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Abstract: 

Over the last decade, several automatic approaches have been proposed to reconstruct 3D 

building models from aerial laser scanning (ALS) data. Typically, they have been 

benchmarked with datasets having densities of less than 25 points/m
2
. However, these test 

datasets lack significant geometric points on vertical surfaces. With recent sensor 

improvements in airborne laser scanners and changes in flight path planning, the quality and 

density of ALS data have improved significantly. The paper presents quantitative evaluation 

strategies for building extraction and reconstruction when using these dense datasets. The 

evaluation strategies are to measure not only the capacity of a method to detect and 

reconstruct individual buildings but also the quality of the reconstructed building models in 

terms of shape similarity and positional accuracy. 

Keywords: LiDAR data; Aerial Laser Scanning; Point Cloud; Building Detection; Building 

reconstruction; Evaluation Strategy 

1. Introduction 

Urban, three-dimensional (3D) model reconstruction is a rapidly growing topic for a large 

range of applications from environmental planning and computational simulation to disaster 

management and location-based services. Currently, the raw data used for 3D building 

reconstruction at a city-scale is obtained from various resources through a wide range of 

techniques including photogrammetry and high-density aerial laser scanning (ALS), and 

while 3D building reconstruction has been an active research topic for more than a decade, 

the field is still rapidly changing, as raw data improves and user expectations continue to 

grow, particularly with respect to façade details [1]. Currently, existing methods in 3D 

building model reconstruction from ALS data typically start by extracting data points from 

roofs and reconstructing roof models [2, 3]. A complete building model is then generated by 
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extruding roof outlines to a ground plane or extruding building footprints based on the 

building’s height [4, 5]. These methods have the disadvantages of assuming (1) the 

availability of accurate a priori data and (2) the absence of overhanging roofs. Unfortunately 

neither assumption can be relied upon, as shown by Kaartinen et al. [6] and Rottensteiner et 

al. [7].  

As part of the EuroSDR building extraction project, the quality, accuracy, feasibility, and 

economic aspects of semi-automatic and automatic building extraction techniques based on 

either ALS data or a combination of ALS data and aerial images were evaluated [6]. The 

project consisted of three test sites, each with typical ALS density of less than 20 points/m
2
. 

The project concluded that only ALS data with allowable accuracy could be used for building 

extraction, although no threshold was specified [6]. In an ISPRS benchmark project to 

evaluate building detection accuracy, tree detection, and 3D building reconstruction methods 

were assessed. Data (aerial images and ALS point clouds) from two sites were used where 

ALS density was less than 10 points/m
2 

[7]. The results showed that existing methods 

satisfactorily detected buildings larger than 50m
2
, but struggled with Level of Detail (LoD) 2 

[8] for smaller buildings and in urban areas, as a direct outgrown of the absence of façade 

data. Thus, a contest was devised as part of the IQMULUS project’s workshop on Processing 

Large Geospatial Data held in Cardiff University on 8 July 2014 to test building detection 

and 3D building reconstruction algorithms using high-density data in an urban area. 

Specifically, the competition was based on dense ALS data (typically 225 points/m
2
) for 

1km
2
 area in Dublin Ireland. The dataset was acquired by the Urban Modelling Group at the 

University College Dublin to maximize vertical surface data acquisition [9]. 

The contest included two tasks, from which participants could submit for either or both. The 

goal of Task A was to identify and extract the data points of each individual building in the 

study area and reconstruct the buildings’ boundary lines. The evaluation focused on 

identifying the level of deviation in location, the level of shape similarity, and the positional 

accuracy of the detected buildings with respect to the ground truth (GT). In Task B, the 

participants were asked to reconstruct 3D building models from a subset of the Task A data. 

The evaluation was benchmarked not only on the achieved LoD of the submitted 3D building 

models but also on their final quality through geometric accuracy. The participants were 

required to submit results to the competition organizers for evaluation based on GT. This 

paper reports the data, task objectives, evaluation strategies, and the results achieved to date. 



