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ABSTRACT:  In an effort to reconstruct geometric models of building façades from terrestrial 

laser scanning data directly without either manual intervention or any third party computer-aid 

design package, a new algorithm is introduced. The algorithm detects building boundaries and 

features and converts the point cloud data into a solid model appropriate for computational 

modeling. The algorithm combines a voxel-based technique with a Delaunay triangulation based 

criterion. In the first phase, the algorithm detects façade boundary points from raw data. The 

algorithm’s second phase creates a solid model using voxels in a quadtree representation.  

Finally, the algorithm determines whether holes are actual openings or data deficits caused by 

occlusions and then fills unrealistic openings. The algorithm was applied to the façades of three 

masonry buildings. For these buildings, the algorithm successfully detected all openings and 

reconstructs the façade details correctly. Geometric validation of the models against measured 

drawings showed overall dimensions correct to 1.2%, mostly opening areas to 3%, and 

simulation results within 5% of those predicted by a CAD-based model. 
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INTRODUCTION 

Three-dimensional (3D) point clouds from laser scanning are increasingly used in science and 

engineering (Brilakis et al. 2011; Collins and Sitar 2004; Tang et al. 2009a). In Civil 

Engineering, modeling of buildings is of particular interest. Laser scanned data of building 

facades have been transformed successfully into surface models for visualization by detecting 

features such as windows and dormers and generating polygonal outlines. However, these 

outlines are incompatible with computational modeling for several reasons:  (1) the resulting 

building models contain distorted surfaces that cause unrealistic finite element meshes (FEM) or 

degenerate shapes that cause difficulties in generating convergent meshes; (2) the algorithms 

depend heavily on user experience or supplemental data sets (e.g. photographs); or (3) the 

algorithms are unable to overcome sparse and missing data, resulting in inaccuracies.  

In this paper, the FaçadeDelaunay algorithm is introduced to overcome these issues in the 

automatic reconstruction of computational models of building façades from laser scanning data. 

The technique focuses on two-dimensional (2D) modeling of brick buildings in an attempt to 

generate usable geometries of façades and their openings and to correct holes due to occlusions 

or other missing data.  

The discussion will start by surveying existing work on boundary detection and the use of 

volumetric approaches for geometric modeling. Thereafter, the details of the FaçadeDelaunay 

algorithm are introduced, starting with Delauanay triangulation of meshes, as adopted by Pu and 
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Vosselman (2007). The Delauanay triangulation is then supplemented by automatic detection 

and correction of unrealistic holes due to missing or occluded data. The final parts of the 

algorithm are based on an inclusion criterion called the “flying voxel method” and an octree 

representation to generate the final solid model. The algorithm is then evaluated for efficiency 

and reliability by processing TLS data at four sampling densities for each of three building 

façades. The viability of the method is then confirmed by computational modeling from the 

reconstructed solid models and comparisons with empirical studies of excavation-induced, 

ground movements. Finally, conclusions and future work are presented. 

RELATED WORKS 

For building façades, terrestrial laser scanning (TLS) data have generally been preferred over 

airborne data because of greater data density, which is critical for feature extraction. Ripperda 

and Brenner (2009) categorized methods for extracting geometric features and reconstructing 

building facades from such data sets as top-down or bottom-up:  top-down approaches first 

design models without the raw data (Wonka et al. 2003), while bottom-up (e.g. fitting geometric 

primitives and meshing-based) methods are data-driven (Becker and Haala 2007, 2009; Pu and 

Vosselman 2007, 2009). Many of these approaches rely on surface reconstruction: much of the 

extensive literature in this area has recently been summarized by Laefer et al. (2011). The 

following therefore focuses primarily on methods for boundary detection through Delaunay 

triangulation or derived techniques and methods for geometric building modeling.  

Using Varnuška and Kolingerová’s (2004) concept of an adaptive criterion based on the edge 

length and the angle between point and incident triangles to detect points on a boundary, Pu and 

Vosselman (2007) identified holes by searching for the long edges from various triangulated 
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irregular networks (TINs) to extract windows. The end points of TIN edges were classified as 

boundary points, if a length edge exceeded a specified threshold (as done by Tang et al. 2007). 

Sample points on boundaries of features were categorized into upper, lower, left and right 

groups. Subsequently, Pu and Vosselman (2009) generated a façade’s upper boundary line from 

contour points by least-square fitting, then generated left and right boundaries by projecting the 

extreme vertices of the upper line to the ground plan. Additionally, a minimum bounding 

rectangle was fitted to each window in the façade. Building on this, Boulaassal et al. (2009) 

applied RANdom Sample Consensus (RANSAC) to automate planar part segmentation and 

extraction to which a 2D Delaunay triangulation was applied to extract contour boundary points 

of openings. Those boundary points were also classified directly into four aforementioned groups 

and then transformed into parametric objects. This approach can extract sufficient boundary 

points to generate outline polygons of major features, but is highly sensitive to a user predefined 

length threshold and generates varying levels of geometric accuracy. In related work to detect 

contours of a bounding rectangular window, Ali et al. (2008) introduced adaptive thresholds 

based on descriptive statistics and an image-based method established from local absolute 

differences of adjacent laser-measured distances and morphological operations to detect contours 

of a bounding rectangular window (Wang et al. 2011). As some window appears as holes in the 

facade, because the laser scanner does not return a signal (pulse) from highly reflective material, 

potential boundary points can be detected by examining neighboring spaces, defined as voxels 

along vertical and horizontal directions. The voxel is designated as having a boundary point, if at 

least one empty voxel appears in an interval width of the considered voxel. The methods can 

efficiently detect openings but with relatively low geometric accuracy and without the ability to 

distinguish windows from holes due to data occlusions.  
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Alternatively, detailed façade geometry can be generated based on geometric similarity or 

repetitive patterns of façade features (Mayer and Reznik 2005; Wonka et al. 2003). Several 

researchers have applied grammar based methods to split façade images into many regular 

regions according to differences in façade structure and similar or repeated rectangular shapes 

for windows and doors (Becker and Haala 2009; Ripperda and Brenner 2009).   

