variation of

the projected area with velocity, as the leaves deflect.  These results are limited, and development

of resistance equations based on drag quantification should be accompanied by extensive

experimental determination of CD for relevant vegetation types.

Resistance Equation

In the interpretation of the experimental results, flow resistance was expressed and presented in

terms of Manning’s n, because it is the most familiar and widely used representation.  This

enabled the influence of stem density on flow resistance to be clearly shown.  However, the

results also show that Manning’s n for vegetated channels varies very significantly with flow

depth, confirming the unsuitability of the equation.  A more theoretically justifiable equation

form is therefore presented, incorporating a resistance coefficient that can be related to
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measurable plant characteristics and does not require full stage-discharge measurements for its

determination.

The conventional free surface flow resistance equations can be developed from the balance of

forces driving and resisting the water movement.  The driving force originates in the downslope

weight component of the water, and the resisting force in the shear stress imposed by the

boundary.  The balance of these forces leads to a dependence of the boundary shear stress on flow

depth, and combination of this with an assumed relationship between boundary shear stress and

velocity leads to an equation for velocity as a function of flow depth.  If the resistance to flow

is exerted by stem drag rather than boundary shear, however, the velocity is independent of flow

depth.  This can be shown by considering steady, uniform flow of a unit width element in stem-

dominated flow, and equating the driving force (the downflow weight component of the element)

to the resisting force (the sum of drag forces from all the stems within the element), i.e.

in which ( is the unit weight of water,  m is the total number of stems within the element, L is

the length of the element, and S is the slope of the channel.

Expressing the number of stems in terms of density (the number of stems per unit area), N, i.e.

m = NL for unit width, and rearranging, gives an equation for the flow velocity:

with

Equation (4) suggests that the exponent of S in equation (1) should be 0.5, and that flow velocity

is independent of depth if the resistance is caused exclusively by stem drag.  Flow depth therefore

appears in equation (1) for continuity reasons only, and its exponent should be 1.0.  The
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resistance coefficient defined  by equation (5) depends on stem density, stem diameter and drag

coefficient.  It is expressed in inverse form in order to preserve proportionality of its value with

resistance, as with Manning’s n and the Darcy-Weisbach f, but unlike the Chézy C.

Nuding (1994) used an equation similar to equations (4) and (5), excluding the stem volume term

(1 - NBd2/4), based on substitution into the Darcy-Weisbach equation of an expression for f given

by Lindner (1982).  Tsujimoto and Kitamura (1994) used the Chézy equation with C given by

a relationship similar to 1/F, again ignoring the stem volume influence.

Values of F have been calculated from the Series A experimental results using equation (4), and

corresponding theoretical values from the stem characteristics using equation (5) with values of

CD  from the standard curve for infinitely long circular cylinders presented by Albertson et al

(1960).  The measured (points) and theoretical (solid line) values are plotted as functions of flow

depth in Fig. 5.  The measured resistance coefficient F is clearly much less dependent on flow

depth than Manning’s n (cf. Fig. 1), becoming constant as flow depth increases.  The flow depth

at which it becomes constant increases with stem spacing, indicating that equations (4) and (5)

become more reliable as stem density increases and the contribution of bed shear to resistance

becomes small.  The theoretical values of F agree remarkably well with the measured values once

they become constant.  Equation (4) with F given by equation (5) therefore works well with the

ideal stems and arrangements used in the experiments for high stem densities and relatively deep

flows.

For low flow depths, sparse stem densities and very rough boundaries the influence of bed shear

on overall resistance can be expected to be important, as reflected by the increasing values of

measured F with decreasing flow depth in Fig. 5.  Under these conditions an equation that

accounts for bed shear is therefore necessary.  In the absence of stems, the shear stress increases

linearly with depth to a maximum value at the bed, where it is balanced by the shear stress

imposed by the bed.  For unit width within a wide uniform flow the bed shear is given by

In the presence of stems, some of the downslope weight component of the flow is carried by the



9

V
F

S
f

=
1

   (10)

τ ρ0
2= a V   (8)

τ
π

γ ρ0

2
21

4
1
2

= −






 −

N d
yS C NydVD    (7)

a V N d yS C NydVDρ π γ ρ2
2

21
4

1
2

= −








 −   (9)

1 1
4

8
1
2

2

F

N d

f
C Nyd

gy
f

D

=
−

+

















π

  (11)

stems, and the force resisted by bed shear is reduced.  If it is assumed that this reduction can be

represented by the total stem drag force (right hand side of equation (3)) divided by the plan area

of flow, the actual bed shear can be expressed as

The conventional free surface flow resistance equations are based on an assumed proportionality

between boundary shear and average flow velocity (e.g. Henderson, 1966) , i.e.