2. Data  

The test area is approximately 1km
2
 and consists of 205 blocks, each of which may contain in 

excess of a dozen buildings per block, as shown in Fig. 1. The area is comprised of mostly 

four-storey masonry (brick and stone) buildings [10]. The buildings are generally rectilinear 

with only a limited amount of ornamentation. The typical building is 11–15m in height, less 

than 5m in width and 6–10m in length [10]. They are mostly closely spaced or abutting each 

other, with some sharing an adjoining wall, commonly referred to as a “party wall”.  

 

Fig. 1. Acquired ALS area in Dublin central and ALS tiles (contest area outlined in red) 

 

The dataset was acquired by ALS using the FLI-MAP 2 system, which generated 1000 pulses 

for each scan line. The system operated at a scan angle of 60 degrees, with an angular spacing 

of 60/1000 degrees between pulses, which is roughly equal to one milli-radian. The quoted 

accuracy of the FLI-MAP 2 system is 8 cm in the horizontal plane and 5cm in the vertical 

direction, including both laser range and navigational errors [11]. Acquired points were 

provided in a global coordinate system with reference to the National Irish Grid (Irish Grid), 

relating to the use of a Global Navigation Satellite System (GNSS) to determine the aircraft 

position during scanning. The FLI-MAP 2 system is capable of recording up to four echoes 

for each emitted pulse and spectral data with intensity values. Unfortunately, the RGB values 

were not available due to an equipment malfunction during the data collection.  

 

Since the study area is urban, besides constrained flight planning (e.g. flight path and 

altitude), three major factors impact the vertical façade data capture:  building geometry, 



street widths, and street layout. The flight path was designed to maximize the vertical data of 

the building walls [9]. The dominant directions of the flight tracks were chosen as north-east, 

north-west, south-east and south-west (Fig. 2). The flight attitude varied between ~380-480m 

(as low as possible with respect to approval by the Irish Aviation Authority), with an average 

elevation of ~400m. A total of 44 flight strips with 2,823 flight path points were collected 

during data acquisition. With a scan angle of 60 degrees, the distance between two adjacent 

flight paths projected onto the ground was approximately 70 m (Fig. 2). As a result, a total of 

370,154 scan lines were acquired, with approximately 225 million data points, giving a 

typical point density of 225 points/m
2
. Each emitted pulse was recorded with up to four 

echoes. The echo distribution is shown in Table 1. The vast majority of points were first 

echoes. Secondary echoes constituted only a small portion of the points, as the overwhelming 

majority of surfaces in the study area were solid (in the form of streets and buildings). For 

further information about this ALS data, participants are referred to the following reference 

[11]. The data set was organized into 9 tiles, each covering 500m x 500m (Fig. 1) and is 

publicly available for download [12].  

 

Fig. 2. Designed flight path of data collection 

Table 1. Echo distribution of acquired ALS points 

Echo Count  Percentage  

1
st
  217,497,975 96.33% 

2
nd

  7,902,595 3.50% 

3
rd

  383,840 0.16% 

4
th

  4,028 0.001784% 

Total 225,788,438 100% 

 

 

 



 

 

3. Tasks and evaluation  

3.1 Task A 

Task A was to identify and extract the data points for each building in the study area and 

reconstruct the buildings’ boundary lines. In an urban region, buildings have little, if any, 

space between them (Fig. 3). This makes automated detection challenging, as one cannot rely 

upon a distinctive change in elevation around each building as a clear delineator between 

structures. 

 

Fig. 3. Example of the challenge of extracting an individual building in urban areas [13] 

Participants were given 3 months and asked to submit the results with segregated ALS 

datasets for each building. The building outlines were to be generated by the contest 

organizers for evaluation. The GT used to evaluate the submissions consisted of 2D footprints 

generated by the Ordnance Survey Ireland (OSI).  