Using inherent geometry, the generation of the convex hull from a finite point set leads to a 

family of straight-line graphs, in which the given points are end points of those lines. Intuitively, 

cavities can be created within the convex hull if any line in the graphs shorter than a fixed length 

value was removed. This is the primary idea of the -shape, which is widely used in computer 

graphics to detect boundary points (Edelsbrunner and Mücke 1994). Edelsbrunner and Mücke 

(1994) decomposed sampling points into a Delaunay tetrahedrization and a Voronoi diagram, 

where all vertices of the tetrahedra were sampling points. If the minimum surrounding sphere 

(called the -ball) failed to fit this tetrahedrization, then the tetrahedra, triangles, and edges the 

tetrahedrization were removed from the mesh. However, due to variable point density, a global 

radius may cause loss of object details. For example, if a global parameter is too small, the 

reconstructed surface can have gaps or be fragmented. This drawback can be overcome by using 

local scale parameter for reconstructing the local geometry. Similarly, Bernardini et al. (1999) 

proposed a ball-pivoting algorithm dictating that the -ball (ball of radius ) cannot pass through 

the surface without touching sample points, for which the -ball contacts only three sample 

points. Surface normals computed from range maps are added to data points to overcome 

missing or noisy data. Radii are selected based on sampling density and feature size. The 

selection of an appropriate radius is close to the definition of the length threshold for Delaunay 

triangulation mesh for detecting boundary points.   
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Since the second part of the approach proposed later presented in this paper as the research 

contribution empnloys a octree representation to reconstruct the façade model based on boundary 

points of features, related work on octree or other volumetric approaches are surveyed herein. In 

volumetric approaches, objects’ surfaces are mostly reconstructed based on a signal function 

distance or oriented-charged approach. Curless and Levoy (1996) described a new algorithm for 

volumetric integration of range images to reconstruct an object’s surface based on a cumulative 

weighted signed distance function. This method, however, cannot generate models for an 

arbitrary object, may not detect features smaller than the grid spacing, and requires significant 

memory and execution time. To overcome memory and speed problems, Pulli et al. (Pulli et al. 

1997) used an octree representation to create meshes from multiple range maps, where the initial 

cubical volume was recursively subdivided into eight smaller cubes until reaching a predefined 

sub-division depth, and each voxel was classified as “inside”, “boundary”, or “outside”, with 

respect to its location to the sensor and range data. Subsequently, a triangular mesh was created 

at surfaces shared between outside cubes and other ones.  

In related work Guarnieri et al. (2005) used a consensus surface proposed by Wheeler et al. 

(1998), an octree representation and the marching cubes algorithm (Lorensen and Cline 1987) to 

build a triangulated mesh. Although the results were good, even with noisy data sets, the 

algorithm is not automatic and requires adjusting parameters for each data set. Similarly, Wang 

et al. (2005) used oriented charges to compute distance fields only employing input point 

positions, and then a zeros-set surface was determined from the distance fields. The algorithm is 

applicable to clean and noisy datasets and hole filling, but surface features smaller than the 

smallest octree size may go undetected. Additionally, Dalmasso and Nerino (2004) described 

objects at different scales of spatial resolution based on an octree structure. Efficient and fast 
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determination of the zeros level were obtained by a choice of local compact support radial basic 

functions. The approach is suitable for the surface reconstruction from multiple view images.  

Four unresolved problems emerge from this assessment of existing work:  inaccurate meshes, 

convergence issues; reliance on user experience or supplemental data; and an inability to 

overcome sparse and missing data.  An algorithm that addresses these is introduced below. 

PROPOSED WORKFLOW FOR RECONSTRUCTION OF SOLID MODELS 

In addition to a new algorithm, a corresponding workflow must also be introduced. This 

workflow, shown in Fig.1 has two major stages: (i) feature detection and (ii) solid model 

reconstruction. This workflow is based on the assumption that that most buildings are 

quadrilateral in shape, with the structural elements residing within a planar facade, with 

primarily rectangular windows and glass-plated doors. Architectural details and non-structural 

elements (e.g. balconies and window ledges) are ignored. The algorithm, herein referred to as 

FacadeDelaunay (FD), currently reconstructs 2D façades, but could be extended to 3D 

representations.   

 

Figure 1. Building reconstruction process  
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The approach differs from Pu and Vosselman (2007, 2009) and Boulaassal et al. (2010), in that 

façade feature boundaries are determined from boundary points within each voxel on the façade 

feature’s boundary, where some inaccurate boundary points can be also eliminated by verifying 

voxel grids. 

Feature detection (Step 1) 

The algorithm’s feature detection involves initial boundary point determination followed by 

clustering whole boundary points on the same hole. Then unrealistic holes are eliminated, and 

the classification of those previously characterized boundary points of the un-realistic holes are 

changed to “interior” (Fig.2).   

 

Figure 2. Feature detection processes 

 

Boundary detection (Step 1.1) 
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As previously mentioned, in Delaunay triangulation of point cloud data, triangles with long sides 

form where holes exist (Fig.3a). Thus, triangles along a boundary have longer sides than those 

that are not. This observation was implemented to classify boundary points belonging to these 

large-sided triangles. In FacadeDelaunay, a 2D Delaunay triangulation mesh is automatically 

generated from façade sample points (Figure 3) by using existing library functions in MatLab 

based on Qhull (Barber et al. 1996). Accumulated lengths of all of triangle sides are then 

computed and stored. Using length distribution, a threshold can be determined to classify sides as 

short or long (Fig.4). End points of the sides on a border of a Delaunay mesh are added to the 

boundary points’ set, if they are owned by only one triangle.   

  

a) 3D TLS point cloud b) Delaunay mesh d) Close up triangles 

belonging to the wall 

Figure 3. Generation Delaunay triangulation mesh 
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a) Curve distribution of lengths of triangle sides resulting 

from Delaunay triangulation 

b) Initial classification of 

sample points: boundary and 

interior
*
 

* Black dots describe interior points and black circle dots are boundary points. 

Figure 4. Detection boundary points based on characteristics of Delaunay mesh 

Thereafter, holes are classified as realistic (e.g. windows) or only occlusions. The boundary 

points on the same hole are defined as the same cluster. Intuitively, in Delaunay triangulation, 

boundary points on the same hole always belong to adjacent triangles. As such, starting with an 

arbitrary boundary point within a set of boundary points, attached triangles are searched, and 

then this boundary point is removed from the boundary point set. If any vertex of those triangles 

is a boundary point, then the point is extracted and added to the cluster. The clustering process of 

a hole is finished, if there are no longer boundary points to be extracted from those triangles. 

