COVERING RADIUS OF MATRIX CODES ENDOURED WITH
THE RANK METRIC

EIMEAR BYRNE∗ AND ALBERTO RAVAGNANI†

Abstract. In this paper we study properties and invariants of matrix codes endowed with the rank metric, and relate them to the covering radius. We introduce new tools for the analysis of rank-metric codes, such as puncturing and shortening constructions. We give upper bounds on the covering radius of a code by applying different combinatorial methods. The various bounds are then applied to the classes of maximal rank distance and quasi maximal rank distance codes.

Key words. Rank-metric code, matrix code, covering radius, weight distribution

AMS subject classifications. 68Q25, 68R10, 68U05

Introduction. Rank-metric codes have featured prominently in the literature on algebraic codes in recent years and especially since their applications to error-correction in networks were understood. Such codes are subsets of the matrix ring $\mathbb{F}_{q}^{k \times m}$ endowed with the rank distance function, which measures the \mathbb{F}_{q}-rank of the difference of a pair of matrices. An analogue of the Singleton bound was given in [11]. If a code meets this bound it is referred to as a maximum rank distance (MRD) code. It is known that there exist codes meeting this bound for all values of q, k, m, d [11, 12, 21, 22]. For this reason the main coding problem for rank metric codes, unlike the same problem for the Hamming metric, is closed: for any q, k, m, d the optimal size of a rank-metric code in $\mathbb{F}_{q}^{k \times m}$ of minimum rank distance d is known.

There are very few classes of rank-metric codes known, due in part to the Delsarte-Gabidulin family and its generalizations [11, 12, 22], which are optimal and can be efficiently decoded [12, 16, 25].

The covering radius of a code is an important parameter in coding theory. It measures the maximum weight of any correctable error in the ambient space. It also characterizes the maximality property of a code, that is, whether or not the code is contained in another of the same minimum distance. The covering radius of a code measures the least integer r such that every element of the ambient space is within distance r of some codeword. This quantity is generally much harder to compute than the minimum distance of a code. There are numerous papers and books on this topic for classical codes with respect to the Hamming distance (see [1, 5, 6, 7, 15] and the references therein), but relatively little attention has been paid to it for rank-metric codes [13, 14].

In this paper we describe properties of rank-metric codes and relate these to the covering radius. We define new parameters and give tools for the analysis of such codes. In particular, we introduce new definitions for the puncturing and the shortening of a general rank-metric code. In many instances our tools are applied to establish new bounds on the rank-metric covering radius. Some of the derived bounds, such as the dual distance and external distance bounds, are analogues of known bounds for the Hamming distance. These were derived for classical codes in Delsarte’s seminal paper [9], in terms of four fundamental coding theoretic parameters, namely the minimum distance, number of distances, dual distance and the external distance. The latter of these are parameters computed by applying transforms to the distance distribution of a code. In the case of linear codes, they are the minimum distance and number of distances of the corresponding dual code. On the other hand, some of our results,
such as the initial set bound, are unique to matrix codes. We apply our results to the classes of maximal-rank-distance and quasi-maximal-rank-distance codes.

In Section 2 we consider the property of maximality. A code is maximal if it is not contained in another code of the same minimum distance. We introduce a new parameter, called the maximality degree of a code, and show that it is determined by the minimum distance and covering radius of a code. These results are independent of the metric. In Section 3 we define shortened and punctured codes rank metric codes and describe their properties. We give a duality result relating a shortened and punctured code. As the reader will see, these results cannot be directly inferred from duality in classical coding theory of \mathbb{F}_q^n. In Section 4 we investigate translates of a linear code. We show that the weight enumerator of a coset of a linear code of rank weight is completely determined by the weights of first $n - d$ cosets, and establish this using Möbius inversion on the lattice of subspaces of \mathbb{F}_q^k. In words, the covering radius of a code and show that it is determined by the minimum distance and covering radius of a code. These results are independent of the metric. In Section 5, we give the rank-metric generalization of the external distance bound, which holds also for non-linear codes. In Section 6 we introduce the concept of the initial set of a matrix code and use this to derive a bound on the covering radius of a code. In Section 7 we apply previously derived bounds to quasi maximum rank distance and quasi maximum rank distance codes.

1. Preliminaries. Throughout this paper, q is a fixed prime power, \mathbb{F}_q is the finite field with q elements, and k,m are positive integers. We assume $k \leq m$ without loss of generality, and denote by $\mathbb{F}_q^{k \times m}$ the space of $k \times m$ matrices over \mathbb{F}_q. For any positive integer n we set $[n] := \{i \in \mathbb{N} : 1 \leq i \leq n\}$.

