
Title Evolving behaviour trees for the Mario AI competition using grammatical evolution

Authors(s) Perez, Diego, Nicolau, Miguel, O'Neill, Michael, Brabazon, Anthony

Publication date 2011-04-27

Publication information Perez, Diego, Miguel Nicolau, Michael O’Neill, and Anthony Brabazon. “Evolving Behaviour

Trees for the Mario AI Competition Using Grammatical Evolution.” Springer, 2011.

Conference details EvoGAMES 2011 3rd European Event on Bio-inspired Algorithms in Games in EvoApplications

2011, Torino, Italy, April, 2011

Publisher Springer

Item record/more

information

http://hdl.handle.net/10197/3534

Publisher's statement The final publication is available at springerlink.com

Publisher's version (DOI) 10.1007/978-3-642-20525-5_13

Downloaded 2024-04-10 21:43:34

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information

https://twitter.com/intent/tweet?via=ucd_oa&text=DOI%3A978-3-642-20524-8&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F3534

Evolving Behaviour Trees for the Mario AI

Competition Using Grammatical Evolution

Diego Perez1 Miguel Nicolau2 Michael O’Neill2

Anthony Brabazon2

1Independent author
2Natural Computing Research & Applications Group

University College Dublin, Dublin, Ireland
diego.perez.liebana@gmail.com, Miguel.Nicolau@ucd.ie,

M.ONeill@ucd.ie, Anthony.Brabazon@ucd.ie

Abstract

This paper investigates the applicability of Genetic Programming type
systems to dynamic game environments. Grammatical Evolution was used
to evolve Behaviour Trees, in order to create controllers for the Mario AI
Benchmark. The results obtained reinforce the applicability of evolution-
ary programming systems to the development of artificial intelligence in
games, and in dynamic systems in general, illustrating their viability as
an alternative to more standard AI techniques.

1 Introduction

Computer games are an extremely challenging testbed for Evolutionary Algo-
rithms, and in fact for Artificial Intelligence in general. The challenges presented
range from static path planning and one-on-one move optimisation, to adapta-
tion in dynamic environments, and cooperative behaviours. Extra challenges
include the need for human-like behaviours, avoidance of repetitiveness, and
conformity to the ability of human-opponents.

Evolutionary algorithms can help solve some of these problems, making them
particularly suitable for certain game environments. Their stochastic nature,
along with tunable high- or low-level representations, contribute to the discovery
of non-obvious solutions, while their population-based nature can contribute to
adaptability, particularly in dynamic environments. There are also drawbacks,
however, and traditionally, the games industry tends to adopt traditional, hard
AI algorithms, such as A*, min-max, and others.

The main objective of this paper is to investigate the applicability of Ge-
netic Programming [Koz92] (GP) systems to evolve Behaviour Trees [CH07]
(BTs), and their applicability to dynamic game environments. The Mario AI
Benchmark was used, as it provides a challenging dynamic environment, with

1

a series of obstacles to bypass, all the while avoiding (or eliminating) enemies
and collecting bonuses. The reactive nature of BTs can be seen as a powerful
representation for this kind of environment, and the flexibility of Grammatical
Evolution [OR03] (GE) facilitated their evolution, and subsequent evaluation in
a live play scenario.

The best evolved bot was sent to the gameplay track of the 2010 Mario AI
competition [TKB10], where the bots are required to navigate through unseen
levels. The results obtained show the viability of the technique presented; pitted
against fierce competition, it reached fourth place, very close to the top three.

This paper starts by giving some literature background, followed by an in-
troduction to GE. It then details the environment of the Mario AI Benchmark,
followed by a section introducing Behaviour Trees, and their specific application
to the problem. Finally, the experimental setup and results are presented.