Searching continues for other holes, until the boundary point set is empty. 
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Adjusting openings (Step 1.2) 

Next, detected holes are compared to characteristic openings (height, length, and rectangularity). 

Possible boundary lines of an opening are based on histograms (Fig.5). Histogram peaks along 

the x- and y-directions correspond to vertical and horizontal boundary lines, respectively (Fig.s 

5b,5c), similar to work by Lee and Nevatia (2004) who used image pixel intensities across a 

façade or work by Okorn et al. (2010) who used a height-based histogram to detect floor and 

ceiling data.  

 

  

a) Boundary points 

of window circled 

b) X-coordinate histogram of boundary 

points along the x-direction 

c) Y-coordinate histogram of boundary 

points along the y-direction 

Figure 5. Using histograms to determine height and length of a window 

Holes are categorized as occlusions, if their characteristics differ from a predefined set of 

dimensions, in this case a minimum opening dimensions greater or equal to 0.4m (Pu and 

Vosselman 2007), and height (Ho) to length (Lo) ratio greater than 0.25 and less than 0.5 (Mayer 

and Reznik 2005; Ripperda 2008)  (Equation 1). 
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oooo
oooo Equation 1 

Solid model reconstruction (Step 2) 

This step constructs a solid model from raw data by adding classification labeling to the original 

data points (Fig.6). A quadtree representation as the 2D derivation of an octree was employed to 

represent the solid model (Meagher 1982; Pulli et al. 1997). As the long-term goal herein was to 

fully reconstruct 3D building models, the algorithm was designed with an octree representation. 

The current implementation is predominantly 2D with a predefined wall thickness to generate a 

solid model with appropriate elements in a finite element program. Thus, the current sub-division 

mechanism does not fully exploit the 3D capabilities of an octree. Presently, a parent voxel is 

subdivided into four child voxels along the height and length directions, but no division occurs in 

the depth direction of the building. As the ultimate goal of the work is in 3D, the structure will be 

described, herein, as an octree, although the correct appearance is that of a quadtree. 

 

Figure 6. Reconstructed geometric model process 



13 

Octree implementation involves recursively subdividing the bounding box into smaller voxels, 

until a pre-designated terminal condition is reached. Various termination criteria could be used:  

minimal voxel size (Ayala et al. 1985), predefined maximum depth tree (Pulli et al. 1997), or a 

maximum number of sample points within a voxel (Wang et al. 2005). In the proposed 

FacadeDelaunay algorithm, a maximum voxel size is used that is less than half of the minimum 

feature size (e.g. if minimum opening dimension is 0.4m, voxel size must be less than 0.2m.) 

Initially, a bounding box enclosing the building’s entire façade is established corresponding to 

the initial voxel. Traditionally, a bounding box has equal edge lengths (Meagher 1982), but here 

it is defined by equations (2) and (3) implying non-cubic voxels 

        Equation 2

        Equation 3 

where xmax, xmin, ymax, ymin are minimum and maximum coordinates of input sample points. 

The initial voxel’s origin is the point of intersection of a pair of orthogonal axes across x- and y-

minimum coordinates (Fig.7 at point O) – the voxel’s lower left back corner. Each voxel’s 

geometry is stored as x-, y-, z-coordinates based on the lower-left back corner and the upper-

right front corner (Fig.7 points O and O’). Additionally, each voxel is classified based on the 

sample points within. Voxels are empty, full, or partial. The voxel is “empty”, if it contains no 

data, “full” if it contains exclusively interior points, and “partial” otherwise. The stored 

information consists of addresses, properties, and x-, y-, and z-coordinates of two corners of the 

voxel.  

minmax xxLength 

minmax yyHeight 
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Figure 7. Octree representation for depth 2; depth 3 would have 3 digit addresses 

 

Building façade and opening boundary lines are determined based on boundary points underlying 

partial voxels by using a least-squares method (Pighin and Lewis 2007). Based on voxel 

classification mentioned above, partial voxels containing boundary points around openings are 

clustered by using a flood-filling algorithm (Agoston 2005). In actual buildings, the façade and 

its openings generally have straight boundary lines involving left and right lines and bottom 

horizontal lines. This implies that these side boundary points should be in vertical and horizontal 

grid voxels. Based on this observation, incorrect boundary points can be removed by use of a 

grid clustering technique. The boundary points in the grid voxels are considered boundary lines, 

if the boundary points in the grid satisfy the following conditions:  (1) a maximum distance 

between two boundary points in the grid is not less than the minimum opening size, and (2) a 

minimum distance between two boundary points belonging to two adjacent partial voxels is not 

greater than a half of the opening size (herein 0.4m is adopted minimum opening size). 

Subsequently, these grid voxels were divided into voxel groups representing boundary lines by 

comparing voxel group center coordinates to façade feature center coordinates. A voxel group 

center is calculated as the average coordinates of all voxel centers in the group, where the 
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voxel’s center is based on coordinates of all its vertices, while the façade feature centers are 

computed as average centers of all partial voxels around the façade features.(Fig.8a). For 

example, a window has four voxel groups, while a door on the ground floor has three. Boundary 

lines with two end points are determined from coordinates of all boundary points contained 

within the group voxels (vertical or horizontal) by a least-squares method (Fig.8b). 

  

a) Clustered vertical and horizontal clusters b) Determined boundary lines of the opening  

Figure 8. A modified grid clustering technique is employed to cluster vertical and horizontal 

voxels and to determine boundary lines of the opening 

The full voxels are then stored in a neutral file describing the geometric model of the solid wall 

for importing directly into commercial finite element packages. As such, voxel properties must 

be re-defined based on their positions. For example, they are either “inside”:  openings 

(belonging to a solid wall) or “outside” the façade (exterior to a set of façade boundary lines). To 

do this task, a new depth of the octree was created by dividing voxels that intersect boundary 

lines (Fig.9). Here, the number of child voxels depends on the number of boundary lines 

intersecting the parent voxel. For example, four child voxels are created, if two boundary lines 
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intersect the parent voxel. Whereas, no subdivision occurs, if no boundary line intersects the 

voxel, or if a boundary lines(s) coincides with a surface plane(s) of the parent voxel (Fig.9c).  