Definition 1. The rank distance between $M,N \in \mathbb{F}_q^{k \times m}$ is $d(M,N) := \text{rk}(M - N)$. A rank-metric code is a non-empty subset $C \subseteq \mathbb{F}_q^{k \times m}$. When $|C| \geq 2$, the minimum rank distance of C is the integer defined by $d(C) := \min\{d(M,N) : M,N \in C, M \neq N\}$. The weight and distance distribution of a code $C \subseteq \mathbb{F}_q^{k \times m}$ are the vectors $W(C) = (W_i(C) : 0 \leq i \leq k)$ and $B(C) = (B_i(C) : 0 \leq i \leq k)$, where, for all $i \in \{0, \ldots, k\}$,

$$W_i(C) := |\{M \in C : \text{rk}(M) = i\}|, \quad B_i(C) := 1/|C| \cdot |\{M,N \in C \times C : d(M,N) = i\}|.$$

It is easy to see that d defines a distance function on $\mathbb{F}_q^{k \times m}$.

Definition 2. A code $C \subseteq \mathbb{F}_q^{k \times m}$ is linear if it is an \mathbb{F}_q-subspace of $\mathbb{F}_q^{k \times m}$. In this case, the dual code of C is the code $C^\perp := \{N \in \mathbb{F}_q^{k \times m} : \text{Tr}(MN) = 0 \text{ for all } M \in C\} \subseteq \mathbb{F}_q^{k \times m}$.

If $C \subseteq \mathbb{F}_q^{k \times m}$ is a linear code, then $d(C) = \min\{\text{rk}(M) : M \in C, M \neq 0\}$ and $W_i(C) = B_i(C^\perp)$ for all $i \in \{0, \ldots, k\}$. Moreover, since the map $(M,N) \mapsto \text{Tr}(MN)$ defines an inner product on the space $\mathbb{F}_q^{k \times m}$, we have $\dim(C^\perp) = km - \dim(C)$ and $C^\perp \perp = C$.

Definition 3. The covering radius of a code $C \subseteq \mathbb{F}_q^{k \times m}$ is the integer

$$\rho(C) := \min\{i : \text{for all } X \in \mathbb{F}_q^{k \times m} \text{ there exists } M \in C \text{ with } d(X,M) \leq i\}.$$

In words, the covering radius of a code C is the maximum distance of C to any matrix in the ambient space, or the minimum value r such that the union of the spheres of radius r about each codeword cover the ambient space. The following result summarizes some simple properties of this invariant. These facts are known from studies of the Hamming distance covering radius and, being actually independent of the metric used, hold also in the rank metric case. In particular, Lemma 4 and Proposition 5 are known. We include some proofs only for the convenience of the reader. For a comprehensive treatment of the covering problem for Hamming metric codes, see [6, 7].
LEMMA 4. Let $\mathcal{C} \subseteq \mathbb{F}_q^{k \times m}$ be a code. The following hold.

1. $0 \leq \rho(\mathcal{C}) \leq k$. Moreover, $\rho(\mathcal{C}) = 0$ if and only if $\mathcal{C} = \mathbb{F}_q^{k \times m}$.
2. If $\mathcal{D} \subseteq \mathbb{F}_q^{k \times m}$ is a code with $\mathcal{C} \subseteq \mathcal{D}$, then $\rho(\mathcal{C}) \geq \rho(\mathcal{D})$.
3. If $\mathcal{D} \subseteq \mathbb{F}_q^{k \times m}$ is a code with $\mathcal{C} \subseteq \mathcal{D}$, then $\rho(\mathcal{C}) \geq d(\mathcal{D})$.
4. $d(\mathcal{C}) - 1 < 2\rho(\mathcal{C})$, if $|\mathcal{C}| \geq 2$ and $\mathcal{C} \subseteq \mathbb{F}_q^{k \times m}$.

Proof. To see that 3 holds, let $N \in \mathcal{D} \setminus \mathcal{C}$. By definition of covering radius, there exists a matrix $M \in \mathcal{C}$ with $d(M, N) \leq \rho(\mathcal{C})$. Thus $d(\mathcal{D}) \leq d(M, N) \leq \rho(\mathcal{C})$.