The organizer’s method (based on an angle criterion and 2D cell grids) was used to extract 

points on the boundary of the ALS data of each building provided by participants, after these 

points were projected onto the ground. Subsequently, the boundary points were segmented to 

generate a set of boundary lines describing the building outline; details of this method are 

given in section 4.   

The extracted building outlines were overlaid with GT for evaluation using the procedure 

proposed by Preifer et al [14]. In this, the evaluation identified the level of locational 

deviation, the level of shape similarity, and the positional accuracy of the detected buildings 



with respect to GT. The location was determined based on a match rate between the detected 

building and the reference data. While this can be done using either a threshold-based system 

or a threshold-free one [15-17], the former requires an overlap threshold to determine the 

most important quality indicators, which may bias the results. The latter system does not 

require any overlap threshold, and the evaluation result performs with various levels of 

overlap (from 0% to 100%). While the threshold-free system provides a more stable, object-

based performance [15], the approach cannot determine a building-by-building identification 

for reconstructing building outline, which was the objective of this task [18]. Consequently, a 

threshold-based system with an object-based evaluation was employed, which mirrors the 

strategy adopted for ISPRS benchmark project [7]. 

The overall building detection was evaluated in terms of completeness, correctness, and 

quality of the results. The concept of true positives, false negatives, and false positives (as 

proposed by Rutzinger et al. [17]) was be applied by using group classification as either 

object or background. A True Positive (TP) was defined as an entity, which was classified as 

the object group that also corresponded to an object in the reference model. A False Negative 

(FN) was defined as an entity classified as an object group in the reference model 

corresponding to a background group. A False Positive (FP) was defined as an entity 

classified as an object group that does not correspond to an object in the reference model. 

Therefore, evaluation quantities could be calculated using Eq.s 1-3. 

FNTP

TP
Comp


         Eq. 1 

FPTP

TP
Corr


         Eq. 2 

FNFPTP

TP
Quality


        Eq. 3 

The extracted building was considered as a TP, if it overlapped the reference building by a 

minimum of 50%. The extracted building was classified as a FP, if the building was not in the 

reference data or the area of the extracted building overlapped less than 50% of the reference 

building area. Finally, the reference building was classified as FN, if the reference building 

did not match the extracted building to any extent. 

Additionally, to measure quality of each extracted building, the matched line (LGT) of the 

extracted boundary line (LEX) was determined from the GT. From a set of boundary lines of 



the extracted building, the LGT was considered the matched line, if all of the following criteria 

were met: (1) the averaged distances between the two end points of LEX to LGT is the 

minimum of candidate lines and no larger than the distance threshold by 3m [7]; (2) the angle 

between LEX and LGT was less than the angle threshold, where the value of 30 degrees was 

adopted; (3) the overlap length (Loverlap) between LEX_proj and LGT was greater than zero, 

where LEX_proj was a projection of LEX onto LGT. Fig.4 illustrates the result of determining the 

nearest lines of the extracted boundary lines and the overlap lengths. 

  
a) Overlaid boundary lines from extracted 

and GT buildings
(*) 

b) Illustration of overlap lengths
(**)

 

* Dashed lines are boundary lines (LGT) of the ground truth building and solid lines are the boundary lines (LEX) of the 

extracted building. 

** Colour solid lines illustrate overlap lengths of LEX_proj and LGT 

Figure 4. Illustration of determining the best matched ground truth line (LGT) of the extracted 

boundary line (LEX) and overlap length 

Furthermore, to measure a shape similarity, area differences and an overlap perimeter 

between the extracted building and the GT were introduced. Notably, only the extracted 

buildings as TP were considered for evaluation. An area of each extracted building was 

computed from the boundary points extracted from the data points of the building by the 

proposed method. The quality indicators measuring the difference in areas involved summing 

the absolute, mean, and standard deviation differences (see Eq.s 4-6). 
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where AGTi and AEXi are the areas of the extracted buildings and GT building, respectively, 

and n is the number of the buildings that were TPs. 