    

a) Voxelization model –  

octree depth 7 

b) Boundary lines c) New voxelization model 

- octree depth 8 with 

boundary lines shown 

d) Re-determination of 

voxel properties through 

“flying voxel” method* 

*Described in subsequent section 

Figure 9. Determined façade boundaries and its openings’ boundaries 

In the re-voxelization model, voxels inside of openings or outside of the façade are now labeled 

as “empty” and all others as “full”. Intuitively, voxels inside the façade and its openings were 

bounded by a set of closed boundary lines. The boundary lines separate voxels inside from those 

outside, which is similar to the Jordan curve theorem (Jordan 1887). Thus, to change categories 

would require a voxel to “fly” over the boundary line of an object. So, a new concept entitled the 
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“flying voxel” approach is introduced. This helps to determine one of three possible voxel 

positions (Fig.10):  Case 1 – voxel outside of the façade; Case 2 – voxel inside the façade and 

inside an opening; and Case 3 – voxel inside the façade but not inside any opening. To do this, 

first the center-of-gravity of the voxel (CGV) is established based on coordinates of all vertices 

of the voxel. From the CGV, the first set of line segments (LS1) is established based on two end 

points including the CGV and then projected onto each of the bounding boxes’ four sides (see 

four magenta lines in Figure 10a&c). A second set of line segments (LS2) is then connected from 

the CGV to the centre-of-gravity of each opening (the average of CGVs of all empty voxels 

representing the inside of an opening). Only one line segment LS2 exists per opening (see red 

lines in Figure 10b&c). If none of the LS1 lines intersect any of the façade boundary lines, the 

voxel is outside the façade – Case 1 (Fig.10a). A voxel is inside an opening (Case 2), if and only 

if one of the LS2 lines fails to intersect any of the boundary lines of a single opening (Figure 

10b). Otherwise, the voxel is outside of any opening but still within the façade (Case 3) [Figure 

10c]. Based on these cases, new voxel properties are assigned. Figure 9d shows re-characterized 

voxels of Figure 9c. Subsequently, all full voxels are exported into an appropriate format file for 

use within a commercial FEM package. 

Namely, topology and geometry of the full voxels are converted to a Boundary Representation 

(B-Rep) scheme that defines a solid model. Edges and faces containing edges are converted to a 

Non-Uniform, Rational and B-spline (NURBs) format by a number of knots (ANSYS Academic 

Research Release 13.0); see Appendix A for details of converting the full voxels into a neutral 

file. The approach was done according to Hinks et al. (Hinks 2011) and as explained in 

Appendix A. 
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a) Case 1: a voxel outside the façade b) Case 2: a voxel inside the 

opening 

c) Case 3: a voxel outside the 

opening but inside the façade 

* While rectangles: empty voxels 

* Dark gray rectangles: full voxels belonging to the solid wall 

* Light gray rectangles: full voxels either inside the opening or outside the façade should be determined as empty 

voxels by use of the flying voxel method 

* Black rectangle: the voxel’s centre-of-gravity 

* Unfilled black circle: projection of the voxel’s centre-of-gravity onto the bounding box 

* Filled black circle: the centre-of-gravity of each opening 

* Double dash dot lines:  bounding box 

* Dash dot lines:  façade boundary lines 

* Dash lines:  boundary lines of the opening 

* Centre lines: lines connecting a voxel’s centre to its projection on the bounding box (LS1) 

* Continuous line: lines connecting a voxel’s centre to an opening centre (LS2) 

Figure 10. Determining position of voxels in the model 

EXPERIMENTAL RESULTS AND DISCUSSION 

To validate the algorithms, four datasets were created for each of three brick buildings in Dublin, 

Ireland selected for their proximity to an upcoming metro project (Fig.s 11-13). Point cloud data 

were collected with a Trimble GS200 terrestrial laser scanner. The first set was of the original 

scans (NS00) after being co-registered and cleaned of points behind the expected building 
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facade. The other 3 were subsets using random re-samplings with expected surface sampling step 

size of 20mm (S20-2500pts/m
2
), 50mm (S50-400pts/m

2
), and 75mm (S75-175pts/m

2
) (Table 1). 

These enabled testing of the algorithm’s sensitivity to sampling density.   

Table 1.  Dataset Sizes 

Building 

 

Sampling dataset  

NS00 S20 S50 S75 

 Building 1:  2 Anne St. South 264,931 51,171 9,909 4,643 

 Building 2:  5 Anne St. South 190,865 51,884 11,119 5,366 

 Building 3:  2 Westmoreland St. 650,306 353,848 71,155 35,468 

Each building had four geometric models: B1FDNS00 describes the geometric models of 

Building 1 (B1) reconstructed by using the FacadeDelaunay algorithm on the original dataset 

(NS00), while B2FDS20 describes the same applied to the sampling point S20 (distance of 

20mm between points) dataset for Building 2 (B2). Due to space limitations, only one set of solid 

models is graphically presented herein for each building.   

    

a) Photo of Building 1 

(4.95m w x12.16m h) 

b) Scanning data in the 

RealWorks Survey program 
c) Point cloud after 

cleaning and resampling  
d) Boundary points 

shown in red 



20 

 

    

e) Initial octree 

representation 
f) Octree representation 

subdivided by boundary lines 
g) Solid model 

representation 
h) CAD drawing 

from physical survey 

Figure 11. Facade reconstruction for Building 1 based on dataset of 2500pts/m
2
 (S20-distance 

between two adjacent sample points no less than 20mm)   

    

a) Photo of Building 2 

(4.90m l x 13.28m h) 

a) Scanning data in the 

RealWorks Survey program 

b) Point cloud after 

cleaning and resampling 

d) Boundary points 

shown in red 

    

e) Initial octree 

representation 

f) Octree representation 

subdivided by boundary lines 

g) Solid model 

representation 

h) CAD drawing 

from physical survey 

Figure 12. Facade reconstruction for Building 2 based on a dataset of 400 pts/m
2
 (S50-distance 

between two adjacent sample points no less than 50mm) 
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a) Photo of Building 3: 