To see 4, observe that the packing radius $\lfloor (d(\mathcal{C}) - 1)/2 \rfloor$ of the code \mathcal{C} cannot exceed the covering radius, and that equality occurs if and only if \mathcal{C} is perfect, in which case we have $\lfloor (d(\mathcal{C}) - 1)/2 \rfloor = \rho(\mathcal{C})$. However there are no perfect codes for the rank metric [4].

2. Maximality. In this short section we investigate some connections between the covering radius of a rank-metric code and the property of maximality. Recall that a code $\mathcal{C} \subseteq \mathbb{F}_q^{k \times m}$ is maximal if $|\mathcal{C}| = 1$ or $|\mathcal{C}| \geq 2$ and there is no code $\mathcal{D} \subseteq \mathbb{F}_q^{k \times m}$ with $\mathcal{D} \supseteq \mathcal{C}$ and $d(\mathcal{D}) = d(\mathcal{C})$. In particular, $\mathbb{F}_q^{k \times m}$ is maximal.

PROPOSITION 5 (The Supercode Lemma, [6]). Let $\mathcal{C} \subseteq \mathbb{F}_q^{k \times m}$ be a code with $|\mathcal{C}| \geq 2$. Then \mathcal{C} is maximal if and only if $\rho(\mathcal{C}) \leq d(\mathcal{C}) - 1$.

We now show a more precise relation between codes maximality and covering radius, refining Proposition 5. More precisely, we propose a new natural parameter that measures the maximality of a code, and show how it relates to the covering radius and minimum distance.

DEFINITION 6. The maximality degree of a code $\mathcal{C} \subseteq \mathbb{F}_q^{k \times m}$ with $|\mathcal{C}| \geq 2$ is the integer defined by

$$
\mu(\mathcal{C}) := \min \{ d(\mathcal{C}) - d(\mathcal{D}) : \mathcal{D} \subseteq \mathbb{F}_q^{k \times m} \text{ is a code with } \mathcal{D} \supseteq \mathcal{C} \}
$$

The maximality degree of a code $\mathcal{C} \subseteq \mathbb{F}_q^{k \times m}$ with $|\mathcal{C}| \geq 2$ satisfies $0 \leq \mu(\mathcal{C}) \leq d(\mathcal{C}) - 1$. Moreover, it is easy to see that $\mu(\mathcal{C}) > 0$ if and only if \mathcal{C} is maximal. Notice that $\mu(\mathcal{C})$ can be interpreted as the minimum price (in terms of minimum distance) that one has to pay in order to enlarge \mathcal{C} to a bigger code. We can now derive a precise relation between the covering radius and the maximality degree of a code as follows.

PROPOSITION 7. For any code $\mathcal{C} \subseteq \mathbb{F}_q^{k \times m}$ with $|\mathcal{C}| \geq 2$ we have

$$
\mu(\mathcal{C}) = d(\mathcal{C}) - \min \{ \rho(\mathcal{C}), d(\mathcal{C}) \}.
$$

In particular, if \mathcal{C} is maximal then $\mu(\mathcal{C}) = d(\mathcal{C}) - \rho(\mathcal{C})$.

Proof. If \mathcal{C} is not a maximal code, then by Proposition 5 we have $\mu(\mathcal{C}) = 0$ and $\rho(\mathcal{C}) \geq d(\mathcal{C})$. The result immediately follows.

Now assume that \mathcal{C} is maximal. If $\mathcal{C} = \mathbb{F}_q^{k \times m}$ then the result is trivial. In the sequel we assume $\mathcal{C} \subsetneq \mathbb{F}_q^{k \times m}$. By Proposition 5 we have $\min \{ \rho(\mathcal{C}), d(\mathcal{C}) \} = \rho(\mathcal{C})$. We need to prove that

$$
\mu(\mathcal{C}) = d(\mathcal{C}) - \rho(\mathcal{C}).
$$

Take $X \in \mathbb{F}_q^{k \times m} \setminus \mathcal{C}$ with $\min \{ d(X, M) : M \in \mathcal{C} \} = \rho(\mathcal{C})$. Define the code $\mathcal{D} := \mathcal{C} \cup \{ X \} \supsetneq \mathcal{C}$. By definition of minimum distance we have $d(\mathcal{D}) = \min \{ d(\mathcal{C}), \rho(\mathcal{C}) \} = \rho(\mathcal{C})$, where the last equality again follows from Proposition 5. As a consequence, $\mu(\mathcal{C}) \leq d(\mathcal{C}) - d(\mathcal{D}) = d(\mathcal{C}) - \rho(\mathcal{C})$. Now assume by contradiction that $\mu(\mathcal{C}) < d(\mathcal{C}) - \rho(\mathcal{C})$. Let $\mathcal{D} \subseteq \mathbb{F}_q^{k \times m}$ be a code with $\mathcal{D} \supseteq \mathcal{C}$ and $d(\mathcal{D}) - d(\mathcal{D}) = \mu(\mathcal{C})$. We have $d(\mathcal{C}) - d(\mathcal{D}) = \mu(\mathcal{C}) < d(\mathcal{C}) - \rho(\mathcal{C})$, and so $d(\mathcal{D}) > \rho(\mathcal{C})$. This contradicts Lemma 4.

