<table>
<thead>
<tr>
<th>Title</th>
<th>Imatinib-dependent tyrosine phosphorylation profiling of Bcr-Abl-positive chronic myeloid leukemia cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Preisinger, C.; Schwarz, J. P.; Bleijerveld, O. B.; et al.</td>
</tr>
<tr>
<td>Publication date</td>
<td>2012-08-27</td>
</tr>
<tr>
<td>Publication information</td>
<td>Leukemia, 27 (3): 743-746</td>
</tr>
<tr>
<td>Publisher</td>
<td>Nature Publishing Group</td>
</tr>
<tr>
<td>Item record/more information</td>
<td>http://hdl.handle.net/10197/5078</td>
</tr>
<tr>
<td>Publisher’s version (DOI)</td>
<td>http://dx.doi.org/10.1038/leu.2012.243</td>
</tr>
</tbody>
</table>
Imatinib dependent tyrosine phosphorylation profiling of Bcr-Abl positive chronic myeloid leukemia cells

Bcr-Abl is the major cause and pathogenetic principle of chronic myeloid leukemia (CML). Bcr-Abl results from a chromosomal translocation that fuses the bcr and the abl genes, thereby generating a constitutively active tyrosine kinase, which stimulates several signaling networks required for proliferation and survival. Bcr-Abl’s oncogenic properties comprise both functions as a kinase and as a scaffold protein. A number of Bcr-Abl interaction partners and downstream effectors have been described, improving our understanding of the signaling networks deranged in CML. Brehme et al. recently defined the “core-interactome of Bcr-Abl”, identifying seven major interaction partners of Bcr-Abl (GRB2, Shc1, Crk, c-Cbl, p85, Sts-1, and SHIP-2). The introduction of the Bcr-Abl tyrosine kinase inhibitor (TKI) Imatinib (Gleevec) in the clinic has been a landmark in the treatment of CML. However, the development of Imatinib resistance poses major challenges to the clinical management of CML, and although second generation TKIs can block many Imatinib resistant mutants they are ineffective against the common T315I mutation. An alternative strategy is to circumvent Imatinib resistance by targeting Bcr-Abl downstream pathways essential for transformation. Towards this aim it is important to fully understand these pathways. Large-scale (phospho)proteomics experiments have addressed the phosphoproteome of Bcr-Abl positive cells, leading to the identification of an impressive number of serine/threonine-phosphorylated sites, although tyrosine-phosphorylation events remained underrepresented. Importantly, many of the protein-protein interactions in the oncogenic Bcr-Abl network are dependent on tyrosine phosphorylation, either directly or indirectly downstream of Bcr-Abl.
Here, we have enriched and identified phosphotyrosine peptides by quantitative mass spectrometry (qMS) \(^9,10\) in order to examine the effect of Imatinib in the CML blast crisis cell line K562 (See Supplementary Materials for experimental details). First, Western blotting was used to investigate the phosphorylation status and potential degradation of several known key proteins involved in Bcr-Abl signaling in K562 cells in response to treatment with Imatinib. Although Imatinib strongly reduced tyrosine phosphorylation none of the five investigated proteins were degraded (Fig. 1A). For qMS studies we treated cells with Imatinib as used in previous studies \(^5-7,11\) (i.e. 0, 1, and 10 \(\mu\)M for 4 hours, Fig. 1B). Cell lysates were digested with the proteases LysC and trypsin, followed by stable isotope dimethyl labeling of the cleaved peptides \(^9\). The labeling regime allows to distinguish three peptide pools (light, intermediate and heavy), which were mixed in equal concentrations. Tyrosine phosphorylated peptides were enriched by immunoprecipitation and analyzed by LC-MS. Analysis of the quantitative changes in tyrosine phosphorylation yielded 201 unique quantifiable phosphotyrosine peptide triplets (light-intermediate-heavy) on about 140 proteins, exceeding by far all previous reports (Table S1) \(^6,11\). Of these, 87 peptides showed at least a 2-fold down-regulation after treatment with Imatinib (Table S2 and Fig. 1C).

Imatinib significantly decreased the tyrosine phosphorylation of many peptides originating from Bcr-Abl and its core interactors (c-Cbl, CrkL and SHIP-2, Fig. 1C). Furthermore, a significant number of proteins that have been shown to play pivotal roles in Bcr-Abl dependent signaling (Gab1, Gab2, Shc1, Crk, ERK-2, STAT5A/B and Yes) displayed reduced tyrosine phosphorylation, often on multiple sites per protein. Also, several Src Family Kinase substrates exhibited reduced tyrosine phosphorylation, e.g. Cortactin, Catenin delta-1, nPKC-delta and Paxillin. Finally, Imatinib reduced the tyrosine phosphorylation of several proteins involved in cytoskeletal regulation, such as MEMO1, Intersectin-2, Catenin delta-1, HEPL,
GRF-1, Centaurin delta 2, and Plakophilin, which mostly have not been previously linked to Bcr-Abl signaling.