(19.36m l x 17.0m h) 
b) Scanning data in 

RealWorks Survey program 
c) Point cloud after 

cleaning and resampling 
d) Boundary points shown in 

red 

    

e) Initial octree 

representation 
f) Octree representation 

subdivided by boundary 

lines 

g) Solid model 

representation 
h) CAD drawing from 

physical survey 

Figure 13. Facade reconstruction for Building 3 based on a dataset of 175 pts/m
2
  

(S75-distance between two adjacent sample points no less than 75mm) 

Quality of boundary point detection 

The FaçadeDelaunay algorithm consistently detected boundary points of all openings for each of 

the three building facades. However, some boundary points on the corner of openings were not 

detectable, because the triangle’s longest side was smaller than or equal to the threshold. When 

this occurs, the end points of that side are mistakenly characterized as interior points.  
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Processing time and data density 

All models were run on a Dell Precision Workstation T5400 with Intel (R) Pentium (R) Xeon 

(8CPU) CPU speed 2GHz with 24 Gb RAM. Octree representation consumed only a minor 

portion of the total processing time. For example, 1.466 minutes for a dataset of 190,865 points 

(Building 2) [shown as 5.28 (log190865) on x-axis on Figure 14] versus the 117.143 minutes for 

the whole process (Figure14), because the feature detection algorithm must pass through the 

entire dataset. 

 

Figure 14. Running time of the algorithms 

A length threshold is needed for distinguishing triangle sides (long versus short), which depends 

on sampling density. In this study, lengths 0.15 m-0.175 m reliably detected sufficient boundary 

points to reconstruct geometric models. Overly sparse data will generate boundary triangle 

characteristics too similar to compare to the solid wall ones (Fig. 15).  
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a) For NS00 b) For S20 c) For S50 d) For S75 

Figure 15. Boundary points of a top left window of Building 2 with various sampling density of 

datasets to show parameter sensitivity 

GEOMETRIC VALIDATION 

The geometric correctness of the automatically generated solid models was compared to CAD-

based models derived from published, measured drawings (held Dublin City Council) [Fig. 11-

13]. Validation considered both global and local responses, as well as an estimated error of the 

geometric models (see Appendix B). Overall façade dimensions and total opening area are 

indicative of global response. Locally, opening dimensions and positions are important. Global 

dimensions were assessed by use of relative errors. Building components (windows and doors) 

and their positions were validated by a validation metric, to provide an estimated standard of 

uncertainty and an error bounds by means of a statistical procedure. From these approaches, solid 

model reliability was assessed. 

Global quantities of interest 

Auto-generated façade dimensions and opening areas (Tables 2) were compared to CAD models 

by using relative error to quantify discrepancies (see Equation 4 in Appendix B).  
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Table 2. Derived overall dimensions of three facades 

Aspects Building 1 Building 2  Building 3  

Method Dataset  Overall façade parameters  Overall façade parameters Overall façade parameters 

   

Length 

(m) 

Height 

(m) 

Opening 

area (m
2
) 

Length 

(m) 

Height 

(m) 

Opening 

area (m
2
) 

Length 

(m) 

Height 

(m) 

Opening 

area (m
2
) 

 CAD   4.950 12.160 30.699 4.900 13.280 30.699 19.360 17.000 96.200 

Façade 

Delaunay 

 

NS00 4.940 12.062 29.945 4.884 13.306 29.945 19.299 16.922 95.976 

S20 4.931 12.052 30.007 4.881 13.284 30.007 19.308 16.918 96.373 

S50 4.916 12.051 30.138 4.863 13.274 30.138 19.288 16.908 96.682 

S75 4.896 12.025 30.568 4.845 13.248 30.568 19.268 16.900 97.598 

 

Observing these, the algorithm slightly underestimated lengths and heights – generally less than 

1.12% (Figure 16a). That is believed to have been due to the removal of sample points on actual 

boundaries of the façade during segregation of the façade’s data set from whole scan (Tang et al. 

2009b). Maximum and minimum relative errors of the façade lengths were respectively -0.2% 

(<10 mm) [B1FDNS00] and -1.1% (<54 mm) [B1FDS75] for Building 1, -0.33% (<16 mm) 

[B2FDNS00], -1.12% (<55 mm) [B2FDS75] for Building 2, and -0.27% (<52 mm) [B3FDS20] 

and -0.48% (<100 mm) (B3FDS75) for Building 3. Similarly, the relative errors of the façade 

heights ranged from -0.81% (B1FDS20) to -1.11% (B1FDS75) for Building 1, corresponding to 

98mm-135mm, from -0.24% (<32 mm) [B2FDS75] to 0.2% (~26 mm) [B2FDNS00] for 

Building 2, and from -1.59% (B3FDS75) to -0.46% (B3FDNS00) for Building 3, corresponding 

to 100 mm and 78 mm, respectively (Fig.16a).  

The absolute relative errors of opening areas were <3% for Buildings 1 and 3, and 4.47% 

(1.53m
2
) for B2FDNS00.  Additionally, most Building 3 solid models overestimated the opening 

area with a maximum absolute relative error of 1.45% (~1.4 m
2
) [B3FS75], except for 

B3FDNS00 which underestimated -0.23% (<0.22 m
2
). Minimum absolute relative errors were 
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0.43% (B1FDS75), -2.73% (B2FDS75) and 0.18% for Building 3 (B3FDS20), corresponding to 

~0.1 m
2
, <0.9 m

2
, and ~0.5 m

2
 for Building 1, 2 and 3, respectively (Fig.16b and Table 2). 

 

  

a) For height and length of façades b) For façade opening area 

Figure 16. Relative error of quantities of interest for three building facades 

Local quantities of interest 

At a local level, opening dimensions and positions were benchmarked by using a validation 

metric. Statistical results are shown in Tables 3 and 4 for dimensions and positions, respectively. 

Generally, errors were small, <22.9 mm of an average absolute error (B2FDNS00) and the 

standard uncertainty was <41.8 mm (B1FDS75). The larger Building 3 generated smaller errors 

than those for Buildings 1 and 2. Standard uncertainties of Building 1 varied from 36.4 mm 

(B1FDNS00) to 41.8 mm (B1FDS75) and for Building 2 from 29.9 mm (B2FDNS00) to 34.3mm 

(B2FDS75). Whereas those of Building 3 varied between 6.2 mm (B2FDNS00) and 6.7 mm 

(B2FDS75) [Table 3].  