\[\Box\]
3. Puncturing and Shortening Rank-Metric Codes. Puncturing and shortening are fundamental coding theoretic operations and arise in numerous contexts in the Hamming metric case, but are rarely considered in papers on rank-metric codes. In this section we propose new definitions of puncturing and shortening of rank-metric codes, and show they relate to the minimum distance, the covering radius and the duality theory of codes endowed with the rank metric. Applications of our constructions will be discussed later.

Notation 8. Given a code \(\mathcal{C} \subseteq \mathbb{F}_q^{k \times m} \) and an integer \(1 \leq u \leq k-1 \), we let

\[
\mathcal{C}_u := \{ M \in \mathcal{C} : M_{ij} = 0 \text{ whenever } i \leq u \},
\]

the set of matrices in \(\mathcal{C} \) whose first \(u \) rows are zero. Moreover, if \(A \) is a \(k \times k \) matrix over \(\mathbb{F}_q \) we define the code \(A\mathcal{C} := \{ A \cdot M : M \in \mathcal{C} \} \subseteq \mathbb{F}_q^{k \times m} \). Finally, \(\pi_u : \mathbb{F}_q^{k \times m} \rightarrow \mathbb{F}_q^{(k-u) \times m} \) denotes the projection on the last \(k-u \) rows.

Notice that if \(A \in \text{GL}_k(\mathbb{F}_q) \) then the map \(X \mapsto AX \) is a linear rank-metric isometry \(\mathbb{F}_q^{k \times m} \rightarrow \mathbb{F}_q^{k \times m} \). In particular, if \(\mathcal{C} \subseteq \mathbb{F}_q^{k \times m} \) is a code, then \(A\mathcal{C} \) is a code with the same cardinality, minimum distance, covering radius and weight and distance distribution as \(\mathcal{C} \).

Definition 9. Let \(\mathcal{C} \subseteq \mathbb{F}_q^{k \times m} \) be a code, \(A \in \text{GL}_k(\mathbb{F}_q) \) an invertible matrix and \(1 \leq u \leq k-1 \) a positive integer. The **puncturing** of \(\mathcal{C} \) with respect to \(A \) and \(u \) is the code

\[
\Pi(\mathcal{C}, A, u) := \pi_u(A\mathcal{C}).
\]

When \(0 \in \mathcal{C} \), the **shortening** of \(\mathcal{C} \) with respect to \(A \) and \(u \) is the code

\[
\Sigma(\mathcal{C}, A, u) := \pi_u((A\mathcal{C})_u).
\]

The shortening and puncturing of a code \(\mathcal{C} \subseteq \mathbb{F}_q^{k \times m} \) are codes in the ambient space \(\mathbb{F}_q^{(k-u) \times m} \). Notice moreover that linearity is preserved by puncturing and shortening.

It will be convenient for us to use the following notation in the sequel.

Notation 10. Given a code \(\mathcal{C} \subseteq \mathbb{F}_q^{k \times m} \) and an \(\mathbb{F}_q \)-linear subspace \(U \subseteq \mathbb{F}_q^k \), we denote by \(\mathcal{C}(U) \) the set of \(\mathcal{C} \) in \(\mathcal{C} \) whose column-space is contained in the space \(U \).

Remark 11. It is easy to see that if \(\mathcal{C} \) is linear, then \(\mathcal{C}(U) \) is an \(\mathbb{F}_q \)-linear subspace of \(\mathcal{C} \) for any \(U \). Moreover, if \(U \subseteq \mathbb{F}_q^k \) is a given subspace of dimension \(u \), then \(\mathcal{C}(k-u) \cong (A\mathcal{C})(U) \) as \(\mathbb{F}_q \)-linear spaces, where \(A \in \text{GL}_k(\mathbb{F}_q) \) is any invertible matrix that maps \(\{ e_{k-u+1}, \ldots, e_k \} \) to \(U \) (here \(\{ e_1, \ldots, e_k \} \) denotes the canonical basis of \(\mathbb{F}_q^k \)).