Subsequently, an overlap perimeter for each building was established by applying Eq. 7. 
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

         Eq. 7 

where Loverlap_j is the overlap length in the extracted building, m is the number of the overlap 

lengths, LGT is the total boundary length of the ground truth building.  

A positional accuracy can be described in term of the accuracy and conciseness of the 

extracted building, which is performed through distance and orientation errors between the 

extracted boundary lines and the ground truth boundary lines [19]. The distance error (d) was 

defined as the average distance between two end points of LEX to its matched line derived 

from LGT, while the orientation error () was the angle between LEX and LGT.  The overall 

distance and orientation errors of the extracted buildings in the data set were expressed as 

Eq.s 8 and 9: 
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where LEXj was the length of the extracted boundary line, and dj and j were the distance and 

angle between the extracted and reference boundary lines (respectively), and m was the 

number of boundary lines in the extracted building of interest. In these error measurements, 

the length of the extracted boundary line was introduced to avoid a heavy penalization for 



short extracted boundary lines [19]. Subsequently, average and standard deviation can be 

used to measure a distribution of these quantities.

3.2 Task B 

The goal of Task B was to extract and reconstruct 3D building models from a subset of the 

data, as shown in Fig. 4. The goal of the 3D model was to achieve LoD3 as defined according 

to the CityGML standard definition [8] but with a minimum achievement requirement of 

LoD2. Notably, only building geometry was considered for evaluating the submitted results. 

For LoD2, the generated building models were to consist of all visible exterior walls, as well 

as major roof components (e.g. roof surfaces and small dormers) but without roof overhangs 

or façade details. For LoD3, the reconstructed building models were to include all façade 

openings with respect to doors and windows; however details of these openings (e.g. window 

frames or lintels) and other architectural detailing were not required. 

 

Fig. 5. Plan view of the Task B study area 

The results were to be submitted in a DXF file format, compatible with a standard CAD 

platform. The geometry of each building model was to be stored as either a polygon or a 3D 

solid. Each component of the building model (e.g. exterior vertical walls or roofs) was to be 

arranged in a specific layer as part of the DXF file. In addition, the participants were asked to 

submit a brief description of the approach implemented to reconstruct the 3D building 

models. 



The reference models including 3D building models with LoD3 were created based on 

independently measured architectural drawings published by Dublin City Council [20]. These 

drawings were submitted by the building owners and were generated from traditional survey 

methods. To evaluate the submitted results, the generated building models were initially 

mapped onto the reference models based upon each building’s centroid, as computed using 

the building corners at the ground level and a normal vector of the street façade. Then the 

iterative closest point (ICP) algorithm [21] was employed to obtain a final registration model, 

which was minimized using the root mean square of the Euclidean distances between the 

generated building corners and the nearest corners derived from the reference model at the 

ground level  (Fig. 5). Similar to Task A, the evaluation process was to measure not only the 

capacity of the method to detect and reconstruct individual buildings but also the quality of 

the generated building models.  The former metric is described through completeness, 

correctness, and quality quantities (as defined in Task A). The later metric involves shape 

matching and accuracy with respect to the reference building. The evaluation process was 

divided into evaluation of two topics: (1) generated building surfaces consisting of vertical 

façade surfaces and roof planes and (2) opening details (only applied from the generated 

building models with LoD3).  