2 Relevant Literature

The literature provides us with some examples on the use of using evolutionary
computation techniques for controlling AI agents in game environments. In
terms of anticipating and reacting behaviour, examples include the work of
Nason and Laird[NL04], who proposed an approach to add anticipation to bots
in the “Quake” game, using reinforcement learning; and that of Thurau et
al. [TBS04], who produced agents that try to learn desirable behaviour based
on imitation of existing players, by training a neural network on data gained
from human players. Pristerjahn[Pri09] used Evolution Strategies to evolve bot
players in the “Quake III” game, by using an evolutionary process to create
and select input/output rules, with inputs being a grid representation of the
world around the bot, along with an associated action; and finally, Mora et
al. [MMM10] used a Genetic Algorithm to fine-tune parameters of existing AI
bot code, and Genetic Programming to change the default set of rules or states
that define a behaviour.

The work of Lim et al. [LBC10] is the only one that specifically deals with
evolving behaviour tree structures. It used Genetic Programming [Koz92] (GP)
to evolve AI controllers for the “DEFCON” game. It starts with a set of hand-
crafted trees, encoding feasible behaviours for each of the game’s five parts;
separate GP runs are then used for each part, creating new behaviours from
the original set. The final combined tree, after evolution, was pitted against
the standard AI controller that comes with the game, and achieved a success
rate superior to 50%. Some hurdles were encountered in this work, such as how
to deal with the exchange of typed tree structures between individuals; these,
amongst others, are easily dealt with by using grammar-based GP systems, such
as Grammatical Evolution, presented next.

2

<BT> ::= <BT> <Node> | <Node>

<Node> ::= <Condition> | <Action>

<Condition> ::= if(obstacleAhead) then <Action>;

| if(enemyAhead) then <Action>;

<Action> ::= moveLeft; | moveRight; | jump; | shoot;

Figure 1: Illustrative grammar for simple approach to a generic shooting game.

3 Grammatical Evolution

Grammatical Evolution [OR03] (GE) is a grammar-based form of GP [MNW10]
that specifies the syntax of possible solutions through a context-free grammar,
which is then used to map binary strings to syntactically correct solutions.
Those binary strings can therefore be created by any search algorithm.

One of the key characteristics of GE is that the syntax of the resulting
solutions is specified through a grammar. This facilitates its application to a
variety of problems with relative ease, and explains its usage for the current
application.

GE employs a genotype-to-phenotype mapping process: variable-length in-
teger strings are evolved, typically with a Genetic Algorithm [Gol89], and are
then used to choose production rules from a grammar, which create a phenotypic
program, syntactically correct for the problem domain. Finally, this program is
evaluated, and its fitness returned to the evolutionary algorithm.

3.1 Example Mapping Process

To illustrate the mapping process, consider the grammar in Fig. 1. Using the
integer string (4, 5, 3, 6, 8, 5, 9, 1), the first value is used to choose one
of the two productions of the start symbol <BT>, through the formula 4%2 = 0,
i.e. the first production is chosen, so the mapping string becomes <BT><Node>.

The following integer is then used with the first unmapped symbol in the
mapping string, so through the formula 5%2 = 1 the symbol <BT> is replaced
by <Node>, and thus the mapping string becomes <Node><Node>.

Proceeding in this fashion, the mapping string then becomes <Action><Node>
through the formula 3%2 = 1, and through 6%5 = 2 it becomes moveRight;

<Node>. After all symbols are mapped, the final program becomes moveRight;
if(enemyAhead) then shoot;, which could be executed in an endless loop.

4 The Mario AI Benchmark

The Mario AI Benchmark was used for the experiments described in this pa-
per. This benchmark is an open source software, developed by Togelius et
al. [TKK09], and was also used in the 2010 Mario AI Competition. It allows the
creation of agents that play the game, by providing two methods: one to retrieve

3

and process environment information, and the other to specify the actions of
the bot.

4.1 Environment information

All the information that can be used to analyse the world around Mario is given
in two matrices (21x21). Each of these provides data about the geometry of the
level, and the enemies that populate it. Different detail levels can be specified in
each array: for instance, zoom level 2 gives the data represented in a binary
array, stating the presence or absence of enemies (or obstacles), whereas level
0 gives a very detailed view of the environment, with each kind of enemy or
block in the game.