Table 3. Statistical error of dimensions of the openings of the façade (Unit: mm) 
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Aspects Building 1 Building 2 Building 3 

 NS00 S20 S50 S75 NS00 S20 S50 S75 NS00 S20 S50 S75 

Average -19.7 -17.3 -10.6 6.4 -22.9 -12.6 -0.4 7.7 0.7 5.7 9.5 18.4 

Min -197.0 -203.0 -208.0 -175.0 -371.0 -369.0 -362.0 -360.0 -57.0 -71.0 -45.0 -39.0 

Max 90.0 95.0 98.0 137.0 124.0 154.0 163.0 168.0 137.0 138.0 163.0 162.0 

Std. 102.8 110.0 112.4 118.1 119.6 130.0 132.9 137.1 46.1 47.2 48.9 50.1 

Std. uncert. 36.4 38.9 39.7 41.8 29.9 32.5 33.2 34.3 6.2 6.3 6.5 6.7 

Lower est. -88.6 -90.9 -85.9 -72.7 -75.3 -69.6 -58.7 -52.3 11.0 16.2 20.4 29.7 

Upper est. 49.1 56.4 64.7 85.5 29.6 44.3 57.8 67.8 45.7 47.1 49.4 53.0 

Geometric accuracy was largely proportional to sampling density for Building 1 – standard 

uncertainty varied from 36.4 mm to 41.8 mm when input datasets changed from NS00 to S75. 

However, in the larger building (Building 3), standard uncertainty was not greatly changed (from 

6.2 mm to 6.7 mm) with decreasing density (Table 3).    

With a traditional level of confidence of 90%, estimated absolute errors of the smaller buildings 

(1 and 2) were higher than those of the larger Building 3. Maximum estimate absolute errors 

were 90.9 mm (B1FDS20) for Building 1 and 75.3 mm (B2FDNS00) for Building 2, while only 

53.0 mm (B3FDS75) for Building 3 (Table 4, Fig.18). Those values reflected differences in 

opening dimensions of 5.3%, 7.5%, and 5.9%, respectively, where the actual minimum opening 

dimensions were respectively 1.72 m, 1.0 m and 0.9 m for Buildings 1, 2 and 3. The lowest and 

highest absolute errors for Building 1 were respectively -90.9 mm (B1FDS20) and 85.5 mm 

(B1FDS75); for Building 2, -75.3 mm (B2FDNS00) and 67.8 mm (B2FDS75), and for Building 

3 only 11.0 mm  (B3FDNS00) and 53.0 mm (B3FDS75) [Table 3 and Fig.17].  
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Figure 17. Estimate error bounds of opening dimensions from various sampling datasets  

To consider discrepancies of opening positions, the local coordinate system of each model was 

roughly assumed as the lower left corner of the model. The lower left corner of each opening is 

referred to as the origin of the local coordinate system of that opening. Statistical errors of 

position (Table 4) show good detection of opening position, although Buildings 1 and 2 models 

had higher errors than those of Building 3 and were similar to the errors of previously described 

opening dimensions. Standard uncertainties were less than 29.7 mm (B1FDS75) for Building 1, 

27.6 mm (B2FDS75) for Building 2, and 7.7 mm (B3FDS75) for Building 3 (Table 4).  

As expected, models reconstructed from denser data gave more accurate results than sparser 

ones. For example, the standard uncertainty was 25.8 mm for B1FDNS00 compared to 29.7 mm 

for B1FDS75. Estimated absolute errors of position of openings were generally less than 100mm 

(Table 4 and Fig.18) but varied widely by building. For example, for datasets of S75, they ranged 

from -124.2 mm to -11.8 mm for Building 1 and -159.5 mm to -62.8 mm for Building 2, and -

116.3 mm to -90.5 mm for Building 3 (Table 4 and Fig.18).  

Table 4. Statistical error of position of the facade components (Unit: mm) 

Aspects Building 1 Building 2 Building 3 

 NS00 S20 S50 S75 NS00 S20 S50 S75 NS00 S20 S50 S75 
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Average -47.3 -55.4 -75.6 -86.6 -81.4 -96.1 -108.4 -175.8 -83.7 -83.2 -102.6 -120.3 

Min -200.1 -208.6 -233.1 -250.5 -236.2 -280.2 -279.3 -420.1 -188.3 -184.3 -197.2 -225.6 

Max 8.6 0.0 0.0 0.0 151.0 145.1 131.5 115.3 0.0 17.8 0.0 0.0 

Std. 81.1 81.5 86.9 88.3 103.8 112.6 110.6 162.3 53.3 55.5 57.5 63.7 

Std. uncert. 28.7 28.8 30.7 31.2 26.0 28.1 27.6 40.6 7.1 7.4 7.7 8.5 

Lower est. -101.7 -110.1 -133.8 -145.7 -126.9 -145.5 -156.9 -246.9 -95.6 -95.6 -115.5 -134.6 

Upper est. 7.0 -0.8 -17.4 -27.4 -35.8 -46.8 -59.9 -104.6 -71.7 -70.8 -89.7 -106.1 

 

Figure 18. Estimate error bounds of opening position from various sampling datasets 

NUMERICAL ASSESSMENT 

As the main goal of the proposed algorithm is reconstructing solid models for existing building 

façades, for generating FEM meshes the impact of the aforementioned geometric discrepancies 

must be discussed. To test the usability of these models for a relevant case, the responses of the 

FEM models derived from the algorithm were compared to ones based on CAD drawings 

derived from measured drawings submitted for planning permission. A solid model (B1FDNS00) 

of Building 1 was selected for further investigation. The FEM parameters were previously 

validated based on large-scale experimental work (Truong-Hong and Laefer 2008). 

 

Non-linear analysis is adopted for analyzing the solid model of Building 1 (Fig.19a and 20a), 

where a macro modeling strategy was employed to model the building wall by using a SOLID65 

element in an ANSYS Mechanical APDL product (ANSYS Academic Research Release 13.0). 