If it is assumed that this proportionality holds in the presence of stems, in terms of the reduced

bed shear given by equation (7), an equation for velocity can be derived which accounts for both

bed shear and stem drag.  Combining equations (7) and (8) gives

Equation (8) can be recast as the Darcy-Weisbach equation, so that the parameter a can be

represented by f/8.  Incorporating this in equation (9) and rearranging, gives the velocity under

the influence of bed shear and stem drag, i.e.

with

In practical applications there may be a preference for describing bed resistance in terms of

Manning’s n rather than f.  In this case the bed resistance term in equation (11) can be replaced
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by the corresponding Manning formulation, i.e.

The analysis leading to equations (10) to (12) is essentially the same as that presented by Petryk

and Bosmajian (1975), which they extended to formulate an expression for Manning’s n to

account for the influence of stems.  We believe that the form of equations (4) and (10) is

preferable to Manning’s because it does not require the resistance coefficient to vary with flow

depth to compensate for the unrealistic variation of velocity with flow depth implied by

Manning’s equation.

Values of Ff  have been calculated (by equation (11) for the Series A experimental conditions,

and are plotted (as the broken lines) together with the measured and calculated values of F on

Fig. 5.  In these calculations, f was determined using the Colebrook-White equation with  ks =

0.0125 m, as determined from Test A1.  Again, CD was estimated using the standard relationship

for infinitely long cylinders presented by Albertson et al (1960).  It can be seen that equation (11)

describes the combined resistance of stems and bed roughness realistically.  The increase of

resistance coefficient with decreasing flow depth is reproduced well in trend, although not as well

in magnitude. The resistance for the most dense stem arrangement is not predicted accurately,

particularly at low flow depths.  This may be a reflection of underestimation of CD using the

standard relationship with Re for infinitely long, single stems.  The local approach velocity

associated with drag is significantly different from the average velocity at high stem densities (Li

and Shen, 1973), and additional drag associated with surface distortion would be expected to

contribute significantly at low flow depths.

Equation Confirmation

The performance of the proposed equations and resistance coefficients has been assessed by

comparison of measured and predicted stage-discharge relationships for the Series A, B and C

experiments, and some results for real bulrush (Scirpus validus) plants obtained by Hall and

Freeman (Waterways Experiment Station,1994).
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For the Series A and B conditions the drag coefficient was estimated from the standard curve for

circular cylinders of Albertson et al (1960).  Predicted stage-discharge curves for the Series A

experiments with S = 0.002 are compared with the measured values in Fig. 6.  Although the

errors are fairly large (averaging 23.8% using F and 13.5% using Ff), with discharge almost

invariably overpredicted, the slopes of the curves are accurately reproduced, implying that the

forms of the equations are sound.  As expected, the predictions of equations (4) and (10) are very

similar where stem density is high and the bed shear contribution relatively small (Test A3), but

diverge  as the stem density decreases (Tests A4 and A5) with equation (10) performing better.

Discharges have also been predicted for the Series B experiments.  Only equation (4) could be

applied in this case, because the roughness of the bed was not measured.  The average absolute

error for all the experiments was 9.64%, with a standard deviation of 4.26%, confirming

reasonable performance.  As in most of the Series A applications, the discharge was always

overpredicted by equation (4).  This is unlikely to be because the bed resistance component was

neglected, because of the close similarity of equation (4) and (10) predictions for the same stem

density in Test A3.  It appears, therefore, that the stem drag is underestimated by using the

standard CD(Re) relationship, with Re in terms of the average velocity. It should be noted that the

bed slopes in the Series B tests were much higher than for Tests A3 to A5, and the performance

of equation (4) for both series confirms its reliability over a wide range of slopes.

Assessment of the equation performance with natural stems is not as easy, because the drag

coefficient values are not as well defined.  The approach followed is to fit the equations to

measured stage-discharge values by adjusting the value of CD  in the resistance coefficient.

These CD values are then compared with single stem values measured in test Series D.

This approach was followed using data obtained by Hall and Freeman (Waterways Experiment

Station,1994) for a dense stand of bulrushes (Scirpus validus) grown over a length of

approximately 15 m in a 1.2 m wide concrete channel.  Tests were conducted at two different

growth stages (with stem densities of 403/m2 and 807/m2 and stem diameters of 7.0 mm and 7.6

mm) and two controlled tailwater conditions.  No direct measurements of stem drag were made.