A motif analysis on the sequences of significantly down-regulated tyrosine phosphorylated sites, revealed a distinct, 10-fold enriched motif, YxxP (Fig. 1D and 1E). In total, the tyrosine phosphorylation of 80% (23 out of 29) of the peptides harboring the YxxP motif was significantly down-regulated upon Imatinib treatment. The YxxP motif resembles a classic binding site for SH2-domains and consensus target sequence for phosphorylation by Bcr-Abl. Peptides found in our screen containing this motif include Bcr-Abl (Tyr 115 and 128), the regulatory phosphorylation sites of the transcription factors STAT5A and B (Tyr 682 and 699, respectively), several sites in the adaptor proteins Gab1 (Tyr 259, 373, and 406) and Gab2 (Tyr 266, and 409) and all four phospho-tyrosine containing peptides of the docking protein HEPL (Tyr 174, 195, 244, and 329), indicating that the latter may represent a new substrate of Bcr-Abl.

Most of the detected tyrosine phosphorylation sites on Bcr-Abl were completely abolished by Imatinib. Several of these tyrosine residues have been linked to activating signaling pathways downstream of Bcr-Abl. In contrast, two Tyrosine residues on Bcr-Abl (Tyr 253 and 257) were insensitive to Imatinib, suggesting that they may not be essential for downstream oncogenic signaling.

Several members of the Bcr-Abl core proteome are adaptor/scaffold proteins, required for the generation of SH2- or PTB-domain binding sites that lead to the formation of tightly regulated protein interactions. Several of these peptides also contain the consensus sequence YxxP of the enriched phosphorylation motif (Fig. 1C, D). As these proteins bind to Bcr-Abl, they are likely direct Bcr-Abl substrates, and our analysis has detected known as well
as novel phosphorylation sites. The small adaptor protein GRB2, member of the Bcr-Abl core proteome, plays a key role in Bcr-Abl signaling. Its binding to phosphorylated tyrosine 177 on Bcr-Abl was shown to be required for activation of the Raf-MEK-ERK pathway in leukemic cells. Two of the main binding partners of GRB2 are the docking proteins Gab1 and Gab2. The interaction between these proteins is mediated by the association of the SH3 domain of GRB2 to the proline rich regions in both Gab proteins (Fig. S1A). The observed tyrosine phosphorylations of both Gab1 and 2 are downregulated by Imatinib. Therefore, we quantitatively evaluated the changes in the Gab2 interactome in response to Imatinib treatment. Parallel FLAG-tagged immuno-precipitations from K562 cells transfected with mock or FLAG-Gab2 treated with or without 10 µM Imatinib were performed. This affinity based LC-MS approach revealed a severe alteration in the Gab2 interactome after Imatinib treatment (Supplemental Fig. 1B, C). Whereas Grb2 remained tightly bound, interactions between Gab2 and Shp2 as well as with components of the Bcr-Abl core-interactome (e.g. Bcr-Abl, SHIP-2 and Shc1) were severely disrupted, suggesting that the Gab2 interactome is dependent on the tyrosine phosphorylation state of this protein. Furthermore, the intracellular localizations of Gab2 and the closely related Gab1 protein were evaluated by confocal microscopy using GFP-tagged constructs of wild type proteins and mutants, where Imatinib-regulated phosphotyrosine residues were changed to phenylalanine. Wildtype GFP-Gab2 smoothly stained the circumference of the cell, whereas the mutant protein showed a severe alteration in localization with speckled staining of the cell periphery and cytosolic staining (Fig. 2B and Suppl. Fig. 2). Similar changes in localization were observed with wildtype and mutant GFP-Gab1. Thus, tyrosine phosphorylation of Gab1 and Gab2 and the subsequent ability to promote the formation of a complex with Bcr-Abl and other core members appears to be required for appropriate membrane localization. These observations strongly advocate
an involvement of Gab2 in the assembly of the Bcr-Abl signaling network at the plasma
membrane and the ability of the core proteome to transform cells.

Several affected phosphotyrosine proteins identified in our screen can be linked to
cytoskeletal processes, like regulation of the actin cytoskeleton, cell migration or invasion.
Amongst these, HEPL, a member of the p130CAS family of scaffold proteins that is involved
in cell migration \cite{18}, showed dephosphorylation of four different sites in response to Imatinib
treatment (Fig. 1C). Notably, HEPL was identified as a binding partner of CrkL in K562 cells
\cite{2}. The closely related family members p130CAS/BCAR1 and HEF1/CAS-L have both been
identified as binding partners of CrkL (and other Crk family members) and phosphorylation
targets of Bcr-Abl \cite{18}. In addition, we also identified CD2-associated protein, TRIP-6,
Intersectin-2, and L-Plastin, all scaffold proteins involved in the modulation of the actin
cytoskeleton, as being dephosphorylated by Imatinib treatment in our screen. These findings
are in agreement with the literature suggesting that Bcr-Abl can affect the cytoskeleton and
cell motility downstream of the core signalling complex \cite{19}, our data open new avenues of
investigations to follow up the role of cytoskeletal changes in Bcr-Abl transformation.