Additionally, a William Warnke (WW) failure criterion and Drucker-Prager (DP) yield criterion 
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built into the ANSYS program are respectively to model masonry behavior in tension and 

compression. The WW failure criterion provides a tension cut-off for the DP yield criterion. The 

models were tested under a set of mechanical properties selected from existing experimental 

reports and the peer-reviewed literature (see Laefer et al. 2011b for a full description). A sample 

material, which represents the medium masonry properties used for this analysis were for elastic 

behavior: 3,480 MPa of Young’s modulus and 0.16 of Poisson ratio and for plastic behavior: 

26.15/1.15 MPa of compressive/tensile strength, 6.81 MPa of internal cohesion, 35
0
 of internal 

friction angle and 10
0
 of dilatancy angle. The analysis was conducted under self-weight and 

imposed displacements due to excavation-induced foundation settlements, in which the 

displacements were directly applied to nodes on the bottom of the model (Fig.s19b and 20b). The 

minimum/maximum vertical and horizontal displacements were respectively, -44.5/-17.8 mm 

and -28.3/-17.7 mm (note that negative values shows imposed displacements vectors opposite 

positive direction of axes in global coordinate system). 

 

 

 

 

 

 

 

 

a) Solid model b) FEM mesh and 

imposed 

displacements 

c) Nodal displacements d) Nodal principal 

stress I 



30 

 

Figure 19. Structural analysis of Building I with a solid model obtained from CAD drawing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) Solid model b) FEM mesh and 

imposed displacements 

c) Nodal displacements d) Nodal principal 

stress I 

Figure 20. Structural analysis of Building I with a solid model obtained from the algorithm 

The numerical analysis showed a consistency of nodal displacements and principal stress I 

between the FEM models based on the solid model generated from the proposed method and 

ones from the CAD drawing (Fig.s 20c-d and 21c-d). There is no more than a 2.5% difference in 

maximum nodal displacements, (maximum displacement is 99.6 mm for FEM model B1CAD 
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and 102.1 mm for algorithm-based B1FDNS00). Similarly, the maximum nodal principal stress 1 

in the FE based B1FDNS00 was also 8.5% greater than the CAD based one, in which the 

maximum principal stress 1 in FE based B1FDNS00 and B1CAD are 1.14 MPa and 1.05 MPa, 

respectively. In terms of an engineering perspective, these differences of in FE results due to 

small geometric discrepancies with the solid models were mostly less than 5%, which is 

generally an allowable uncertainty level within structural design [e.g. the Load and Resistance 

Factor Design specification allows a nominal force effect increase of 5% to consider ductility, 

redundancy, and operational importance (Hoffman et al. 1996)]. Thus, this proposed method can 

be used for auto-generating computational models from TLS data.    

Discussion 

By comparing input densities to the quality of auto-generated geometric models (Figure 19), the 

re-sampling datasets S20 and S50 showed reconstruction with errors mostly less than 30 mm for 

the façade dimensions and 0.7 m
2
 of opening area, when compared to solid models generated 

from the original dataset (NS00), whereas processing times for the S20 and S50 datasets were 3 

to 350 times faster than for the NS00 datasets. For example, for Building 3 the processing time 

was 19.5 minutes for S50 but 1,132.5 minutes for NS00. Errors increased at a fairly reasonable 

rate through S50, but tended to quickly accelerate beyond this point when densities were further 

diminished. For example, absolute errors between B3FDS75 against B3FDNS00 increased 

31mm for the façade length and 22 mm for the façade height and ~1.6 m
2
 for opening area 

(Figure 21).  
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a) For façade height and façade length b) For opening area 

Figure 21. Absolute errors of the important parameters (façade dimensions and opening area) 

under various sampling density datasets 

Data from the smaller buildings (Building 1 and 2) generated larger errors than those from the 

larger building (Building 3). This can be explained by Building 1’s errors being dominated by a 

part of a canopy atop the door and highly articulated window ledges obstructing data collection 

for upper floors (see Figure 11-13). Additionally, for Building 2, on the first floor, the opening 

dimensions in the CAD drawing excluded the window frame, while the window reconstructed 

from TLS data included that. The reconstructed first floor window was significantly smaller than 

in the CAD drawing, for which the window height of B1FDS50 was less 208 mm and window 

length of B2FDNS00 was also less than 371 mm (Table 3).  

While, errors could be reduced by incorporating the scanner’s perspective when deriving an 

equivalent plane of a building façade, instead of directly projecting the data, as done herein, the 

question remains one of contribution. To better assess this, the solid model for Building 1 is 

visually compared to those generated from a non-CAD based, one from a commercial software 

package, and one from a previous voxel based approach, that does not incorporate refined feature 

detection or hole filling (Figure 22). These models were selected for comparison, as all of the 
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processes were specifically for transformation of TLS into solid models for FEM usage. The 

FacadeDelaunay approach is the only one of three that successfully filled unrealistic holes 

caused by data occlusions. Furthermore, a rapid visual inspection compared to the CAD drawing 

also shows a truer representation. Based on this comparison and the geometric and functional 

closeness of the FacadeDelaunay model compared to that generated from measured drawings 

presented in the previous section the potential usefulness of the approach is clearly established.  

 

 

     

a) Point clouds 

of the building 

façade 

b) Solid models 

from Geomagic 

software 

c) Octree 

representation 

using Hinks et 

al. (2009) 

d) Solid model 

from 

FacadeDelaunay 

algorithm 

e) CAD model from 

measured drawing 

Figure 22. Original data and three derived solid models solid of Building 1 [(mage (b) and (c) 

adapted from Laefer et al. 2011) 

While the proposed approach was successful in filling unrealistic holes caused by data 

occlusions this may fail in cases where (1) the occlusion pattern is similar to common openings 
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in building façade; (2) there is no distinction between two adjacent openings; or (3) the data 

occlusions are of the same relative size as the actual openings. 

CONCLUSIONS  

The FacadeDelaunay algorithm was proposed for boundary and feature detection for automatic 

reconstruction of building façades for computational modeling from point cloud data. Length 

thresholds in the range 0.15-0.175 m and knowledge about window dimensions are shown to 

generate sufficient boundary points for reconstructing brick building facades and their openings 

even when the original data set contains occlusions. By introducing the “flying voxel” method, 

voxels in an octree representation points were quickly classified as whether or not they belonged 

to the solid wall in a subsequent step of building model reconstruction.  