More information about the current state of the game is available, such as:
the Mario position; its status (running, win or dead); its mode (small or
big, affecting ability to fire); state indicators (such as the ability to jump and
shoot, time left, etc); and finally, some Mario kills statistics are also available,
like enemies killed and how they died.

4.2 Mario effectors

The actions that can be performed by Mario are the inputs that a human player
could use with a control pad: the four movement directions (Left, Right, Up,
Down), the Jump control, and a common button to Fire and Jump. This last
effector can be also used to make Mario go faster; jumps while pressing this
button also make Mario reach farther platforms.

5 Behaviour Trees

5.1 Introduction

Behaviour Trees (BTs) were introduced as a means to encode formal system
specifications [CH07]. Recently, they have also been used to encode game AI
in a modular, scalable and reusable manner [CDC10]. They have been used in
high-revenue commercial games, such as “Halo” [Isl05] and “Spore” [Mch07],
smaller indie games, such as “Façade” [MS04], and many other unpublished
uses [CDC10], illustrating their growing importance in the game AI world.

BTs provide a hierarchical way of organising behaviours in a descending or-
der of complexity; broad behavioural tasks are at the top of the tree, and are
broken down into several sub-tasks. For example, a soldier in a first-person
shooter game might have a behaviour AI that breaks down into patrol, investi-
gate and attack tasks. Each of these can then be further broken down: attacking
for example will require moving tactics, weapon management, and aiming al-
gorithms. These can be further detailed, up to the level of playing sounds or
animation sprites.

BT nodes can be divided into two major categories: control nodes and leaf
nodes. The first drive the execution flow through the tree, deciding which node

4

to execute next; for instance, Sequence nodes execute all their children from
left to right until one fails (behaving like a logic AND), while Selector nodes
execute their children until one succeeds (the equivalent of an OR). Filter nodes
can be also added to this group; they are decorators that modify the execution
flow in different ways (like loops, negating the result of a node, etc.). Leaf nodes
are typically Conditions and Actions. The first usually make queries about
the game state, while the second make decisions and carry out specific tasks.

5.2 Behaviour Trees for Mario

It is important to understand the engine mechanics when designing BTs for a
specific game. In this case, at every cycle, a set of pressed buttons is required
to move Mario. This impacts how to execute a given BT, as control nodes and
conditions will be continuously executed, until an action node is reached. For
instance, an action to walk right safely will run a certain number of checks,
until reaching a Right action; when the BT reaches this action, it finishes its
execution for this cycle, resuming from that point in the tree in the following
step.

Another important decision regarded which nodes to provide for the BT.
Regarding control nodes, the following were programmed:

• Sequences and Selectors, such as described above;

• Filters. These included: Loops, which execute a node a specified amount
of times; Non, which negates the result of a node; and UntilFailsLimited,
which executes a node until failure, or an execution limit is reached.

The leaf nodes encoded can be grouped in three categories:

• Conditions. Using the environment information available (see Section
4.1), these check the level for enemies and obstacles. For enemies, they
consider if there are any close by, their location, and their type; for obsta-
cles, they query the position of pushable blocks, jumpable platforms, etc.
Examples include EnemyAhead, and IsJumpPlatformAhead.

• Actions. These are the possible movements of Mario (see Section 4.2).
The actions programmed for the BT are the most interesting button com-
binations: actions like Down, Fire, RunRight (where Right and Run are
both pressed), NOP (no buttons pressed) and WalkLeft. Some actions,
however, require a button to be pressed more than once: for instance, to
make long jumps, the longer the Jump button is pressed, the farther the
jump will be. This problem can be solved with the elements of the next
category.

• Sub-trees, manually designed to solve specific problems. Jumps, for ex-
ample, require the jump button to start unset, followed by several cycles
with button pressed. Different sub-trees were programmed, from sim-
ple jumps (JumpRightLong, VerticalJumpLong, etc), to complex tasks like

5

UseRightGap (places Mario below a platform on his right) or AvoidRight-
Trap (detects a dead end in front of Mario, and tries to look for an escape
route).