 

Fig. 6. Mapping the generated model to the reference model for building evaluation 

To assess the quality of the reconstructed building models, indicators involving a shape 

similarity (standing for an identical shape) and errors with respect to distance and orientation 

(describing the building model’s accuracy) were used. First, similar to Task A, after mapping 

the generated model to the reference one, the matched plane (SRM) of the generated model’s 

plane (SGM) was determined from the reference model. The SRM was then matched plane, if 

(1) the angle between the normal vectors of the SRM and SGM was less than the angle 

threshold; (2) the SRM had the shortest distance to SGM; and (3) the overlap area between the 



projected SGM onto the SRM was greater than zero. Notably, if the SGM overlapped multiple 

planes of the reference model, the SGM was split into sub-planes corresponding to the number 

of overlapping planes. Second, the shape similarity was computed as per Eq. 7, where the 

overlap area was used. Third, the distance error between SGM and SRM was calculated as the 

average distance from the vertices of SGM to their projections onto SGT. Next, the orientation 

error was considered as the angle between the normal vectors of SGM and SRM. Finally, the 

distance and orientation errors of each reconstructed model were computed by using Eqs. 8 

and 9, where the representation of the surface area was replaced with a line segment length. 

The building models with LoD3 were to be evaluated with respect to the quality of the 

reconstructed openings in terms of the number of openings and their locations versus those of 

the actual geometries. Validation metrics proposed by Truong-Hong [22] were used to 

measure any differences between the opening positions (openings’ corners) and dimensions 

(width and height) through mean and standard deviation values. In order to get these 

measurement indicators, the generated building facades containing the openings were 

mapped onto those of the respective reference models, using the normal vector of the surface 

and the centroid surface at the ground level, which was computed from edges’ coordinates at 

the ground (Fig. 6).  

 

Fig. 7. Mapping openings to evaluate their accuracy 

4. Building outline generation 

As participants were only given 3 months, Task A was limited to submission of segregated 

ALS datasets for each building. However, the evaluation process required the building outline 

represented by a set of line segments. Thus, these were generated by the contest organizers. 

Figure 8 shows the applied workflow. Notably, the method only reconstructed primary 



boundary lines for a length of boundary point segments larger than 1m and did not fill any 

gap between the generated boundary lines.  

 

Figure 8. Workflow to generate boundary lines of extracted buildings 

In the first stage of the proposed method, the ALS data points of each building were projected 

onto the ground level (known as the xy-plane in the global coordinate system). Data points on 

the building outline were a prerequisite for generating boundary lines. Various algorithms 

associated with the criteria have been proposed to extract those boundary points. Many use an 

angle criterion [23, 24], a half-disc criterion [25], or a Delaunay triangulation mesh [26, 27]. 

In this proposed method, the angle criterion was employed to extract the boundary points. 

However, an existing angle criterion is time consuming, because all points in the data set 

must be checked. To overcome this aspect, a combination of a 2D cell grid and an angle 

criterion was introduced.  

After the ALS building data were projected onto the ground level (Fig. 9a), the 2D cell grid 

was employed to represent the data set, in which the cell size of 0.5m was empirically 

chosen. The cell was classified as either “full” or “empty”. The cell was “full”, if it contained 

at least one data point and was otherwise empty (Fig. 9b). As the aim of the algorithm was to 

reconstruct building boundary lines, the data points on each building’s outline had to be 

extracted. Unlike other angle criterion-based algorithms, in this method only data points that 

were contained in a full cell on the perimeter of the data set were checked as to their status as 

boundary points (Fig. 9c). 

The data points within these full cells were considered candidate boundary points. The angle 

criterion was then employed to determine the boundary points from these candidate points. 



With a given point, pi selected from the candidate points, the k-nearest neighbouring (kNN) 

points, q was searched for a kNN of 20 points [23]. Subsequently, Cartesian coordinates of 

neighbouring points, q, were then transformed into relative cylindrical coordinates, with the 

local origin set at a given point pi. If an angle between two consecutive neighbouring points, 

i,i+1 = qiqi+1, (the difference between their azimuths) exceeded a given threshold, the given 

point was classified as a boundary point. In this implementation, the angle threshold of 90 

degrees was selected. For more details of this process, please refer to Truong-Hong et al. 

