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Abstract: With the rapidly increasing availability of laser scanning data and the growing pressure to 

use it as the basis for computational models, there has been heighten interest in quickly, cost-

effectively, and accurately processing the resulting point cloud data sets so that they are compatible for 

importation into computational models. This paper presents traditional strategies for solid model gen-

eration and examines in detail innovations and continuing limitations of recent patents, newly pub-

lished research, and some currently available commercial programs for the transformation of laser 

scanning point cloud data into solid models appropriate for finite element method meshing and various 

meshing strategies particularly well-suited for point cloud data. 

 

Keywords: Terrestrial laser scanning, light detection and ranging (LiDAR), solid model generation, 
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1. INTRODUCTION 

Laser scanning [also known as Light Detection and Ranging (LiDAR)] has been applied to a wide vari-

ety of industries:  forestry management [1], floodplain mapping [2], landslide monitoring [3] hazard 

identification [4] and more recently condition assessment [4-7]. Laser scanning works by laser triangu-

lation, phase shift, or time of fight [8] and can be used from an aerial or terrestrial unit. Aerial laser 

scanning (ALS) was introduced commercially for digital terrain/elevation model (DTM/DEM) genera-

tion in the early 1970s, with the first generation of terrestrial laser scanning (TLS) equipment launched 

in 1998 [9]. Both approaches have geometric limitations depending upon the scanner’s location, but 

generally the aerial has been used to collect lower density data sets for large areas such as in topo-

graphic modelling, while the terrestrial has been more often applied to capturing short to medium range 

objects (up to 250m) for which higher accuracy is needed (e.g. bridge documentation). TLS can 

achieve millimetre level accuracy but requires significant time for data collection [10], as opposed to 

aerial laser scanning (ALS) for which many kilometres of ground can be documented in an hour but 

with only sub-metre accuracy [11]. However, the introduction of truck-mounted TLS units and im-

proved ALS hardware combined with innovations in flightpath planning [12] are making the distinc-

tions between TLS and ALS less clear. Irrespective of the data collection approach, documentation of 

even relatively small areas can generate data sets of hundreds of millions of points. Thus, processing 

them in a manner that they are useful beyond topographic documentation is challenging. The challen-

ges relate not only to the size of the data sets but in the fact that the individual data points are captured 



without any inherent affiliation to an object or group of objects and that they themselves contain no 

geometric information. The LiDAR point clouds consist only of individual points with x-, y-, z-

coordinates, affiliated red-green-blue values, and intensity values. This format is a major obstacle for 

the engineering usage of the data, especially given that the associated firmware for ALS and TLS sys-

tems are devised primarily for data viewing [3, 8]. 

Recent efforts in micro-climate modelling [14] and tunnelling subsidence prediction [15] indicate an 

emerging trend of using laser scanning data (both terrestrial and aerial) as the basis for not only docu-

menting existing structures but also for populating complex computational models to achieve greater 

architectural detailing. As pressures increase for better environmental modelling and for more subsur-

face transportation, the need for accurate and economically generated computational models is likely to 

grow and with it increased efforts to use laser scanning data as its basis.  

Although there are commercial solutions for the transformation of laser scanning point cloud data into 

solid models as the basis for computational modelling, many of the available processes have significant 

limitations including the following: (1) restriction to only surface mesh creation; (2) reliance on pre-

established geometries, which are regular and planar and may not reflect an existing building’s ge-

ometry; (3) dependence upon a computer-aided drawing (CAD) based program, which relies upon 

straight lines and uninterrupted planes resulting in unintentional “correcting” of the condition of any 

displaced/distorted structure; such auto-correcting prevents mesh convergence, without which a com-

putational mesh is unusable; and (4) an inability to overcome sparse and missing data (Fig. 1). Usage 

of an intermediary program may also result in loss of accuracy and/or a lengthy transformation process 

coupled with significant financial commitments to overcome convergence problems as previously 

noted [16].  

  
a) Original point cloud data b) TIN conversion 

Fig. 1. Illustration of the difficulty in addressing sparse and missing data on a series of building facades 

in a traditional solid model generation approach. 

To better understand how the current state of technology is developing and the contributions and limi-

tations of recent advances on surface reconstruction for computational modelling from laser scanning 

data, this paper gives an abbreviated history of solid modelling and explains the dominant techniques 

used to generate a solid model over the last 40 years. A brief introduction of laser scanning applications 

in civil engineering and common solid modelling techniques used in computer-aided drawing (CAD) 

or computer aided manufacturing (CAM) is then provided. The next section outlines basic common 

methods of surface reconstruction from laser scanning data in computer vision and computer graphics 

and a sampling of commercial software to create solid models from data collected from existing ob-

jects’ surfaces. Subsequently, trends and possible future developments are discussed.  



2. SOLID MODEL GENERATION 

A solid model can be considered as the geometric precursor to a computational mesh, such as is needed 

for Finite Element Method (FEM) modelling. In the 1970s, significant research was undertaken in solid 

model architecture. Two dominant methods that emerged were (i) Constructive Solid Geometry (CSG), 

which construct objects by Boolean operations, store CSG tree, and compute boundary representation; 

and (ii) Boundary Representation (BRep), which stores objects boundaries regardless of construction 

method or spatial subdivision, and decomposes a solid into a cell with a simple topological and geo-

metric structure, such as the octree [17, 18, 19]. Brief applications of these are discussed in the follow-

ing sub-sections. 