As in the case of classical codes, there is a duality between puncturing and shortening with respect to the trace inner product. We show this here by invoking the known duality for vectors after vectorization of matrices. Note the result can also be shown directly.

Theorem 12 (Duality of Puncturing and Shortening). Let \(\mathcal{C} \subseteq \mathbb{F}_q^{k \times m} \) be a linear code, \(A \in \text{GL}_k(\mathbb{F}_q) \) an invertible matrix and \(1 \leq u \leq k-1 \) an integer. Then

\[
\Pi(\mathcal{C}, A, u)^\perp = \Sigma(\mathcal{C}^\perp, (A^t)^{-1}, u).
\]

Proof. For any integer \(1 \leq a \leq k \) we denote by \(\text{vect}_a : \mathbb{F}_q^{a \times m} \rightarrow \mathbb{F}_q^m \) the \(\mathbb{F}_q \)-linear isomorphism that sends an \(a \times m \) matrix \(M \) to the the vector obtained by concatenating the rows of \(M \). Moreover, we denote by \(\mathcal{C}^\perp \) the dual of an \(\mathbb{F}_q \)-linear code \(\mathcal{C} \subseteq \mathbb{F}_q^{m \times n} \) with respect to the standard inner product of \(\mathbb{F}_q^m \). It is easy to see that for any \(\mathbb{F}_q \)-linear code \(\mathcal{C} \subseteq \mathbb{F}_q^{k \times m} \) one has

\[
\text{vect}_a(\mathcal{C}^\perp) = \text{vect}_a(\mathcal{C})^\perp.
\]
Now fix an \mathbb{F}_q-linear code $\mathcal{C} \subseteq \mathbb{F}_q^{k \times m}$. Since vect_{k-u} is bijective, it suffices to show that

\[(2) \quad \text{vect}_{k-u}(\pi_u(A\mathcal{C})) = \text{vect}_{k-u}(\pi_u((A')^{-1}\mathcal{C}^\perp)_u).\]

Using Equation (1) we obtain

\[(3) \quad \text{vect}_{k-u}(\pi_u(A\mathcal{C})) = (\text{vect}_{k-u}(\pi_u(A\mathcal{C})))^\vee = \text{Pun}_u(\text{vect}_k(A\mathcal{C}))^\vee,\]

where $\text{Pun}_u(C)$ is the ordinary puncturing of a code $C \subseteq \mathbb{F}_q^{km}$ on the coordinates set $S_u = \{um+1,um+2,\ldots,km\}$. On the other hand, using again Equation (1) and the fact that $(A\mathcal{C})^\perp = (A')^{-1}\mathcal{C}^\perp$, we obtain

\[(4) \quad \text{vect}_{k-u}(\pi_u((A')^{-1}\mathcal{C}^\perp)_u)) = \text{vect}_{k-u}(\pi_u((A\mathcal{C})^\perp)_u) = \text{Sho}_u(\text{vect}_k((A\mathcal{C})^\perp)) = \text{Sho}_u(\text{vect}_k(A\mathcal{C}))^\vee,\]

where $\text{Sho}_u(C)$ denotes the ordinary shortening of a code $C \subseteq \mathbb{F}_q^{km}$ on the coordinates set S_u. Now (2) follows combining (3) and (4), along with the well-known relation between the ordinary notions of puncturing and shortening for linear codes in \mathbb{F}_q^{km}.

Remark 13. Any rank metric code \mathcal{C} in $\mathbb{F}_q^{k \times m}$ can be represented as a set of vectors of length k over \mathbb{F}_q, after choosing some basis of \mathbb{F}_q^m over \mathbb{F}_q. However, there is considerable divergence between the duality theories between codes described in these two representations. In particular, they coincide only for the case of \mathbb{F}_q-linear matrix codes. For this reason, in general it is not sufficient to apply arguments from classical coding theory for results concerning duality. Consider the following example. Let $\mathcal{C} \subseteq \mathbb{F}_q^{k \times m}$ be an \mathbb{F}_q-linear code of dimension $1 + m(k-1)$ over \mathbb{F}_q, $m \geq 2$. The dual code, \mathcal{C}^\perp (as defined in Definition 2) has dimension $m-1 \geq 1$ over \mathbb{F}_q. Fix some basis of \mathbb{F}_q^m over \mathbb{F}_q, and let $\phi : \mathbb{F}_q^{k \times m} \to \mathbb{F}_q^m$ be the corresponding \mathbb{F}_q-linear rank-isometry that associates a matrix $M \in \mathbb{F}_q^{k \times m}$ to its vector representation $\phi(M) \in \mathbb{F}_q^m$. That is, we express a matrix M as a vector of length k with coefficients in \mathbb{F}_q. Let $C := \phi(\mathcal{C})$. Clearly, $|C| = |\mathcal{C}| = q^{1+m(k-1)}$. In particular, we see that C is an \mathbb{F}_q-linear code but is not an \mathbb{F}_q-linear code. Moreover, the smallest \mathbb{F}_q-linear subspace of \mathbb{F}_q^m containing C is $\text{span}_{\mathbb{F}_q}(C) = \mathbb{F}_q^m$. The dual code of C with respect to the usual \mathbb{F}_q-bilinear scalar product is