[23]. Results of the boundary point searching are shown in Fig. 9d. 

  
a) Input ALS data point b) 2D cell grid with full cell in cyan colour 

and empty cell in white colour 

  
c) Extracted full cells containing candidate 

boundary points 

d) Boundary points and boundary lines 

Figure 9. Illustration of boundary lines of the extracted building 

From a set of boundary points, the polygon describing the contour boundary of the building 

was generated to support the building area computation, where vertices of the polygon were 

considered the boundary points. Subsequently, an adopted region-growing method was 

employed to extract the boundary points belonging to the same boundary line. As part of this, 



the tangent vector of each boundary point was computed. This was done by searching the 

kNN points of the given boundary points, and then a principal component analysis was 

employed to estimate the tangent vector. Based upon experience by the authors, a 

neighbourhood of 10 kNNs is sufficient at this step and was used in this implementation. An 

initial seeding point was randomly selected from the boundary points, and a 10 of kNN was 

searched. The kNN point(s) were considered as target point(s) (i.e. in the same region with 

the seeding point) and were added into the seeding point group, if the angle between the 

seeding point and the kNN point(s) was smaller than the angle threshold, which was 

empirically chosen as 5 degrees. The process was iteratively applied until all boundary points 

were selected as seeding points. Finally, the boundary points of each region were used to 

generate the boundary line by using a least squares method, where only segment lengths 

larger than 1m were considered. Notably, only the straight line segment was used to represent 

to the building outline, as illustrated in Fig. 9d. 

5. Results and discussions 

The contest was launched in May 2014. At the time of the IQmulus workshop (July 8), results 

for Task A were received from the Computer Graphics Systems Group at the Hasso-Platter-

Institute at University of Potsdam; no submissions were received for Task B. The proposed 

method to detect 3D point clouds of the buildings was based on the point cloud topology and 

did not require per-point attributes or representative training data. The method adopted the 

smoothness constraint region growing proposed by Rabbani et al. [28] and the local point 

connectivity to segment LiDAR data set. The vegetation areas were grouped into small 

segments, while the other objects (e.g. building roofs) were grouped into larger segments. 

Next, a type of surface category of each segment was assigned based on the structure, size, 

and proximity of the segments. In this, large segments located below other ones were 

recognised as the ground, while the building points were determined from the remaining 

segments based on size and roughness. For details of the classification method see Richter et 

al. [29]. 

The method automatically extracted the data points belonging to each building, and a total of 

1889 data files of the buildings were submitted. The building boundary lines were generated 

by using the above outlined organizers’ method. The extracted building outlines were 

mapped onto the existing 2D footprint for evaluation (Fig. 7). Results of the location 



evaluation (completeness, correctness, and quality) of the extracted building are showed in 

Tables 2 and 3. 

 

Fig. 10. Overlay reconstructed building detection onto 2D footprints with areas filled in 

colour are the actual 2D footprints, and the black polygons are building outlines from the 

submission. 

Table 2. Defining Assessment quantities 

Quantities Total buildings Total area (m
2
) 

TP 794 228,466.8 

FP 378 149,792.8 

FN 41 11,744.38 

Table 3. Resulted evaluation 

Comparative 

quantities 

Comparative results in term of 

the number of the buildings (%) 

Comparative results in term 

of the building area (%) 

Completeness 95.1 95.1 

Correctness 67.7 60.4 

Quality 65.5 58.6 

As shown in Table 3, although the completeness was approximately 95%, correctness and 

quality were less than 70%. As part of the ISPRS benchmark project on urban object 

extraction [7], alternative methods tested with data from Toronto, Canada with only 6 

points/m
2
 were able to achieve 75.5% completeness and 70.1% correctness and quality. 