2.1 Constructive Solid Geometry 

In Constructive Solid Geometry (CSG), a solid structure is constructed from a series of simple primi-

tive solids [e.g. box, sphere, cylinders or torus (Fig. 2)] and Boolean operations (i.e. algebraic expres-

sions such as union, intersection, and difference). Both the surface and the interior are implicitly de-

fined [17, 19]. A special data construction is called a CSG-tree, where the basic solid shapes are leaves 

and Boolean operations or non-singular transformations are stored as interior nodes. Fig. (3) illustrates 

the CSG process via a simple example. Firstly, the individual basic shapes of the spherical tank with 

two cylindrical pipes are modelled as shown in Fig. (3a). These basic objects including a sphere and 

cylinder were subsequently combined by a series of Boolean expressions (rotation and union) to 

achieve the final object in Fig. (3b) [19]. Advantages of this process are that the solid model produced 

is continuous and watertight, containing no openings, which reduces the problem of discontinuities in 

mesh convergence. One of the major drawbacks of the CSG is that there is not a unique CSG tree rep-

resenting the specific object [20]. Consequently, comparing two identical solid objects is a difficult 

task due to the large amount of possible trees that could represent that object. Goldman [19] provides 

an extensive description of these techniques, along with their relative advantages and disadvantages. 

 
Fig.2. Primitives for a solid modelling systems: a box, a sphere, a cylinder, a cone, and a torus [19] 

  
a) A spherical tank with two cylindrical 

pipes 
b) A CSG tree with primitive solids and Boolean 

operations 
Fig. 3. Constructive Solid Geometry [19] 



2.2 Boundary Representation 

In Boundary Representation (BRep), the solid surface is described as a blanket of faces, edges, and 

vertices (Hoffman and Rossignac, 1996) [17, 19]. In this approach, relationships between entities in 

terms of topology are recorded. The geometry consists of vertices, curves, and surfaces along with nu-

merical data describing position, size, and orientation, while the topology models adjacency and con-

nectivity consisting of vertices, edges, and faces, along with pointers storing connectivity information 

(Fig. 4) [17,18,19]. Some commercial packages use this technique to describe the solid model (e.g. 

ANSYS program [21]). These models are closed and contain no breaks. According to Bruenet and 

Navazo [22], this approach is highly effective for achieving visual and graphical outputs and calculat-

ing volumetric properties, but Boolean operations between solids or the entities involved can become 

quite complex. Velayutham [20] noted that in this approach, a large data structure is required even for 

simple boundary models due to the fact that the data are listed in a face-by-face manner. As a result, 

each edge is part of two faces, and thus, a significant amount of repetition of information is required, 

which is a major disadvantage in terms of storage efficiency.  

 

  

a) Vertices (P) and edges (E) b) Face (F) c) Volume (V) 
Fig.4. Label and organization of vertices, edges and faces of the cubic by B-Representation 

2.3 Octree Representation 

While the above described techniques are very powerful as standalone methods for representing indi-

vidual objects, they are poor choices for storing large datasets, because the number of objects and op-

erators required for full storage is extremely memory intensive. The octree provides an alternative.  

The octree is a data indexing structure, which was first suggested by Jackins and Tanimoto in 1980 

[23] and further developed by Meagher [24]. In that approach, a cube is placed around a three-

dimensional (3D) space called the bounding box and recursively subdivided into eight equal smaller 

cubes (Fig. 5a, b) until the octree representation reaches terminated conditions, such as a depth thres-

hold. Each resulting cube (often referred to as a voxel) constitutes an object represented by the nodes in 

a tree structure (Fig. 5c). The root is assumed to be at the top of the node structure, while the other 

nodes are below the root [24]. Each voxel in the tree has a property to describe its status. Normally, 

their properties are either EMPTY or PARTIAL or FULL indicating that a voxel is either fully empty 

of the object, partially filled with the object, or completely occupied by the object, respectively [24]. 

Figure 4c shows a partially filled voxel recursively sub-divided into 8 child voxels (Fig. 5c). 



  
 

a) Example 3D object b) Octree block decomposition c) Tree structure represen-
tation 

Figure 5. Octree representation [adapted from 25]  

Meagher [24] noted that one of the major advantages of this storage system is that it eliminates the 

need to rely on pre-sorted data prior to editing existing objects or creating new ones. Because of its 

hierarchical nature, algorithms can operate at a level appropriate to the task, thereby eliminating the 

execution of processes on out-of-scope data. Weyrich et al. [26] comment on the octree’s ability to 

quickly locate a point in space, by exploiting binary locators to address octree cells, which is useful 

when used in tandem with efficient neighbourhood queries, such as the k-nearest neighbour algorithm 

as demonstrated by Gopi and Krishnan [27], as will be further discussed later in this paper. Although 

octree representation can construct the object with less accuracy than the two aforementioned tech-

niques [19], the octree has become popular for modelling and visualizing objects in animations and 

other applications, such as surface reconstruction from digitized data, because of its ability to model 

the complex shape of an arbitrary topology [28]. Some work on surface reconstruction using octree 

representations from laser scanning data are discussed below. 



