Title: Universal Taylor series for non-simply connected domains

Author(s): Gardiner, Stephen J.; Tsirivas, Nikolaos

Publication date: 2010-05

Publication information: Comptes Rendus Mathématique, 348 (9-10): 521-524

Publisher: Elsevier

Link to online version: http://dx.doi.org/10.1016/j.crma.2010.03.003

Item record/more information: http://hdl.handle.net/10197/2465

Publisher's version (DOI): http://dx.doi.org/10.1016/j.crma.2010.03.003

The UCD community has made this article openly available. Please share how this access benefits you. Your story matters! (@ucd_oa)

Some rights reserved. For more information, please see the item record link above.
Universal Taylor series for non-simply connected domains

Séries universelles de Taylor pour les domaines non-simplement connexes

Stephen J. Gardiner and N. Tsirivas

Abstract

It is known that, for any simply connected proper subdomain Ω of the complex plane and any point ζ in Ω, there are holomorphic functions on Ω that have “universal” Taylor series expansions about ζ; that is, partial sums of the Taylor series approximate arbitrary polynomials on arbitrary compacta in $\mathbb{C}\setminus\Omega$ that have connected complement. This note shows that this phenomenon can break down for non-simply connected domains Ω, even when $\mathbb{C}\setminus\Omega$ is compact. This answers a question of Melas and disproves a conjecture of Müller, Vlachou and Yavrian.

Résumé

Il est connu que, pour un sous-domaine propre simplement connexe Ω du plan complexe et un point quelconque ζ de Ω, il y a des fonctions holomorphes sur Ω qui possèdent des séries de Taylor «universelles» autour de ζ; c’est-à-dire tout polynôme peut être approximé, sur tout compact de $\mathbb{C}\setminus\Omega$ ayant un complémentaire connexe, par les sommes partielles de la série de Taylor. Cette note montre que ce résultat n’est plus vrai en général pour les domaines non-simplement connexes Ω, même lorsque $\mathbb{C}\setminus\Omega$ est compact. Cela répond à une question de Melas et réfute une conjecture de Müller, Vlachou et Yavrian.

1 Introduction

Let Ω be a proper subdomain of the complex plane \mathbb{C} and let $\zeta \in \Omega$. A function f on Ω is said to belong to the collection $U(\Omega, \zeta)$, of holomorphic

©2000 Mathematics Subject Classification 30B30, 30E10.

This research was supported by Science Foundation Ireland under Grant 09/RFP/MTH2149, and is also part of the programme of the ESF Network “Harmonic and Complex Analysis and Applications” (HCAA).
functions on Ω with universal Taylor series expansions about ζ, if the partial sums
\[
S_N(f, \zeta)(z) = \sum_{n=0}^{N} \frac{f^{(n)}(\zeta)}{n!}(z - \zeta)^n
\]
of the Taylor series have the following property:

for every compact set $K \subset \mathbb{C}\backslash\Omega$ with connected complement and every function g which is continuous on K and holomorphic on K°, there is a subsequence $(S_{N_k}(f, \zeta))$ that converges to g uniformly on K.

Nestoridis [17], [18] has shown that $U(\Omega, \zeta) \neq \emptyset$ for any simply connected domain Ω and any $\zeta \in \Omega$. (The corresponding result, where K is required to be disjoint from Ω, had previously been established by Luh [12] and Chui and Parnes [4].) In fact, Nestoridis showed that possession of such universal Taylor series expansions is a generic property of holomorphic functions on simply connected domains Ω, in the sense that $U(\Omega, \zeta)$ is a dense G_δ subset of the space of all holomorphic functions on Ω endowed with the topology of local uniform convergence (see also Melas and Nestoridis [14] and the survey of Kahane [11]).

The situation when Ω is non-simply connected is much less well understood, despite much recent research: see, for example, [2], [3], [5], [6], [7], [9], [13], [15], [19], [22], [23], [24], [25]. Melas [13] (see also Costakis [5]) has shown that $U(\Omega, \zeta) \neq \emptyset$ for any $\zeta \in \Omega$ whenever $\mathbb{C}\backslash\Omega$ is compact and connected, and has asked if $U(\Omega, \zeta)$ can be empty when $\mathbb{C}\backslash\Omega$ is compact but disconnected. On the other hand, Müller, Vlachou and Yavrian [15] have shown, for non-simply connected domains Ω, that thinness of the set $\mathbb{C}\backslash\Omega$ at infinity is necessary for $U(\Omega, \zeta)$ to be non-empty, and have conjectured that this condition is also sufficient. There is clearly a large gap between the results of [13] and [15]. Also there has been no known example of a domain Ω and points $\zeta_1, \zeta_2 \in \Omega$ such that $U(\Omega, \zeta_1) \neq \emptyset$ and $U(\Omega, \zeta_2) = \emptyset$.