5.3 Incorporation into GE

The BT (XML) syntax was specified in the grammar, and all conditions (30),
actions (8), sub-trees (19) and filters (4) were available. Evolution was free to
combine these, as long as the syntax was respected. This approach proved to
be too flexible, however; with no structural guidelines, most trees were quite
inefficient (such as sequences of sequences, with non-firing conditions (or NOP

instructions) at their leaves), practically impossible to read, and very system
demanding to execute. To avoid these issues, three options were considered:

• Use of a repair or penalty mechanism, that either rewrites the phenotype
result, or penalises phenotypes whose syntax is too cluttered;

• Use a version of context-sensitive grammars, to limit the usage of specific
tree constructions when within a certain context;

• Limit certain rule combinations through the grammar.

The first option interferes with the evolutionary process, and was avoided.
The second was also avoided, as it is a relatively recent approach to GE, not
fully tested to this day. The option was thus to limit the syntax of BTs through
the grammar. The trees that can be evolved, although still of variable size, are
contrived to follow an and-or tree structure [Nil98], which is a recommended
[Cha07] way of building BTs for game AI.

After some experimentation, the following structure was decided upon:

• The root node consists of a selector (rootSelector), with a variable num-
ber of sub-trees (BehaviourBlocks);

• Each BehaviourBlock consists of a sequence of one or more conditions,
followed by a sequence of actions (filtered or not);

• The main root selector has a final sub-tree labelled defaultSequence,
with a sequence of actions but no conditions.

These work as follows. When the BT is executed, the rootSelector will
choose one BehaviourBlock to execute, based on the conditions associated with
each one, on a left-to-right priority order; if none of those conditions fires,
then the DefaultSequence is executed1. As the high-level conditions available
are quite complex, it made sense to limit the number of these associated with
each BehaviourBlock; this is easily done through the grammar, and in our
experiments, there were only one or two conditions associated with each block.
The number of actions and sub-trees in the associated sequence was unlimited.

1The existence of a default unconditioned behaviour is crucial; early tests without it re-
sulted in most agents not moving, as none of the actions associated with each BehaviourBlock

fired.

6

5.3.1 Block-Exchanging Genetic Operators.

With the syntax described above, each BehaviourBlock becomes a self-contained
structure, and it makes sense to allow individuals to exchange these between
them. To this end, specific crossover points were encoded in the grammar,
bounding these blocks for exchange. This is a recent technique [ND06] in which
a special grammar symbol is used to label crossover points; the search algo-
rithm then only slices an individual according to these points. We extended this
by using a two-point crossover, effectively creating an operator much like sub-
tree crossover in GP [Koz92], but allowing the exchange of different numbers
of blocks between individuals. Finally, we allowed an individual to crossover
with himself, thus creating a sub-tree swap operation; this makes sense, as
a potentially good BehaviourBlock might be located towards the end of the
rootSelector, which would mean that its conditions are also present in previ-
ous blocks, and those blocks will be executed instead.

6 Experiments

6.1 Setup

The experimental parameters used are shown in Table 1. All individuals in the
initial generation were valid [RA03], and the mutation rate was set such that,
on average, one mutation event occurs per individual (regardless of their size).

Table 1: Experimental Setup
Population Size 2000
Generations 500
Derivation-tree Depth (for initialisation) 35

GE Selection Tournament Size 1%
Elitism (for generational replacement) 10%
Marked 2-point Crossover Ratio 50%
Marked Swap Crossover Ratio 50%
Average Mutation Events per Individual 1

Mario Level Difficulties 0 1 2 3 4 5 6 7 8
Level Types 0 1

At each generation, each individual is evaluated on 18 levels (9 difficulty
settings on two level types). To enforce generalisation, the set of maps for eval-
uation is changed at each generation; the parent population is re-evaluated with
the new maps, and each individual’s fitness is averaged between the previous
scores and the new one. Although the offspring fitness is based on the new
maps only, elitism ensures that a percentage of the (potentially more general)
solutions from the parent population are kept for the next generation.