3. SURFACE RECONSTRUCTION 

3.1 Surface reconstruction algorithms 

In the area of reconstructing real models using 3D laser scanning data, many approaches have been 

proposed in the computer vision and computer graphics communities over last two decades. In this sec-

tion some common methods are presented that may be relevant to reconstruct facade buildings from the 

LiDAR data; for other basic methods readers can refer to Mencl and Muller [29]. Lorensen and Cline 

[30] developed a powerful and extensively adopted technique to determine a surface model from 3D 

data entitled the Marching Cubes algorithm for medical scan data such as that generated during com-

puted tomography (CT), Magnetic resonance (MR), and single photon emission computed tomography 

(SPECT); such data can be considered analogous to TLS data. The algorithm is a two-step process:  (1) 

locating the surface corresponding to a user-specified value by cutting through a cube and determining 

whether the cubes vertex lies above or below the scan’s surface and (2) calculating the normals to the 

surface at each vertex of the triangle. There are 256 (28) cases in which a surface can intersect the cube, 

as there are eight vertices in each cube and two states of surface:  inside and outside. In case of two dif-

ferent symmetries that are the topology of triangulated surface and rotational symmetry, there are really 

only 14 configurations instead of 256 possibilities. The process occurs by subdividing the space into a 

series of small cubes (or voxels) [Fig. (6a)]. The algorithm starts at a point and tests each cube. Should 

a cube contain an element of the surface geometry, it then replaces the empty cube with a series of tri-

angles around the point cloud based on vertices on the boundary of the cell in close proximity to the 

surface. These are joined together to form polygons [Fig. (6b)]. The algorithm then moves to immedi-

ately adjacent cubes to find neighbouring vertices to produce an approximated polygonal mesh of the 

surface  [Fig. (6c)].  

   
a) Subdivision of surface (b) Boundary points of voxels 

(white circles) chosen as verti-
ces for triangles to approximate 
the surface 

(c) Outline of approximated 
voxels polygonal mesh pro-
duced from marching cubes 
algorithm 

Fig. (6). 2D graphical version of marching cubes algorithm [adapted from 30] 

Similarly, Olson [31] proposed using a marching cubes algorithm to reconstruct surfaces from sample 

points representing an object. In this patent, point cloud data are binned into an n-dimensional array of 

elements for which a binary value is associated with each cell. The dilation algorithm calculates and 

assesses a genus of the bin’s contents.  Subsequently, an erosion algorithm is applied to the dilated bi-

nary representation of the points to output a segmented volume. This reduces the time and overhead re-

quired to reconstruct complex and non-convex surfaces from a point cloud. 



Although the Marching Cubes algorithm has been shown to work effectively on real test cases includ-

ing on arbitrary topologies, the resulting meshes suffer from nearly singular triangles and poor ap-

proximation of shape features [32]. To improve the geometry approximation and quality of the mesh in 

the early phase of surface reconstruction, Azernikov and Fischer [32] proposed a new approach based 

on connectivity graph approximation from the Hierarchical Space Decomposition Model (HSDM) and 

facet reconstruction. Unlike methodologies used by Hoppe et al. [33], Curless and Levoy [34], and 

Bernandini et al. [35] (as well be subsequently described), a distance function from a set of range im-

ages to approximating a surface is not defined. Instead, the zero contour is extracted via the Marching 

Cubes algorithm. The algorithm has two steps composed of mesh reconstruction from a point cloud 

without additional information and subsequently extended mesh by incorporating normal directions 

(Fig. 7). In this, three phases exist for each stage:  (1) HSDM construction from raw point cloud data, 

(2) surface extraction, and (3) feature classification. The reconstructed surface is approximated by a 

mesh composed bi-linear facets, which has a good aspect ratio and is quadrilateral almost everywhere. 

The algorithm is very flexible and suitable for processing large-scale 3D data. To demonstrate this four 

models were constructed including a mechanical part, car, toy airplane, and an oil pump. The Haus-

dorff distance was used for error estimation, with values from 1-2 % (see Table 1 for sample results) 

[32]. 

 

Fig. 7. Reconstruction process phases: (a) point cloud, (b) HSDM, (c) connectivity graph, (d) facet re-

construction and (e) anisotropic smoothing [37]. 

 

Table 1. Results from HSDM methodology [32] 
Object A number of sample 

points 
Octree depth Error 

(%) 
Execution time 

(s) 
Mechanical art 4,102 4 2.0 0.1 
Car 20,623 5 1.0 0.2 
Toy airplane 117,152 6 1.1 3.9 
Oil pump 166,087 6 1.4 6.0 

 
 

 

Hoppe et al. [33] presented an algorithm for reconstructing a 3D surface from a set of unorganized 

points scattered on or near surface irrespective of the presence of a boundary. The approach was based 

on the idea of determining the zero set of an estimated signed distance function (level set). The bound-



ing box of the dataset was subdivided into a regular, voxelized grid and an estimate of the signed geo-

metric distance to the unknown surface based on a normal and tangent vectors though a covariance ma-

trix of neighbouring sample points. Points on the surface have distance 0, while points have positive 

and negative distance, if they are outside and inside of the surface, respectively. The Marching cubes 

algorithm [30] was employed to separate the surface patches based on the sign distance at the vertices 

of voxels. The resulting triangular mesh separates the positive and negative distances. Gross and 