The purpose of this note is to establish the following result. We denote by $D(a, r)$ the open disc of centre a and radius r, and write $\mathbb{D} = D(0, 1)$. By a non-degenerate continuum we mean a connected compact set containing more than one element.

Theorem 1 Let Ω be a domain of the form $\mathbb{C}\backslash(L \cup \{1\})$, where L is a non-degenerate continuum in $\mathbb{C}\backslash\mathbb{D}$. Then $U(\Omega, 0) = \emptyset$.

The conjecture of Müller, Vlachou and Yavrian is thus disproved. Also, if we take L to be $\mathbb{D}(-5/3, 1/3)$, then $U(\Omega, 0) = \emptyset$ by Theorem 1 and yet a result of the second author [22] tells us that $U(\Omega, -1/2) \neq \emptyset$ (see also Costakis and Vlachou [7]). Thus we now have an example of a domain where the existence of functions with universal Taylor series depends on the chosen centre for expansion. The result of Melas, that $U(\Omega, 0) \neq \emptyset$ if $\mathbb{C}\backslash\Omega$
is compact and connected, is now seen to be sharp in the sense that, by Theorem 1, it can fail with the removal of one additional point from the domain. Theorem 1 fails if L is allowed to be a singleton [13].

2 Proof

Let Ω be as in the statement of Theorem 1, and suppose, for the sake of contradiction, that there exists a function f in $U(\Omega, 0)$. We can write $f = g + h$, where g is the singular part of the Laurent expansion of f associated with the singularity at 1, and h is holomorphic on $\mathbb{C}\backslash L$. We denote the Taylor coefficients of g and h about 0 by (a_n) and (b_n), respectively. Since $(S_N(f, 0)(1))$ is dense in \mathbb{C} and $(S_N(h, 0)(1))$ converges, we see that g is non-zero.

Let $\rho = \inf\{|z| : z \in L\}$ and $0 < \delta < \varepsilon < \rho - 1$. The Taylor series for g and h about 0 converge absolutely in \mathbb{D} and $D(0, \rho)$, respectively, so we can define the finite quantities

$$
\alpha_\delta = \sum_{n=0}^{\infty} \frac{|a_n|}{(1 + \delta)^n} \quad \text{and} \quad \beta_\delta = \sum_{n=0}^{\infty} |b_n| \left(\frac{\rho}{1 + \delta}\right)^n.
$$

Since $f \in U(\Omega, 0)$, we can choose a strictly increasing sequence (N_k) of natural numbers such that

$$
S_{N_k}(g, 0)(z) + S_{N_k}(h, 0)(z) \to 0 \quad \text{as} \quad k \to \infty, \text{uniformly on } L. \quad (1)
$$

On $\overline{D}(0, \rho(1 + \varepsilon))$ we have

$$
|S_{N_k}(h, 0)(z)| \leq \sum_{n=0}^{N_k} |b_n| \rho^n (1 + \varepsilon)^n \leq \{(1 + \varepsilon)(1 + \delta)\}^{N_k} \beta_\delta,
$$

so by (1) we can choose k_0 such that

$$
|S_{N_k}(g, 0)(z)| \leq \{(1 + \varepsilon)(1 + \delta)\}^{N_k} (\beta_\delta + 1) \quad (z \in L \cap \overline{D}(0, \rho(1 + \varepsilon)); k \geq k_0).
$$

We also have

$$
|S_{N_k}(g, 0)(z)| \leq \sum_{n=0}^{N_k} |a_n| (1 + \varepsilon)^n \leq \{(1 + \varepsilon)(1 + \delta)\}^{N_k} \alpha_\delta \quad (z \in \overline{D}(0, 1 + \varepsilon)),
$$

so

$$
|S_{N_k}(g, 0)(z)| \leq \{(1 + \varepsilon)(1 + \delta)\}^{N_k} \gamma_\delta \quad (z \in A_\varepsilon; k \geq k_0), \quad (2)
$$

where $\gamma_\delta = \max\{\alpha_\delta, \beta_\delta + 1\}$ and

$$
A_\varepsilon = \overline{D}(0, 1 + \varepsilon) \cup [L \cap \overline{D}(0, \rho(1 + \varepsilon))].
$$
Let $G_ε$ denote the Green function for the domain $D_ε = (C ∪ \{∞\}) \setminus A_ε$ with pole at infinity. Then