The stage-discharge data presented in Table 3 were derived from their reported results. The

values of CD required to reproduce these results with equations (4) and (5) are also listed in Table
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3, and are plotted together with the values measured for single reed stems with different foliage

states in Fig. 7.  The fitted values conform reasonably well with the measured values in terms of

both magnitude and trend with Re.  The differences in values for the three test conditions are not

clear, but could reflect a vertical variation of foliage density.  The estimation of representative

gradient for the nonuniform flow in the experiments could also account for some uncertainty.

The same approach was followed using the test Series C stage-discharge data.  In this case, the

stem density was low enough for the bed shear to contribute to overall resistance for the lower

flow depths (Ny < 50; see criterion to follow).  Equations (10), (11) and (12) were therefore used,

with an average value of n = 0.0223 as determined from the results of Test C3.  The calibrated

values of CD for foliated (Test C1) and defoliated (Test C2) stems are compared with the values

measured for single reed stems with different foliage states in Fig. 7, again showing reasonable

agreement.  The spread of the values across the single stem curves is related to the variation of

foliage density.  For the stems used in Test C1, the lowest leaf was attached to the stem about 50

mm above the bed and the subsequent spacing between attachment points was between 150 and

200 mm.  The number of leaves attached below the water surface would therefore have increased

from 0 at the lowest flow depth tested up to between 3 and 4 for the highest.

These applications suggest that the form of the proposed equations is appropriate, i.e. the

average flow velocity does not depend on depth, and the resistance coefficient can be determined

from the stem density, diameter and drag coefficient.  Variations of the resistance coefficient are

associated with changes in the value of drag coefficient with foliage density and deflection, and

Reynolds number.  Variation of the resistance coefficient with depth to compensate for its

appearance in the resistance equation is avoided.

Equation Application

Application of the proposed resistance equations requires estimation of the vegetation density

(N), stem diameter (d), drag coefficient (CD), and - where appropriate - the bed resistance in terms

of f or n.  There are many recommendations for estimating f or n through descriptions of surface

roughness, either qualitatively or more objectively in terms of the effective roughness, ks (Chow,
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1959; Henderson, 1966).  James et al (2001) showed that discharge predictions are relatively

insensitive to estimation of stem diameter, but very sensitive to estimates of drag coefficient and

stem density.  Sensitivity of depth prediction for a given discharge is considerably less, by virtue

of the typical form of the stage-discharge relationship.  Stem density can be measured quite

reliably in the field.  Determination of appropriate values of CD  is onerous, but can be done using

sample stems in the laboratory; this is preferable to collecting stage-discharge data in the field,

which is required for reliable determination of Manning’s n.

Repetition of the stage-discharge predictions for the Waterways Experiment Station (1994)

November tests excluding the stem volume term (1 - NBd2/4) in equations (5) and (11) resulted

in an average absolute error over the full range of flows of 0.85%, indicating that this term can

be neglected to simplify the equation with no significant loss in accuracy.

The deviations between F and Ff shown in Fig. 6 imply that ignoring bed shear resistance is

acceptable for some conditions but not for others.  The conditions where bed resistance becomes

important is dependent on (at least) the flow depth and the stem density.  The error in specifying

the resistance coefficient as F rather than the more complete Ff increases rapidly with the product

Ny below a fairly well defined threshold (Fig. 8).  (The plot is in terms of -(F - Ff)Ff , as the actual

error will always be an underestimate).  As a rough guide, it would appear that bed resistance

should be accounted for (i.e. through equation (11)) if the value of Ny is less than about 50.  The

influence of bed resistance might also be expected to depend on f, CD, and d, but their inclusion

led to less satisfactory criteria in the range of conditions represented by the Series A experiments.

Conclusions

Conventional resistance equations, such as Manning’s, are inappropriate where the dominant

resistant force arises from stem drag rather than bed friction.  Equations (4) and (5) provide a

rational alternative form, in which average flow velocity is (correctly) independent of flow depth

and proportional to the square root of channel gradient.  The resistance coefficient (F) depends

on the diameter, density and drag coefficient of the stems. Sensitivity analysis has shown that

accurate determination of stem density and drag coefficient are essential, but that stem diameter
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is a relatively insensitive parameter.  Equations (10) and (11) allow the influence of bed friction

to be included, through the Darcy-Weisbach f or Manning’s n, which is appropriate under certain

conditions (provisionally represented by the product of stem density and flow depth (Ny) being

below a threshold of approximately 50).  Deviations of flow conditions from hydraulically rough

(associated with normal use of the Manning equation) are accounted for by the dependence of

drag coefficient on Reynolds number.