Thoennessen [36] used the assumption of a normal vector of a tangent plane for each data point pro-

posed by Hoppe et al. [33] to determine features of sample points based on analyzing a covariance ma-

trix including all neighbouring points defined by a sphere. By comparing a new feature of sample 

points with the analytical results of typical point configurations provided a discriminating feature from 

which to extract points, which may belong to border lines of man-made objects. Similarly, Schuster 

[37] used tensor voting (determined from a covariance matrix of a neighbourhood of given points) to 

classify sample points into points, surfaces, and lines separately from within TLS data for reconstruct-

ing building facades.  

Curless and Levoy [34] defined a volumetric function based on an average of the signed distance from 

each range image, in which the volumetric function at points on a uniform 3D grid can extract the zero 

crossings. This approach may fail to detect features smaller than the grid spacing and also requires a 

significant amount of space, as well as execution time. To overcome this drawback, the run-length en-

coding technique was employed. Pulli et al. [38] proposed a solution creating meshes from multiple 

range maps, where a triangular mesh can be extracted from an octree representation of an object. Cubi-

cal volumes were classified as inside, boundary, and outside according to their respective location to 

the sensor and the range data. The boundary cube was recursively subdivided into eight smaller cubes, 

which were added to the octree as children of the current cube. The volume representation has to recur 

up to the finest level possible to accurately determine the boundary. The method also automatically fills 

holes due to gaps in input data. Dalmasso and Nerino [39] improved reconstructed surface accuracy by 

using a volumetric approach to describe objects at different spatial scales. The estimated surface was 

then obtained as the zero level of the final global volumetric function based on surface voxels of the 

octree structure. 

Similar to the previous work of Hoppe et al. [33] and Curless and Levoy [34], Osher and Thiyanarat-

nam [40] proposed surface reconstruction data processing based on a 3D rectangular grid as the zero 

level set of a function. In this work, the 3D grid may be rearranged into a two-dimensional (2D) grid 

where the data are compressed and stored in the form of a gradient. In order to recover the point cloud, 

the 3D grid is rebuilt from the 2D data and an interpolating algorithm on the implicit function is 

utilized to compute the points on the surface. The exact distances from the three-dimensional 3D grid 

to each point cloud in dataset were determined by the Eikonal equation, and those distances were used 

as fixed boundary values. 

Edelsbrunner and Mucke [41] proposed a method to reconstruct surfaces from a given sample point 

based on Delaynay tetrahedrization and a Voronoi diagram. The tetrahedra, triangle, and edges of a 



given Delaunay tetrahedrization were removed from the current mesh, if the minimum surrounding 

sphere with radius (called the α ball) cannot fit this tetrahedrization; a collection of points, edges, 

faces, and tetrahedra is called an α-shape. Subsequently, the triangle belongs to the desired surfaces, if 

there are two possible spheres of radius α through all three points of this triangle, and at least one of 

them does not contain any other point of the dataset. This approach was found to be sensitive to the α 

radius selected, and the surface may become fragmented. Also, based on properties of Delaunay trian-

gulation meshes, in working on detecting windows/doors from the TLS data, Pu and Vosselman [41] 

and Boulaassal et al. [42] proposed that triangular sides of the triangles in the openings are greater than 

the ones of the triangles belonging to the solid walls, because the windows do not sample points avail-

able for triangularization. The approach can extract sample points from the same hole but often gener-

ates false positives, reporting openings that are in fact only missing data or data occlusions.  

Boissonat [43] proposed a method to reconstruct a triangulation mesh of surfaces from a given set of 

points. Before the triangulation process starts, the neighbourhood of each point is defined:  a first edge 

joins a given point and its nearest neighbour. In order to attach a new triangle to the edge, the approxi-

mate tangent plane was defined by applying a least squares method in the neighbourhood of the con-

sidered edge, and its neighbouring points were projected onto this plane. The new triangle was con-

structed by connecting a point to the considered edge, which sees this edge under the maximum angle. 

The triangulation meshes propagate until there are no free edges still available. Similar to the idea of an 

incremental surface, Pu and Vosselman [44] used a plane growing surface approach and human know-

ledge about building features (e.g. size, position, direction, and topology) to recognize potential build-

ing façade features from the TLS data. Similarly, Secord and Zakhor [45] used a region-growing algor-

ithm to detect trees from ALS data. In this case, the segmentation grows, if adjacent data points have a 

point wise similarity above a threshold, which is computed from weighted features, such as height, col-

our, and normal vectors. 

For identifying buildings from ALS data, Matei et al. [46] classified point cloud data into ground and 

non-ground points representing buildings and clutter, in which non-ground points were those that were 

higher than a predetermined threshold. The non-ground points were segmented into buildings and clut-

ter. The processing segmentation included four steps:  estimating local surfels of the non-ground 

points, grouping non-ground surfels into coarse regions by using a bottom up region growing tech-

nique, fitting points to the plane by employing an expectation maximization technique, and segmenting 

building regions from the planes. Contours of each building segment were extracted by using a ball-

pivoting algorithm [47]. 