A series of runs with different random seeds were executed in parallel in a

7

small cluster. At the end of all runs, all best individuals were evaluated in 600
unseen maps, and the best overall solution was submitted to the competition.

6.2 Results

The four BehaviourBlocks of the best BT generated, are shown in Fig. 2. The
first block is composed of two conditions, followed by a sequence of actions (not
shown). The conditions check for any jumpable platform on the right, and if
there are no obstacles in the way. The sequence of actions is composed of 15
actions and sub-trees, that make Mario jump, run to the right and fire.

The next block contains a very relevant sub-tree: AvoidRightTrap. It is
used to escape from dead-ends, such as shown in Fig. 3; this is one of the
hardest obstacles encountered in a level. The third block checks if Mario is
stuck between a hole and an enemy, and if so executes a sequence of actions for
jumping, shooting and running. Finally, the last (default) block contains the
sequence RunRightSafe, Fire and RunRightSafe, instructing Mario to run to
the right while shooting, and to avoid enemies and holes by jumping.

Figure 2: Behaviour tree blocks of the final individual.

This bot was sent to the competition, where the score is based on 672 trials
of unseen maps, using a combination of different level types, difficulties and
lengths. The results for all entries are shown in Table 2.

The first and third placed entries used variants of the A* algorithm (effec-
tively combined with an evolutionary rule-based system, in the former), while
the second placed entry used a neural-network algorithm; the entry described
in this paper was the only one using an evolutionary algorithm. The results
are quite close, particularly between the second and fourth place. It is worth
noticing that our bot is the second entry with the most enemy kills; it suggests
that the current setup is efficient at reactive behaviours, which, with the scor-
ing system used at the competition, makes up for its lack of a path-planning

8

Figure 3: Level dead end. Mario has to come back and find another way.

Table 2: Competition results
Participants Score Disq. Levels Kills Rank

S. Bojarski and C. Congdon 1789109.1 0 94 246 1
S. Polikarpov 1348465.6 4 82 156 2

R. Baumbarten 1253462.6 271 63 137 3
D. Perez and M. Nicolau 1181452.4 0 62 173 4
R. Reynolds and E. Speed 804635.7 0 16 86 5

A. Buck 442337.8 0 4 65 6
E. Wong 438857.6 0 0 27 7

approach.

7 Conclusions

This paper presented a novel application of a grammar-based form of Genetic
Programming to the evolution of controllers for the Mario AI Benchmark, using
a Behaviour Tree representation. The use of a grammar simplifies the task of
encoding the syntax of BTs; not only that, but specific tree structures can be
easily specified, such as and-or trees, which were used in this approach.

The encoding of crossover points in the grammar also worked to great effect
in this approach. There has been a great dispute over the years as to the real
exploitation nature of crossover, and in fact to the existence of exchangeable
building-blocks in Genetic Programming [Ang97, SOG03]. In this work, they
do exist, and the crossover operator was encoded to take full advantage of this
fact.

These results obtained strengthen the idea that GP systems are serious al-
ternatives to more traditional AI algorithms, either on their own or combined

9

into hybrid systems. While the current approach may not excel at planning,
instead relying on high-level functions to manoeuvre challenging obstacles, it
shows remarkable reactive behaviour capabilities, such as enemy shooting and
close range obstacle avoidance. Future work should address this issue. A hybrid
approach is under consideration, using a more effective algorithm for path plan-
ning, while retaining the remarkable reactiveness of the evolutionary approach
using BTs.

Acknowledgments

This research is based upon works supported by the Science Foundation Ireland
under Grant No. 08/IN.1/I1868.