Additionally, recent work by Awrangjeb et al. [30] on building detection with an object-

based evaluation using Area 4 data from Toronto, Canada showed 100% completeness and 

83.6% correctness and quality. The differences may be due to either the proposed method or 

the complexity of the built environment. In terms of the contest dataset from Dublin Ireland, 

the buildings have a high degree of similarity with respect to their geometry (building height 

and roof configuration) and many share at least one vertical wall. Thus, extraction of an 

individual building is difficult. For example, with the considered region in Fig. 8a, the 

submission extracted five buildings, but one (shown as a yellow polygon) is actually an 

extension and not an independent building. Moreover, when a roof involves several surfaces 

with similar geometric properties (e.g. size and orientation), the algorithm may fail to detect 

that these belong to one building. For example, in Fig. 8b, the building roofs have several flat 

surfaces, but the submitted method considered each flat surface as a separate building. In 

summary, although the test dataset had a very high density, extraction of individual urban 

buildings was still a major challenge due to architectural attributes of the study area. 

Arguably, accuracy of individual building data extraction can be improved by combining roof 

profiles and information of the building facade derived from the distribution of a point cloud 

on the façade. 

 

 
a) Failure to extract point clouds of adjacent 

buildings (11 buildings from GT)  

b) Over-extracted individual buildings (2 

buildings from GT) 

Note: Blue polygons describe 2D footprints; red polygons are contours of building outlines from the 

submission; and the yellow filled polygon in Fig. 11a showed the incorrect detection of the building outline, 

which is a part of one of the buildings. 

Fig. 11. Problematic extraction of the building outline 



To evaluate quality of individual building detection, the data from 50 buildings were selected 

to represent various levels of complexity. Against these, the submitted files were compared in 

terms of shape similarity and positional accuracy. The boundary lines of each building were 

generated by the proposed method. The summary evaluation is shown in Table 4. Although 

the absolute average area difference was relatively small (3.59m
2
) when compared to the 

reference building, the results showed the difference in areas varied in a wide range,  where 

the standard deviation (std) was 66.75m
2
, and the minimum and maximum differences were 

respectively -222.07m
2
 and 206.44m

2
. Otherwise, the submitted results showed good 

agreement between the extracted building outlines and the reference ones. The average 

overlap perimeter was 0.76 (std = 0.13), while the distance and orientation errors were 1.10m 

(std = 0.89m) and 3.09 degrees (std = 1.75 degrees), respectively. 

Table 4. Resulted evaluation in terms of a shape similarity and positional accuracy from 50 

selected buildings 

Aspect Shape similarity  Positional accuracy 

Area difference 

(m
2
) 

Overlap 

perimeter rate 

 Distance 

error (m) 

Orientation 

error (degrees) 

Average 3.59 0.76  1.10 3.09 

Minimum -222.07 0.41  0.14 0.63 

Maximum 206.44 0.97  4.21 8.39 

Standard deviation 66.75 0.13  0.89 1.75 

To illustrate detailed quality of the extracted building, nine buildings representative of typical 

cases in the study area were selected for further evaluation. An overlap of the extracted 

boundary lines and GT ones are illustrated in Fig 12, and quantification of the evaluations are 

shown in Table 5. Absolute area differences between the extracted buildings and GT was 

small, with most less than 16m
2
; however, the difference of Building ID 1394 was 109.77m

2
 

due to over-extraction, thereby unintentionally incorporating data points from 3 other 

buildings. The average and standard deviation of the absolute area differences of the 9 

buildings were -16.31m
2
 and 37.08m

2
, respectively; however, if the values from Building ID 

1394 are considered as outliers, the average of absolute area differences was only -4.62m
2
 

(std = 12.93m
2
). Furthermore, a high rate of overlap length between the boundary lines of the 

extracted building and GT ones was found, with the average exceeding 80%. Building ID 52, 

718 and 1394 had small overlap length rates (< 0.72%), because the data set contained points 

from other buildings. In terms of positional accuracy, the evaluation shows that both distance 

and orientation errors were small, with the average of 1.25m (std = 1.18m) and 2.15 degrees 



(std = 1.16 degrees), respectively. If Building ID 1394 is removed, the average of distance 

error is reduced further to only 0.882m (std = 0.430m). 