Gopi and Krishnan [27] developed a new projection-based, surface reconstruction algorithm from raw 

point clouds, which generates a triangular mesh based on a nearest-neighbour algorithm. The data 

structure is organized as a depth pixel array similar to the dexel structure as proposed by Hook [48], in 

which all data points are orthographically projected onto a 2D pixel array, and the points on the same 

pixel are sorted by their depth (z) values. The algorithm worked with two parameters: µ, which quanti-

fies a locally uniform sampling, and α, which gives a maximum angle between two consecutive neigh-



bours of a point on a boundary of the surface. The algorithm starts at a reference point and finds all 

neighbouring triangles within a spherical radius centred at this point (Fig. 8a). The radius of the influ-

ence sphere was adopted to be equal to µm. This means the distance ratio of the farthest and closest 

neighbours of a sample in the given sampling of the object are less than a constant value, and m is a 

minimum distance from the reference point to another point on the same layer. In an experimental 

setup, a set of candidate TLS points were extracted from neighbour points of the reference point, which 

points were on the boundary of incident triangle meshes and had not yet been chosen as reference 

points. The incident triangles were determined based on the normal deviation between two adjacent tri-

angles. The remaining points were connected to the reference point to complete the triangle mesh of an 

object in space, but in case the angle between the two consecutive remaining points was greater than 

the predefined values, they were not connected to form a triangle (Fig. 8b).  

  
a) Visibility test around R (a magenta point) (the black 
points are behind R’s boundary edges; the white points are 
occluded by other edges; the V is eliminated as R is behind 
its boundary edges; the green points are candidate points; 
two dash lines are consecutive boundaries) 

b) Completed triangle mesh at R 

Fig. 8. Nearest neighbour algorithm [27] 

This algorithm successfully reconstructed surfaces with point clouds of 10,000 to 100,000 points in 3 

to 30 seconds (250 Mhz processor, R10000 SG1 Onyx2 with 16 GB of main memory). However, some 

drawbacks are the non-unique triangular meshes for a specific surface and bad approximations for 

sharp surface curvatures. Currently, many automated mesh generation methodologies are unable to ac-

curately accommodate objects with complex typologies or curvilinear shapes. To help overcome this, 

Várady et al. [49] devised a shape reconstruction algorithm consisting of (1) hierarchical Morse com-

plex segmentation, (2) feature skeleton construction, (3) computing region boundaries, (4) surface 

structure creation, and (5) surface fitting. Triangles are organized into primary regions or a separator 

set (i.e. connecting features). The final step can be conducted using either a quadrilateral or the more 

computationally intensive trimmed surface; their resulting accuracy was not reported. 

In a patent by Hinks et al. [50] an octree was employed to help order the point cloud so that it can ef-

fectively be voxelized as the basis for solid models. In this work, the root voxel was recursively sub-

divided until the depth of the octree reached a predefined depth threshold, with all voxels sub-dived 

into eight child voxels at that level. The voxels were classified as either full or empty, depending upon 



whether they contained a sample point. Subsequently, the full voxels were converted to a neutral file 

for generating solid model for computation by using boundary representation. The approach possesses 

the advantages of being applicable to both ALS and TLS, not necessitating further object identification, 

and not requiring supplemental information beyond the location of the scanner, but the approach re-

quires user determination of the depth of the octree (for which no guidance is currently available), and 

the fact that boundary approximation is not inherently well defined.  

Alternatively, a manual, user-guided reconstruction mechanism to correct imperfect scan data was pro-

posed by Zhou et al. [51], in which surfaces were iteratively reconstructed from sample points using a 

two-step, octree-based approach. In the first step, an implicit function over the volume spanned by the 

octree nodes is computed using Poisson surface reconstruction. In the second step an adaptive march-

ing cubes procedure extracts a watertight mesh as an iso-surface of the implicit function. The algorithm 

allows the user to draw strokes to reduce topological ambiguities in poorly sampled area and to specify 

the geometry of missing area of the surface, which is generated from another point cloud around the 

target area. Real time viewing of the image is facilitated by parallel surface reconstruction by using the 

tree construction mechanism to build data structures to produce the data for displaying the surface. In 

addition to these approaches there are commercial programmes developed explicitly for LiDAR point 

cloud transformation as described in section 3.2. 

3.2 Sampling of commercial and industrial software packages 

Commercial software for transforming point cloud data into surface representation or solid models can 

be described in two general categories:  dependency upon a CAD-based intermediary or “add on” 

component of CAD platform and independent solutions [52]. There are many software packages that 

have been developed for surface reconstruction throughout last two decades. As an example, the capa-

bilities of sampled software packages used for civil engineering are summarized in Table 2, along with 

their limitations related to data density. Output format files of these products are DXF, SAT, STEP, 

STL, IGES and others compatible with generic FEM packages.  