The derived resistance formulations perform well for simple cylindrical stems in regular

arrangements, and realistically for natural conditions.  The formulations therefore constitute a

sound basis for development for practical application.  In practice, the resistance coefficient (F

or Ff) may be determined directly from field stage-discharge data (as is done for Manning’s n),

in which case it will exhibit significantly less variation with flow depth than Manning’s n.  It can

also be determined from measurable substrate and vegetation characteristics: f or n from

conventional sources, stem density and diameter from field data, and drag coefficient from

laboratory tests.  At present, few measurements of drag coefficient are available for natural

vegetation, but these are easier to determine than lumped resistance coefficients.
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Notations

A projected area of stem

a coefficient in general form of resistance equation; coefficient in bed shear equation

b exponent on slope in general form of resistance equation
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C Chézy resistance coefficient

CD drag coefficient

c exponent on flow depth in general form of resistance equation

d stem diameter

F resistance coefficient accounting for stem drag in proposed resistance equation

FD drag force on stem

Ff resistance coefficient accounting for stem drag and bed shear in proposed resistance

equation

f Darcy-Weisbach friction factor

ks effective bed roughness height

m number of stems in flow element

N number of stems per unit area

n Manning’s resistance coefficient

q unit width discharge

R hydraulic radius

Re Reynolds number

S channel slope

V average flow velocity

y flow depth

( unit weight of water

< kinematic viscosity of water

D density of water

Jo bed shear stress
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Table 1 Experimental conditions

Test Stem Spacing
(mm)

Stem Type Bed Slope Discharge
(l/s)

A1
A2
A3
A4
A5

-
25
25
50
75

-
round
round
round
round

0.002
0.010
0.002
0.002
0.002

0.963 - 0.859
0.125 - 1.642
0.126 - 0.726
0.164 - 1.986
0.306 - 2.073

B1
B2
B3
B4
B5
B6
B7
B8
B9

25
25
25
25
25
25
25
25
25

round
round
round
round
round
round
round
round
round

0.0118
0.0145
0.0160
0.0184
0.0165
0.0140
0.0130
0.0130
0.0130

0.00246
0.00246
0.00246
0.00246
0.00131
0.00206
0.00421
0.00604
0.00702

C1
C2
C3

60x90
60x90

-

natural, foliated
natural, defoliated

-

0.0015
0.0015
0.0015

1.424 - 6.448
3.023 - 15.178
1.424 - 10.016

    
Table 2 Stem drag experiments

Test Stem Type Stem Length
(m)

Stem Diameter
(mm)

Foliage Area
(m2)

D1
D5
D6
D7
D8
D9
D10

round
reed 1
reed 2
reed 2
reed 2
reed 2

bulrush

0.895
0.880
0.860
0.860
0.860
0.860
0.865

5
10.8
8.40
8.40
8.40
8.40

11.57

-
0.0292
0.0340
0.0318
0.0158

0
0.0339

Table 3 Stage-discharge data from the Waterways Experiment Station (1994)
experiments

Tests Depth (m) Discharge (m3/s) Slope CD Re

WES I:
 July 1992 Tests
(low tailwater)

0.103
0.215
0.268
0.306

0.009
0.026
0.044
0.057

0.0088
0.0105
0.0145
0.0145

11.3
7.00
5.27
4.13

511
707
959

1085

WES II:
July 1992 Tests
(high tailwater)

0.313
0.339
0.403
0.432

0.009
0.026
0.044
0.057

0.0010
0.0035
0.0040
0.0050

11.8
5.85
3.30
2.83

168
448
637
770

WES III:
November 1992 Tests

0.347
0.374
0.417
0.448

0.010
0.026
0.044
0.064

0.0028
0.0085
0.0120
0.0198

15.0
7.80
4.77
4.30

182
441
669
904
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Figure 1 Effect of flow depth, stem density and channel slope on Manning’s n

Figure 2   Variation of Manning’s n with flow depth for real stem (Series C) experiments

Figure 3   Drag coefficients for
single stems
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Figure 4   Effect of foliage on drag coefficient for reed stems

Figure 5   Measured and predicted values of F and Ff for round stems

Figure 6   Measured and predicted stage-discharge relationships for round stems
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Figure 7   Comparison of calibrated CD values for Waterways Experiment Station (1994) and 
Series C experiments with measured single stem values (Fig. 4)

Figure 8   Error i n t r o d u c e d  t o
resistance coefficient by excluding bed shear contribution