\[C^\perp := \{x \in \mathbb{F}_q^m : x \cdot y = 0 \ \forall \ y \in C\} = \{0\},\]

while \mathcal{C}^\perp has dimension $m-1 \geq 1$ over \mathbb{F}_q.

The following two propositions show how puncturing, shortening, cardinality, minimum distance and covering radius of rank-metric codes relate to each other.

Proposition 14. Let $\mathcal{C} \subseteq \mathbb{F}_q^{k \times m}$ be a code with $|\mathcal{C}| \geq 2$. Let $A \in GL_k(\mathbb{F}_q)$ be a matrix and $1 \leq u \leq k-1$ be an integer. The following hold.

1. $d(\Pi(\mathcal{C},A,u)) \geq d(\mathcal{C}) - 1$, if $|\Pi(\mathcal{C},A,u)| \geq 2$.
2. $d(\Sigma(\mathcal{C},A,u)) \geq d(\mathcal{C})$, if $0 \in \mathcal{C}$ and $|\Sigma(\mathcal{C},A,u)| \geq 2$.
3. Assume $u \leq d(\mathcal{C}) - 1$. Then $|\Pi(\mathcal{C},A,u)| = |\mathcal{C}|$. If \mathcal{C} is linear, then $|\Sigma(\mathcal{C},A,u)| = q^{m(k-u)}/|\mathcal{C}|$.
4. Assume $u > d(\mathcal{C}) - 1$. Then $|\Pi(\mathcal{C},A,u)| \geq |\mathcal{C}|/q^{m(u-d(\mathcal{C})+1)}$. If $0 \in \mathcal{C}$, then $|\Sigma(\mathcal{C},A,k-u)| \leq q^{m(u-d(\mathcal{C})+1)}$.

Proof. Properties 1, 2 are simple and left to the reader. The first part of Property 3 follows from the definition of minimum distance, and the second part is a consequence of Theorem 12.
Let us show Property 4. Write $u = d(\mathcal{C}) - 1 + v$ with $1 \leq v \leq k - d(\mathcal{C}) + 1$, and define the code $\mathcal{E} := \Pi(\mathcal{C}, A, d(\mathcal{C}) - 1)$. By Property 3 we have $|\mathcal{E}| = |\Pi(\mathcal{C}, A, d(\mathcal{C}) - 1)| = |\mathcal{E}|$. It follows from the definitions that $\Pi(\mathcal{C}, A, u) = \pi_u(\mathcal{E})$, where

$$\pi_u : \mathbb{F}_q^{(k-d(\mathcal{C})+1) \times m} \rightarrow \mathbb{F}_q^{(k-u) \times m}$$

denotes the projection on the last $k-u$ rows. For any $N \in \pi_u(\mathcal{E})$ let $|N| := \{ M \in \mathcal{E} : \pi_u(M) = N \}$. Clearly, $|N| \cap |N'| = \emptyset$ whenever $N, N' \in \pi_u(\mathcal{E})$ and $N \neq N'$. Moreover, it is easy to see that $|N| \leq q^m$ for all $N \in \pi_u(\mathcal{E})$. Therefore

$$|\mathcal{E}| = \sum_{N \in \pi_u(\mathcal{E})} |N| = \sum_{N \in \pi_u(\mathcal{E})} |N| \leq |\pi_u(\mathcal{E})| \cdot q^m,$$

and so $|\Pi(\mathcal{C}, A, u)| = |\pi_u(\mathcal{E})| \geq |\mathcal{E}|/q^m$. Let us now prove the last part of Property 4. If $|\Sigma(\mathcal{C}, A, k-u) - 1 = 1$ then there is nothing to prove. Assume $|\Sigma(\mathcal{C}, A, k-u)| \geq 2$. Then $\Sigma(\mathcal{C}, A, k-u)$ has minimum distance at least $d(A\mathcal{C}) = d(\mathcal{C})$. Therefore by the Singleton-like bound [11] we have