3.2.1 KUBIT and Rapidform XOR programs 
 
Many commercial programs process the dataset so that it is CAD compatible, and then the CAD image 

becomes the basis for any computational modelling. Examples are Kubit [53] and Rapidform XOR 

software [54]. Kubit converts point clouds into Autodesk AutoCAD Drawing (.dwg) compatible files 

[53] for importing to finite element commercial packages. The Kubit PointCloud offers many manipu-

lation and editing tools to assist user(s) in reconstructing surfaces and 3D solids from the raw data with 

x-, y-, z-coordinates.  One feature, entitled clash detection, is useful for comparing as-built conditions 

with a proposed CAD model inserted into the dataset (e.g. a new pipe needs to be installed and inte-

grated into an existing pipe network as illustrated in Fig. 9). Many of the in-built tools support the user 

defining an area of interest within the cloud, and then fading out irrelevant data, assigning a colour to a 

particular section, and automatically fitting lines and cylinders.  Object edges and corners can be cre-

ated from the intersection of defined planes. The user can also integrate high-resolution photographs 

taken by the scanner to overcome a region of low or missing data points. The program uses an octree to 



store the positional data, along with associated semantics such as colour, intensity, and classification. 

The algorithm is applied to every point within a designated section from within which commands such 

as "Hide the points" or "Detect a corner" can be applied.  Currently, Kubit is in the process of develop-

ing a polygon-fitting tool to be incorporated with Kubit PointCloud 6.0 [53]. Additionally, the recently 

released AutoCAD 2011 software has a native point cloud engine, which is capable of storing up to 2 

billion points in 1 file. While a solid model can be produced from tracing around the point cloud data 

within AutoCAD using the KUBIT plug-in, a significant amount of manual manipulation is required to 

generate a solid model, as it must be a closed, watertight region in order for it to converge within a 

computational package. 

 

Fig. 9. Proposed 3D Pipeline integrated into existing point cloud of pipe network [55] 

Similarly, Rapidform XOR, another CAD reliant software, focuses on transforming terrestrial point 

clouds using a polygonal meshing algorithm based on a Non-uniform rational B-spline (NURBs) based 

approach [54]. It is capable of importing data from many 3D scanner systems and results of solid mod-

els can exported various format data for CAD/CAM [54]. In work assessing the structural safety of ma-

sonry vaults, Schueremans and Genechten [56] used Rapidform software after manual removing noise 

and redundant points from TLS data. There is an inherent trade-off with this in the manual post-

processing time and accuracy. The grid size 10cm x 10cm incorporates 21 slices in the transverse and 

39 slices in the longitudinal direction. The points were then extracted into a 2D format using a program 

called ObjectARX that fits a plane to a number of points and exports the co-ordinates in .txt format 

which can then be exported into the structural analysis package Calipous [57], which was developed 

specifically for structural analysis of masonry arches. It took one day to generate a 3D computational 

model of the sample vault. 

This CAD-based approach has some distinct disadvantages as shown by Young et al. [58] in an analy-

sis of studies conducted by Viceconti et al. [59], Schmitt et al. [60], and Wirtz et al. [61] in deriving 

medical computational models from raw medical data. The AutoCAD-based meshing algorithms were 



time-intensive compared to automated mesh generation algorithms and that a satisfactory model could 

not be generated without a significant degree of manual post-processing. Often, the models produced 

contained a lot of unwanted voids or incomplete geometry due to missing data or noise in the original 

point cloud. The models produced were, therefore, not watertight and would not converge when ex-

trapolated as a neutral file into a computational package. They also found that these algorithms run into 

considerable difficulty when trying to extract imaging data containing curves and complex typologies. 

They are often described in a piecewise linear manner fashion containing errors and gaps in geometry, 

thereby resulting in low accuracy geometric approximations. Lorenz [62] suggested a solution to this 

problem via integrating the mesh generation tool with a system-level design and simulation envi-

ronment, thus enabling the direct generation of the Partial Differential Equation (PDE) solver input 

from this approach and a method for using a mesh generation tool. Secondary information about the 

nature and purpose of certain design components to the mesh generation tool are included to improve 

the automatic mesh generation and optimization. The mesh generation tool retrieves information from 

the individual components and connectors of a schematic of a MEMS device and produces a discrete 

element model suitable for numerical PDE analysis by the FEM and boundary element methods.  The 

synergy between the system-level design and the PDE analyses allows the user to move between the 

two levels of abstraction. Unnecessary computation is avoided as a result of the direct link from the 

schematic to a mesh model aiding the user to choose an optimal mesh for PDE analysis.  

3.2.2 ClearEdge3D’s Edgewise and Geomagic Studio 12 
 
As an alternative to using CAD-based intermediaries, there are commercial software packages that di-

rectly generate solid models from point cloud data, such as ClearEdge3D’s Edgewise and Geomagic 

Studio 11. The ClearEdge3D’s Edgewise [63] is marketed as capable of automatically deriving po-

lygonal models. The algorithm behind the software is based on a pending patent believed to use 

straight-line fitting and merge based RANdom Sample Consesus (RANSAC) or similar techniques to 

that of Arefi et al. [64]. The program searches for boundary points on each co-planar surface from a 

registered point cloud. A best-fit rectilinear polygon is then fitted to these points on the boundary. Each 

region (i.e. a series of co-planar points) is described by a different colour for ease of identification. The 

3D model produced is comprised of a series of observed planar surfaces fitted using least-squares re-

gression [63]. Edgewise’s preferred methodology is to process point clouds on a scan-by-scan basis ra-

ther than working with a merged scan. To achieve this, the program also requires that the scanner’s lo-

cation be known with respect to the object being scanned.  This is an input parameter needed as part of 

the algorithm to derive the polygonal mesh [63]. Processing speeds depend on the quantity of data in 

the point cloud, complexity of the scene scanned, and computer processor speed. However, claimed 

processing time is typically 5-10 minutes, with 30 minutes for more complex scans on a mid-budget 

laptop. This is advertised to be 2-10 times faster than manual surface fitting, but no data has been pub-

lished to verify this. The software has the advantage of being a stand-alone application.  