Through experimental tests, the proposed algorithm successfully detected all openings and 

reconstructed all building façades, as well as automatically filling occlusion-based holes. 

Relative geometric errors were less than 1.2% for overall dimensions and 3% for opening area 

when compared to CAD based models. The validation process showed that TLS re-sampled 

datasets of as little as S20 and S50 could be adequate for facade reconstruction when compared 

to the functionality of those generated from CAD drawings. Results from application of an 

excavation-induced subsidence trough showed resulted within the general 5% allowable level of 

uncertainty. 

To further enable the functionality of this approach the algorithm it is necessary to expand the 

range of detectable shapes, especially for building openings. Additional improvements in the 

geometric results might be achievable through the incorporation of previously unused, latent 
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sample point information (such as intensity or RGB values) at local regions such as window 

frames. Finally, increasing automation and applicability of this method will require its extention 

to fully 3D models and its integration with a procedure appropriate to eliminate irrelevant sample 

points.  
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APPENDIX A. CONVERSION OF VOXELS INTO A NEUTRAL FILE 

The octree representation with all voxels characterized as “full” or “empty” iss converted into a 

neutral file for computational modeling in the commercial FEM code ANSYS (YEAR?). Only 

full voxels are represented in the neutral file. Topology and geometry of these were converted to 

a Boundary Representation (B-Rep) scheme that defined a solid model (Figure 20). 

Topologically volume area, lines, and keypoints were stored. Each voxel is converted into eight 

vertices, twelve edges, six faces, and one volume. Eight vertices of the voxel are converted into 

eight keypoints associated with their x-, y-, and z- Cartesian coordinates. Edges and faces are 

converted to a Non-Uniform, Rational and B-spline (NURBs) format by a number of knots 

(ANSYS YEAR?), in which the knots used for the definition must have multiplicity in the first 

and last knot equal to the NURBs order, which are respectively 4 and 16 control points for an 

edge and a face. An edge is defined by two keypoints (Figure 20a) and is oriented (as discussed 

below). As such, edge E12 differs from edge E21 (-E12) even though they both connect vertices P1 

and P2 (Figure 20a). Similarly, each face is defined by a list of edges, which is created a closed 

path (Figure 20b). These are arranged according to a right-hand rule, to generate an outward 

pointing normal vector. If the edge direction is opposite its face orientation, then the line number 

is negative and otherwise positive (ANSYS YEAR?). Lastly, a volume is defined by a list of 

faces. These are implemented in MATLAB (The MathWorks 2007a). 
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P1 = {x1, y1, z1} 

P2 = {x2, y2, z2} 

E12 = {P1, P2} 

-E12 = {P2, P1} 

 

F = {E1, E2, E3, E4}  

V = {F1, F2, F3, F4, F5, F6} 

a) Vertices (P) and edges (E) b) Face (F) c) Volume (V) 

Figure 23. Label and organization of vertices, edge and faces of the voxel by B-Representation 
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APPENDIX B.  FUNDAMENTAL VALIDATION METRICS 

The relative error between auto-generated and CAD-based solid models can be expressed as 

Equation 4 

      Equation 4 

where superscripts TLS and CAD respectively indicate solid models from the TLS data and 

CAD models.  

For determining accuracy levels of façade openings and opening positions, a validation metric 

was used for local features. A standard uncertainty and error bounds are determined by means of 

a statistical procedure. Deviations for the confidence interval of different geometric models are 

established. Oberkampf and Barone (Oberkampf and Barone 2006) proposed use of confidence 

intervals for validation between computational and experimental work as devised by Devore 

(2000), as summarized below. 

 Assuming a random sample X1, X2, . . . , Xn that is from a normal distribution with a mean ( 

and a standard deviation () has the actual sample observations x1, x2, . . . , xn. Then, for any a 

number of samples (n), the sample means ( ) is normally distributed, with a mean and standard 

deviation . From that, the variable Z is expressed as in Equation 5. 

          Equation 5 
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This has an approximate standard normal distribution. For a large sample, the Central Limit 

Theorem implies that  has a normal distribution irrespective of the nature of the population 

distribution. Then, the variable Z can be written as Equation 6 

P(z-/2 < Z < z+/2)  1-       Equation 6 

where z/2 is the value of the random variable Z, at which the integral of Z from z/2 to + is /2, 

and z-/2 is analogue to z/2. The total area of both tail intervals of the distribution is . 

In practical computation of the interval, the value of  will almost never be known and must be 

replaced by the sample standard deviations. Substituting into Equation 5 and then re-arranging 

the Equation 6 allows that the expression to be written as Equation 7 

     Equation 7 

which can be rewritten as a confidence interval (i.e., a probability interval) for the population 

mean using sampled quantities for the mean and standard deviation as in Equation 8 

       Equation 8 

where  and s are the sample mean and standard deviation, respectively, based on n 

observations. Note that  and s are computed from the realization X1 = x1, X2 = x2, . . ., Xn = xn. 

Generally speaking, for the condition n > 40 the population is sufficient to justify the use of this 

interval (Devore 2000). Consider the case of estimating a confidence interval for an arbitrary 

X
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number of experimental observations (n), with n as small as two. The interval analogous to 

Equation 8 is shown in Equation 9 

       Equation 9 

where the confidence level is given by 100(1-)% and t-/2,v is 1-/2 quartile of the t-distribution 

for v = n-1 degree of freedom. For n greater than 16, the cumulative t distribution and the 

cumulative standard normal distribution differ by less than 0.01 for all quantities. In the limit as 

n , the t-distribution approaches the standard normal distribution (Devore 2000). 

To quantify any inaccuracies of the resultant geometries, absolute errors between the algorithm 

based models and the CAD based ones, parameters of interest (e.g. window length and height) 

can be assumed as random variables as x1, x2, . . . , xn  (Equation 10). A mean and standard 

deviation of the quantity of interest can be given by Equation 11 and 12, respectively. 

         Equation 10 

          Equation 11 

         Equation 12 

where n is a number of singular nodes of interest.  
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Additionally, measurement results can be experimentally evaluated by a statistical method 

through application of type A standard uncertainty according to the 1998 ISO Guide (ISO Guide 

1998). The standard uncertainty estimate uncertainty of the standard deviation of the absolute 

errors generated during the reconstruction process is given by Equation 13 

          Equation 13 
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