In summary, to probe the effect of Imatinib on the tyrosine kinase Bcr-Abl positive cells we
applied a targeted quantitative mass spectrometry based proteomics approach. Since tyrosine
phosphorylation is typically underrepresented in shot-gun phosphoproteome analysis, we used
phosphotyrosine specific immuno-capturing to systematically screen for Imatinib dependent
tyrosine phosphorylation events in K562 cells. Our data reveal that several core Bcr-Abl
interactors are putative direct substrates. In following up a novel Imatinib inhibited target, the
adaptor protein Gab2 was found to regulate localization of the Bcr-Abl core complex to the
plasma membrane in a phosphorylation dependent manner enabling us to add crucial new
dimensions of detail to the Bcr-Abl signaling network.
Acknowledgements

We like to acknowledge the Fondation Leducq: the Alliance for CamKII signaling in heart disease (CP, AS, AJRH), and the Netherlands Proteomics Centre, embedded in the Netherlands Genomics Initiative, (CP, AS, AJRH) and Science Foundation Ireland under Grant No. 06/CE/B1129 (WK) for financial support. The authors would like to thank Tessa Holyoake (Glasgow) for critical reading of the manuscript and helpful discussions.

Contributing authors information

Christian Preisinger, PhD1,2,4, Juliane P. Schwarz, PhD3, Onno B. Bleijerveld, PhD1,2, Eleonora Corradini, MSc1,2, Kurt I. Anderson, PhD, Prof 3, Walter Kolch, MD, Prof 4, Arjen Scholten, PhD1,2,*, and Albert J. R. Heck, PhD, Prof1,2,5,*

1 Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
2 Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands

3 The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, G61 1BD Glasgow, United Kingdom

4 Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.

5 Centre for Biomedical Genetics, Padualaan 8, 3584 CH Utrecht, The Netherlands

‡ Present address: Proteomics Facility, Interdisciplinary Centre for Clinical Research (IZKF) Aachen, RWTH Aachen University, 52074 Aachen, Germany

* Authors for correspondence: Dr Arjen Scholten, email: a.scholten@uu.nl and Prof. Dr Albert J.R. Heck, email: a.j.r.heck@uu.nl. Padualaan 8, 3584 CH, Utrecht, The Netherlands. Tel: +31 30 2536797, Fax: +31 30 2536919.

Conflict-of-interest disclosure: the authors declare no competing financial interests.

Supplementary information is available at the Leukemia website
Figure Legends

Figure 1. (A) Experimental Setup K562 cells were treated with Imatinib for 4 hours. Western blotting was performed to assess the abundance of several key proteins of Bcr Abl dependent signaling, as well as the effect of Imatinib treatment on total phosphotyrosine levels. (B) Overview of the quantitative proteomics workflow. Cells were treated with different doses of Imatinib (0, 1 and 10μM) for 4 hours, followed by cell lysis and protein digestion. The peptides from each Imatinib treatment were then differentially labeled using stable isotope dimethyl labeling. The three differentially labeled digests were combined, followed by simultaneous enrichment of tyrosine phosphorylated peptides using immobilized phosphotyrosine specific antibodies. The enriched fraction was analyzed by RP LC-MS and resulting changes quantified. C) Quantitative profiles of site-specific tyrosine phosphorylation upon Imatinib inhibition of Bcr-Abl. The changes in tyrosine phosphorylation versus the control are represented in log scale D) Peptides showing a more than 2-fold decrease in tyrosine phosphorylation upon treatment with Imatinib were subjected to motif analysis using the Motif-X algorithm. The YxxP motif shown was significantly overrepresented in the dataset. E) Comparison of the frequency of the motif YxxP between downregulated phosphotyrosine peptides (23) versus all phosphotyrosine peptides (29/203).
Figure 2 (A) Imatinib treatment of K562 cells leads to destruction of the core Bcr-Abl complex (green, adapted from Brehme et al.). A small selection of peripheral interactors are depicted in blue. GAB2 is used as flag-tagged entry point for interaction analysis upon imatinib treatment. LC-MS/MS revealed release of GAB2 from the Bcr-Abl core proteome, except GRB2. (B) Mutation of all regulated GAB2 tyrosine phosphorylated residues to phenylalanine reveals abolishment of membrane localization of both GAB2 and likely also the Bcr-Abl Core interactome.
References

10.1038/nbt1146 (2005).

10.1038/nrc1567 (2005).