A competing product is Geomagic Studio 12 [65], which is software capable of deriving a 3D po-

lygonal mesh from raw point cloud data based on the principle of Delaunay triangulation. It has the 

capabilities of handling datasets of up 126 million points. The software can import an array of files 



from all major terrestrial laser scanners and digitizers including the native ASCII format. A number of 

toolboxes are available including registration tools for merging numerous scans together and optimiza-

tion tools for outlier removal and noise reduction. The point cloud density can be reduced to decrease 

processing time using the random, uniform, or curvature-based point sampling. Once the polygonal 

model is created, tools exist to modify, edit, and clean. Holes can be filled manually via a hole plug-

ging functionality, and boundary edges can be sharpened.  

3. 3 Comparative results 

To provide a comparison of a sampling of manual and automatic techniques for surface reconstruction 

from laser scanning data, the TLS data of façades of three brick buildings in Dublin, Ireland were se-

lected. These are short and medium sized buildings having rectangular and arch shaped windows. The 

datasets were acquired with a Trimble G200 [66] controlled by the RealWorks Survey (RWS) Ad-

vanced V6.3 software [67] installed on a PC linked to the scanner. In this test, the datasets were 

cleansed of all data involving internal walls/objects and of all vehicles or trees in front of the buildings.  

For each building, the solid models were reconstructed from two datasets:  (1) the original point cloud 

(Fig. 10a) and (2) one with a reduced sampling density, in the which distance between adjacent sample 

points was not less than 75mm  (Fig. 11a, 12a). All experimental tests were run on a Dell Precision 

Workstation T5400 with main system configurations following: Intel (R) Pentium (R) Xeon (8CPU) 

CPU speed 2GHz with 24 Gb RAM.  

The façades were reconstructed from the above datasets using the commercial programmes Kubit and 

Geomagic and the procedure patented by Hinks et al. [49]. In Kubit, the solid models of these buildings 

were created based by the user manually identifying with the TLS data window openings and building 

boundaries based on a photograph of the building. For the other two approaches the solid models were 

reconstructed without any manual intervention, in accordance with their general workflow parameters 

[50, 65]. The resulting solid models from the three approaches for each of the three buildings are 

shown in Fig. 10 -12.  

In Kubit program, users create smooth boundaries of the façade and its openings by estimating the rela-

tive locations through comparison to photographs and/or user knowledge. Similarly, the problem of 

missing data points or unexpected holes due to occlusions is manually addressed (Fig. 10b). However, 

this requires prior knowledge of the buildings and operator experience. For example, without a photo-

graph of the building 2, rectangular windows were created by the operator for the 2nd and 3rd storeys, 

instead of the actual arched windows (Fig. 11b). The automated approaches did equally poorly. There 

were also convergence problems with Geomagic, because the solid models contain some degenerate 

shapes (Fig. 10c, 11c, 12c), such as the tip at atop of the 4th ground level door (Fig. 12c). In addition, in 

the automated methods, the resulting solid model boundaries were rough and did not reflect the in-situ 

condition. Futhermore data holes were not filled automatically, such as three small holes below a large 

window in the first floor of the building 1 (Fig. 10c). Similarly, using Hink et al. [50] to construct the 

solid models (Fig. 10d-12d) some contained floating voxels [i.e. a voxel on atop of the 4th door (Fig. 

12c]. Furthermore, in this approach the solid models may contain fragment voxels if a high depth of 
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Octree representation is defined, particularly size of voxels is less than distance between two adjacent 

sample points. 

    
a) Point clouds of the 
building façade 

b) Solid models from 
Kubit software 

c) Solid models from 
Geomagic software 

d) Octree representation 
using Hinks et al. [50] 

Fig. 10. A solid model of the building 1 (2 Anne St. South, Dublin, Ireland) reconstructing from origi-

nal dataset by using different algorithms 

    

a) Point clouds of the 
building façade 

b) Solid models from 
Kubit software 

c) Solid models from 
Geomagic software 

d) Octree representation 
using Hinks et al. [50] 

Fig. 11. A solid model of the building 1 (5 Anne St. South, Dublin, Ireland) reconstructing from sam-

pling density of the dataset by using different algorithms 



  
a) Point clouds of the building façade b) Solid models from Kubit software 

  
c) Solid models from Geomagic software d) Octree representation using Hinks et al. 