$$|\Sigma(\mathcal{C}, A, k-u)| \leq q^{m(u-d(\mathcal{C})+1)},$$

as claimed. \hfill \square

Proposition 15. Let $\mathcal{C} \subseteq \mathbb{F}_q^{k \times m}$ be a code. For all $A \in GL_k(\mathbb{F}_q)$ and $1 \leq u \leq k-1$ we have

$$\rho(\mathcal{C}) \geq \rho(\Pi(\mathcal{C}, A, u)) \geq \rho(\mathcal{C}) - u.$$

Proof. Let $\mathcal{D} := A\mathcal{C}$. Then $\Pi(\mathcal{C}, A, u) = \pi_u(\mathcal{D})$. Let $X \in \mathbb{F}_q^{k \times m}$ be an arbitrary matrix. By definition of covering radius and punctured code, there exists a matrix $M \in \mathcal{D}$ with $d(\pi_u(M), \pi_u(X)) \leq \rho(\pi_u(\mathcal{D}))$. Thus $d(M, X) \leq d(\pi_u(M), \pi_u(X)) + u \leq \rho(\pi_u(\mathcal{D})) + u$. Since X is arbitrary, this shows $\rho(\mathcal{D}) \leq \rho(\pi_u(\mathcal{D})) + u$, i.e., $\rho(\pi_u(\mathcal{D})) \geq \rho(\mathcal{D}) - u = \rho(\mathcal{C}) - u$.

Now let $X \in \mathbb{F}_q^{(k-u) \times m}$ be an arbitrary matrix. Complete X to a $k \times m$ matrix, say X', by adding u zero rows to the top. There exists $M \in \mathcal{D}$ with $d(X', M) \leq \rho(\mathcal{D})$. Thus

$$d(X, \pi_u(M)) = d(\pi_u(X'), \pi_u(M)) \leq d(X', M) \leq \rho(\mathcal{D}) = \rho(\mathcal{C}).$$

This shows $\rho(\pi_u(\mathcal{D})) \leq \rho(\mathcal{C})$, and concludes the proof. \hfill \square

4. Translates of a Rank-Metric Code

In this section we study the weight distribution of the translates of a code. Our main result is Theorem 20, in which we derive a recursive formula for the weight distribution of the cosets of an arbitrary \mathbb{F}_q-linear rank-metric code. In [2] a similar formula was given for the weight distribution of the cosets of an MDS code for the Hamming metric. Our approach combines M"obius inversion and the key result Lemma 19, hence eliminating reliance on the MRD property (which is the rank-metric analogue of the MDS property).

As an application, we obtain an upper bound on the covering radius of a rank-metric code. Recall that the **translate** of a code $\mathcal{C} \subseteq \mathbb{F}_q^{k \times m}$ by a matrix $X \in \mathbb{F}_q^{k \times m}$ is the code

$$\mathcal{C} + X := \{ M + X : M \in \mathcal{C} \} \subseteq \mathbb{F}_q^{k \times m}.$$

Clearly, full knowledge of the weight distribution of the translates of \mathcal{C} tells us the covering radius, which is the maximum of the minimum weight of each translate of \mathcal{C}. Even partial information may yield a bound on the covering radius. More precisely, if $X \in \mathbb{F}_q^{k \times m}$ and $W_i(\mathcal{C} + X) \neq 0$, then $d(X, \mathcal{C}) := \min \{ d(X, M) : M \in \mathcal{C} \} \leq i$. So if there exists r such
that for each $X \in \mathbb{F}_q^{k \times m}$, $W_i(\mathcal{C} + X) \neq 0$ for some $i \leq r$ then, in particular, $\rho(\mathcal{C}) \leq r$. If such a value r can be determined, then we get an upper bound on the covering radius of \mathcal{C}.

In this section we provide explicit formulas for $W_{k-d+1}(\mathcal{C} + X), \ldots, W_k(\mathcal{C} + X)$ as linear functions of the weights $W_0(\mathcal{C} + X), \ldots, W_{k-d}(\mathcal{C} + X)$, which furthermore shows that the weight distribution of the translate $\mathcal{C} + X$ of a linear code $\mathcal{C} \subseteq \mathbb{F}_q^{k \times m}$ is determined by the values of $W_0(\mathcal{C} + X), \ldots, W_{k-d}(\mathcal{C} + X)$, where $d = d(\mathcal{C} \perp)$. As a simple application, we obtain an upper bound on the covering radius of a linear code in terms of the minimum distance of its dual code. Our proof uses combinatorial methods partly inspired by the theory of regular support functions on finite abelian groups developed in [19].