References

[Ang97] P. Angeline: Subtree Crossover: Building Block Engine or Macromu-
tation?. In: Genetic Programming 1997, Proceedings. Morgan Kaufmann
(1997) pp. 9–17

[CDC10] A. Champandard, M. Dawe and D. H. Cerpa: Behavior Trees: Three
Ways of Cultivating Strong AI. In: Game Developers Conference, Audio
Lecture. (2010)

[Cha07] A. Champandard: Behavior Trees for Next-Gen Game AI. In: Game
Developers Conference, Audio Lecture. (2007)

[CH07] R. Colvin and I. J. Hayes: A Semantics for Behavior Trees. ARC Centre
for Complex Systems, tech. report ACCS-TR-07-01. (2007)

[Gol89] D. E. Goldberg: Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Addison Wesley (1989)

[Isl05] D. Isla: Managing Complexity in the Halo 2 AI System. In: Game De-
velopers Conference, Proceedings. (2005)

[Koz92] J. R. Koza: Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press (1992)

[LBC10] C. Lim, R. Baumgarten and S. Colton: Evolving Behaviour Trees for
the Commercial Game DEFCON. In: Applications of Evolutionary Compu-
tation, EvoStar 2010, Proceedings. (2010)

[MNW10] R. I. McKay, X. H. Nguyen, P. A. Whigham, Y. Shan and M. O’Neill:
Grammar-Based Genetic Programming - A Survey. Genetic Programming
and Evolvable Machines, 11(3-4). (2010) pp. 365–396

[Mch07] L. McHugh: Three Approaches to Behavior Tree AI. In: Game Devel-
opers Conference, Proceedings. (2007)

10

[MMM10] A. M. Mora, R. Montoya, J. J. Merelo, P. G. Sánchez, P. A. Castillo,
J. L. J. Laredo, A. I. Mart́ınez and A. Espacia: Evolving Bot AI in Unreal.
In: Applications of Evolutionary Computation, EvoStar 2010, Proceedings.
(2010)

[MS04] M. Mateas and A. Stern: Managing Intermixing Behavior Hierarchies.
In: Game Developers Conference, Proceedings. (2004)

[ND06] M. Nicolau and I. Dempsey: Introducing Grammar Based Extensions
for Grammatical Evolution. In: IEEE Congress on Evolutionary Computa-
tion, Proceedings. IEEE Press (2006) pp. 2663–2670

[Nil98] N. J. Nilsson: Artificial Intelligence, A New Synthesis. Morgan Kauf-
mann Publishers. (1998)

[NL04] S. Nason and J. Laird: Soar-RL: Integrating Reinforcement Learning
with Soar. In: International Conference on Cognitive Modelling, Proceed-
ings. (2004)

[OR03] M. O’Neill and C. Ryan: Grammatical Evolution: Evolutionary Auto-
matic Programming in a Arbitrary Language. Kluwer Academic Publishers
(2003)

[Pri09] S. Priesterjahn: Imitation-Based Evolution of Artificial Game Players.
ACM SIGEVOlution, 2(4). (2009) pp. 2–13

[RA03] C. Ryan and R. M. A. Azad: Sensible initialisation in grammatical
evolution. In: Barry, A.M. (ed.) GECCO 2003: Proceedings of the Bird of
a Feather Workshops. pp. 142–145. AAAI (July 2003)

[SOG03] K. Sastry, U. O’Reilly, D. E. Goldberg and D. Hill: Building Block
Supply in Genetic Programming. Genetic Programming Theory and Prac-
tice, Chapter 4. Kluwer Publishers (2003) pp. 137–154

[TBS04] C. Thurau, C. Bauckhauge and G. Sagerer: Combining Self Organizing
Maps and Multiplayer Perceptrons to Learn Bot-Behavior for a Comercial
Game. In: GAME-ON’03 Conference, Proceedings. (2003)

[TKB10] J. Togelius, S. Karakovskiy and R. Baumgarten: The 2009 Mario AI
Competition. In: IEEE Congress on Evolutionary Computation, Proceed-
ings. IEEE Press (2010)

[TKK09] J. Togelius, S. Karakovskiy, J. Koutnik and J. Schmidhuber: Super
Mario Evolution. In: IEEE Symposium on Computational Intelligence and
Games, Proceedings. IEEE Press (2009)

11