[50] 

Fig. 12. A solid model of the building 3 (2 Westmoreland St., Dublin, Ireland) reconstructing from 

sampling density of the dataset by using different algorithms 

Output files compatible to generate solid models within finite element commercial packages, such as 

ANSYS [21], were considered (Table 3). In term of storage, output files from Kubit require less stor-

age space than ones of other programs. With the Hinks et al. [50] approach, the storage needs can be 

reduced significant by merging all voxels together before converting voxelization models to a suitable 

format file with the FE packages, such as a neutral file for ANSYS program [21], because the Hinks et 

al. [50] converts all full voxels into a neutral file.  The solid models from both the Kubit and the Hinks 

et al. [50] approach were compatible with the FE commercial packages (e.g. ANSYS program) to gen-

erate meshes for computational modelling for these masonry structures. Geomagic’s output was not 

compatible with an element appropriate for masonry modelling. 

Table 3. Storage efficiency from different surface reconstruction approaches (MB) 

2 Anne St. South 5 Anne St. South 2 Westmoreland St. Software File 
format 264,931 

(pts) 
4,643 
(pts) 

190,865 
(pts) 

5,366 
(pts) 

650,306 
(pts) 

35,468 
(pts) 

Kubit SAT 0.035 0.035 0.061 0.064 0.208 0.193 
Geomagic IGES 266.0 4.5 189.0  5.23  598.0 34.5 
Hinks et al. [50]* ANF 9.9 9.7 9.7 9.7 193.9 192.0 
*Octree depth is 6 in first two buildings and 8 in the last building 
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4. CURRENT & FUTURE DEVELOPMENTS  

In addition to the work directly devised for pointcloud processing, there is a body of work from digital 

imaging that has been on a parallel track. The work is claimed to be significantly cheaper because of 

the hardware involved.  An example is a recent patent by Xu and Yu [68] on the reconstruction of 3D 

surface models from body images using multiple two digital cameras. They propose a four-step ap-

proach:  (1) data resampling; (2) initial mesh generation; (3) mesh simplification; and (4) mesh subdi-

vision and optimization.  

 

In not dissimilar work, Lubowiecka et al. [69] derived a FEM mesh of an existing king post timber 

truss in a historic building from a close range digital photogrammetry survey in Northern Spain. The 

post-processing of the data (i.e. a 3-D wire frame solid model) was subsequently edited in a CAD for-

mat prior to being extrapolated into a solid model within a commercial computational package pack-

age. Errors in the estimation of 3-D co-ordinates subsequent to capturing of data and importation into 

the CAD model process were 5-21 mm. Both 2D and 3D analyses were undertaken. The first model 

was a 2D FEM model consisting of single line beam elements. The second model was a more realistic 

3D FEM representation depicting the irregularities and consisted of 3D solid elements. In work on re-

constructing building facades, façade grammars were used to reconstruct repetitive components (e.g. 

doors and windows) from a range photo [70-72]. 

Another trend is the combination or amalgamation of multiple forms of remote sensing data as the 

basis for solid model generation. As an example, Quadling et al. [73] combined a structured light pat-

tern digitizing method with photogrammetry to determine a 3D model of an object, which generates a 

more accurate model than photogrammetry alone. Similarly, based on both TLS data and range images 

existing techniques from image processing (i.e. Sobel filter, Canny extractor and Hough transforma-

tion) were employed to extract high order boundary of objects that may be lost when only the TLS data 

was used [74, 75].  

Arguably, the three most persistently difficult areas for solid model generation from LiDAR data are as 

follows:  (1) reconstruction of high order curves; (2) continued dependence on CAD-based platforms; 

and (3) reliance on a high-level of operator experience for data cleansing and feature recognition. The 

problems are generally greater for ALS data than TLS data because of its sparser data density. To date, 

most robust approaches for reverse engineering have been highly industry and/or product specific.  A 

highly robust, generic algorithm for solid model generation for LiDAR data has yet to be devised. 

 

5. CONCLUSIONS 

There has been a strong interest in recent years to process point cloud data from laser scans to be suit-

able for use in computational models for environmental and urban concerns. While many commercial 



software packages still rely on CAD-based intermediary programs, there is an increasing availability of 

approaches (commercial and research-oriented) that directly employ solid modelling, along with an op-

timization of meshing approaches to best suit the use of point cloud data in FEM meshes. This paper 

provides an overview of these efforts and documents the current capabilities and continuing limitations 

of available technologies and algorithms. Comparative analysis shows that without extensive manual 

intervention, overcoming missing and sparse data while simultaneously generating a geometrically ac-

curate model is rarely achievable, even for highly regular, rectilinear structures. 

LIST OF ABBREVIATIONS 

Light Detection And Ranging:  LiDAR 

Terrestrial Laser Scanner:  TLS 

Airborne Laser Scanner:  ALS 

Computer-Aided Drawing:  CAD 

Finite Element Model:  FEM 

Constructive Solid Geometry: CSG 

Boundary Representation: BRep 

Computed Tomography: CT 

Magnetic Resonance: MR 

Single Photon Emission Computed Tomography: SPECT 

Hierarchical Space Decomposition Model: HSDM 

Non-Uniform Rational B-Spline: NURBs 

Partial Differential Equation: PDE 

RANdom Sample Consesus: RANSAC 
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