Title: Head Impact Biomechanics Simulations: A forensic tool for reconstructing head injury?

Author(s): Motherway, Julie A.; Doorly, Mary C.; Curtis, Michael; et al.

Publication date: 2010

Conference details: CMBEE Valencia 2010

Publisher: CMBBE

Item record/more information: http://hdl.handle.net/10197/4843

The UCD community has made this article openly available. Please share how this access benefits you. Your story matters! (@ucd_oa)

Some rights reserved. For more information, please see the item record link above.
Head Impact Biomechanics Simulations: A Forensic Tool for Reconstructing Head Injury?

Julie A. Motherwaya, Mary C. Doorlya, Michael Curtisb & Michael D. Gilchrist*

a Mechanical Engineering, University College Dublin, Belfield, Dublin 4, Ireland
b State Pathologist’s Office, Malahide Road, Marino, Dublin 3, Ireland

*Corresponding Author: michael.gilchrist@ucd.ie; URL: www.tinyurl.com/gilchrist

Establishing the cause of death in forensic investigations can be facilitated by in-depth knowledge of the mechanics of skull fracture and associated lesions to intracranial tissue. Deformation of the skull arising from mechanical impact can lead directly to various soft tissue brain injuries. Advanced simulation techniques, as used in aerospace design and automotive safety, can usefully serve to quantify levels of force associated with skull fracture and with levels of strain or stress associated with brain trauma. Such simulations require physical material failure data so as to ensure predictions are accurate both in relative terms and in absolute quantitative terms. Computer simulations based on multibody dynamics and the finite element method can be used to reconstruct the mechanics of head injury in order to establish the causes of occurrences of skull fracture and TBI.

Introduction

Methods

Multibody dynamics simulations provide envelopes of velocity, acceleration and force as experienced by a victim’s heads during an impact event. These predicted velocity-time profiles are, in turn, used as prescribed input conditions for three-dimensional finite element models of the human head to predict levels of metrics including stress, strain, strain rate, and energy throughout the brain and skull. These various mechanical measurements are then compared against documented levels associated with particular lesions to infer which sequence of events would most plausibly lead to the occurrence of any observed injuries.

Conclusions

In order for such tools to benefit legal medicine practitioners, it is important to realise the limitations of such simulations tools. These include the level of anatomical detail associated with such models, and uncertainty in hypothesising initial conditions such as orientation and velocity of a body prior to head impact. Nevertheless, it is proposed that this engineering approach could assist in reconstructing forensic investigations.