$$G_ε(z) - \log |z| → -\log C(A_ε) \quad (|z| → ∞),$$

where $C(A)$ denotes the logarithmic capacity of a set A (see Section 5.8 of [1], or Section 5.2 of [21]). Thus we can choose $r_{δ,ε} > \max\{|z| : z ∈ L\}$ such that

$$G_ε(z) ≤ \log |z| - \log C(A_ε) + δ \quad (|z| ≥ r_{δ,ε}). \quad (3)$$

Bernstein’s lemma (Theorem 5.5.7 in [21]) tells us that any polynomial q of degree $n ≥ 1$ satisfies

$$\left(\frac{|q(z)|}{\max_{A_ε}|q|}\right)^{1/n} ≤ e^{G_ε(z)} \quad (z ∈ D_ε \setminus \{∞\}).$$

Applying this inequality to the polynomial $S_{N_k}(g, 0)$, and using (2) and then (3), we obtain

$$|S_{N_k}(g, 0)(z)| \leq \left\{(1 + ε)(1 + δ)\right\}^{N_k} \cdot e^{N_k G_ε(z)}$$

$$\leq \left\{\left(1 + ε\right)\left(1 + δ\right)e^δ \cdot |z|\right\}^{N_k} \cdot \left(\frac{1}{C(A_ε)}\right)^{N_k} \cdot e^{N_k} \cdot e^{δ} \cdot r_{δ,ε}^{1/n} \cdot r_{δ,ε}^{1/n} \quad (n ≥ N_k; k ≥ k_0).$$

We next adapt an argument from pp.498,499 of Gehlen [8]. Let $ν ∈ (0, 1)$. Since

$$|a_n|^{1/n} = \left|\frac{1}{2πi} \int_{|z|=r_{δ,ε}} \frac{S_{N_k}(g, 0)(z)}{z^{n+1}} \, dz\right|^{1/n}$$

$$\leq \left\{\frac{(1 + ε)(1 + δ)e^δ}{C(A_ε)}\right\}^{N_k/n} \cdot \gamma_{δ}^{1/n} \cdot r_{δ,ε}^{1/n} \cdot e^{δ} \cdot r_{δ,ε}^{1/n} \quad (n ≤ N_k; k ≥ k_0),$$

we obtain

$$\limsup_{k→∞} \max_{νN_k ≤ n ≤ N_k} |a_n|^{1/n} ≤ \left\{\frac{(1 + ε)(1 + δ)e^δ}{C(A_ε)}\right\}^{1/ν} \cdot \gamma_{δ}^{1/ν} \cdot e^{δ} \cdot r_{δ,ε}^{1/ν} = \lambda, \quad \text{say.} \quad (4)$$

Since L is a non-degenerate continuum that intersects $\{|z| = ρ\}$, we have

$$C(L ∩ \overline{D}(0, ρ(1 + ε))) > 0$$

and so

$$C(A_ε) > C(\overline{D}(0, 1 + ε)) = 1 + ε.$$

We can thus choose $δ$ sufficiently small that $(1 + ε)(1 + δ)e^δ < C(A_ε)$, and then choose $ν$ sufficiently close to 1 to ensure that $λ < 1$.

Finally, we will apply an observation of Müller (see Remark 2 in [16]). Since the function g has its only singularity at 1 and vanishes at $∞$, Wigert’s
Theorem (Theorem 11.2.2 in Hille [10]) tells us that there is an entire function F of exponential type 0 such that $F(n) = a_n$ for all $n \geq 0$. However, Theorem V of Pólya [20] says that, for any $\mu > 0$, however small, such a function F has the property that the sequence \{n \in \mathbb{N} : |F(n)| > e^{-\mu n}\} is of density 1. This contradicts (4) with $\lambda < 1$. Thus our original assumption, that there exists f in $U(\Omega, 0)$, must be false, and the proof of the theorem is complete.

Remarks. 1) The assumption that L is a continuum can be relaxed. It is enough to suppose that L is a compact subset of $\mathbb{C}\setminus \mathbb{W}$ such that $\mathcal{C}(D(0, \rho^2) \cap L) > 0$ where $\rho = \inf \{|z| : z \in L\}$.

2) The proof actually shows that there is no holomorphic function f on Ω such that $(S_N(f, 0))$ is divergent at $z = 1$ and has a subsequence that is uniformly bounded on L.

References

School of Mathematical Sciences,
University College Dublin, Belfield, Dublin 4, Ireland.

stephen.gardiner@ucd.ie
nikolaos.tsirivas@ucd.ie