 

 

 
Building ID = 13 Building ID = 119  Building ID = 450 

  

 

Building ID = 50 Building ID = 261 Building ID = 500 

   
Building ID = 718 Building ID = 1394 Building ID = 1420 

*
 Dashed lines are boundary lines of GT and solid lines are the extracted buildings 

Figure 12. Illustration of boundary lines of the extracted buildings of interest 
(*) 

 

 

 

 

 

 



 

 

Table 5. Resulted evaluation in term of a shape similarity and positional accuracy 

Building 

Id 

Shape similarity   Positional accuracy 

AEX 

(m
2
) 

AGT 

(m
2
) 

A 

(m
2
) 

Overlap 

length rate 

 Distance error 

(m) 

Orientation 

error (degrees) 

13 555.7 543.9 -11.8 0.824  0.364 2.469 

50 878.6 883.9 5.3 0.593  1.292 3.598 

119 812.1 817.3 5.3 0.876  0.468 1.170 

261 524.5 529.9 5.4 0.830  1.491 4.439 

450 2456.4 2462.0 5.6 0.878  1.198 1.978 

500 247.6 245.6 -1.9 0.835  0.500 1.142 

718 751.7 735.5 -16.1 0.582  0.684 1.300 

1394 2301.0 2191.2 -109.8 0.720  4.214 1.769 

1420 1626.5 1597.8 -28.7 0.893  1.058 1.515 

In summary, shape similarity and positional accuracy metrics are proposed to measure the 

quality each extracted buildings from aerial LiDAR data. In reality, accuracy of input of the 

LiDAR data (data collection and missing data) and of building outlines has some effect on 

the quality of the extracted building. However, with a special flight plan (low flight attitude 

and multiple overlap flight scan) designed to minimize the self-shadowing and street 

shadowing made insufficient sampling data only a minor issue. These metrics mostly 

measure the accuracy of the building outlines generated from the submitted method, which 

may be over- or under-extraction of building data points. Notably, participants were only 

asked to submit the data points of individual building (because of time constraints), and the 

building outline was generated by the contest organizers. Therefore, the total errors derived 

from these metrics involve errors from the submitted and the organizers’ methods. However, 

the evaluation process does reflect the quality of the submitted method, as the organizers’ 

method has been documented elsewhere to be able to reconstruct high accuracy of building 

outlines [23]. 

6. Conclusions 

Over the last decade, automatic approaches have been proposed to reconstruct and 

benchmark 3D building models. However, evaluations were predominantly on extremely 

low-density data sets with only minimal points on building facades, which no longer fully 

reflects the state of data availability. This paper presents the objectives of the track “Urban 

3D Model Generation” in the IQmulus contest 2014 related to automatic building detection 



and reconstruction. This 2007 test dataset consisted of ALS data captured over 1km
2
 of the 

Dublin’s city centre with data density up to 225 points/m
2
 and was designed to maximize 

vertical surface data capture.  

An evaluation strategy was proposed to benchmark the results in terms of the capacity of the 

submitted method in detecting and reconstructing building outlines/models and quality of the 

models with respect to geometrical accuracy. While that approach detected most buildings in 

the study area, correctness and quality quantities were only around 65%. The average area 

difference between the detected building outline and GT was 3.59m
2
 (std=66.75m

2
), while 

the matching overlap between their perimeters exceeded 76%. In terms of the positional 

accuracy, the off-set distance averaged 1.10m with an orientation error of 3.09 degrees. These 

results show that even with an extremely dense LiDAR dataset, building detection in dense 

urban areas is still a major challenge, especially where the buildings have similar geometries 

and are closely abutted. Notably, the test datasets remain available, and further submissions 

are welcome for evaluation at www.sites.google.com/site/iqmuluscontest2014/. 
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