Throughout this section we follow Notation 10, that is we use $\mathcal{C}(U)$. We start with a preliminary lemma that describes some combinatorial properties of the translates of a linear code.

Lemma 16. Let $\mathcal{C} \subseteq \mathbb{F}_q^{k \times m}$ be a linear code, and let $U \subseteq \mathbb{F}_q^k$ be an \mathbb{F}_q-linear subspace of dimension u. Assume that $|\mathcal{C}(U)| = |\mathcal{C}|/q^{m(k-u)}$. Then for all matrices $X \in \mathbb{F}_q^{k \times m}$ we have

$$|((\mathcal{C} + Y)(U))| = |\mathcal{C}|/q^{m(k-u)}.$$

Proof. Let $f : \mathbb{F}_q^k \to \mathbb{F}_q^k$ be a linear isomorphism such that $f(U) = V := \{x_1, \ldots, x_k\} \in \mathbb{F}_q^k : x_i = 0$ for all $i > u$. Let A be the matrix associated to f with respect to the canonical basis of \mathbb{F}_q^k. Define $\mathcal{D} := A\mathcal{C}$ and $Y := AX$. The left-multiplication by A induces bijections $\mathcal{C}(U) \to \mathcal{D}(V)$ and $(\mathcal{C} + X)(U) \to (\mathcal{D} + AX)(V)$. In particular, $|\mathcal{D}(V)| = |\mathcal{C}(U)|$, and it suffices to prove that $|((\mathcal{D} + Y)(V))| = |\mathcal{D}(V)|$. Let $\pi : \mathcal{D} \to \mathbb{F}_q^{(k-u)\times m}$ be the projection on the last $k - u$ rows, and denote by \overline{Y} the matrix obtained from Y deleting its first u rows. Then

$$((\mathcal{D} + Y)(V)) = \pi^{-1}(\overline{Y}) + Y.$$

Moreover, since $\pi(\mathcal{D}) \cong \mathcal{D}/\ker(\pi) = \mathcal{D}/\mathcal{D}(V)$ and $|\mathcal{D}/\mathcal{D}(V)| = q^{m(k-u)}$, we have that π is surjective. Let $N \in \mathcal{D}$ with $\pi(N) = \overline{Y}$. Then $M \mapsto M - N$ gives a bijection $\pi^{-1}(0) \to \pi^{-1}(\overline{Y})$. Combining this with Equation (5) we obtain

$$|((\mathcal{D} + Y)(V))| = |\pi^{-1}(\overline{Y})| = |\pi^{-1}(0)| = |\mathcal{D}(V)|.$$

Remark 17. As with Theorem 12, Lemma 16 can also be shown by vectorization of matrices. The condition $|\mathcal{C}(U)| = |\mathcal{C}|/q^{m(k-u)}$ forces the constraint that $(\mathcal{C} + X)(U)$ is a coset of $\mathcal{C}(U)$, which does not hold in general. We briefly outline the argument, pointed out to us by one of the referees of this paper. Let $\mathcal{Y} = \mathcal{F}_{X \mathcal{C}}(U)$. Then $\mathcal{C}(U) = \mathcal{C} \cap \mathcal{Y}$ and $|\mathcal{Y}| = q^{m(k-u)}$ by [20, Lemma 26]. For any matrix $Z \in \mathbb{F}_q^{k \times m}$, let \overline{Z} denote the vector in \mathbb{F}_q^{km} formed by concatenating the rows of Z, and extend this notation for sets of vectors. $\overline{\mathcal{C}}$ has a parity check matrix $H_\mathcal{C}$ with $m(k - u)$ columns and mk rows. $\overline{\mathcal{C}}$ has a parity check matrix $H_{\mathcal{X}}$ with $mk - \dim \mathcal{C}$ columns. $\overline{\mathcal{C}} \cap \overline{\mathcal{Y}}$ is contained in the (left) null-space of the matrix H with $H = [H_\mathcal{C}, H_\mathcal{Y}]$. Then $|\mathcal{C} \cap \mathcal{Y}| = |\mathcal{C}|/q^{m(k-u)}$ means that a parity check matrix for $\overline{\mathcal{C}} \cap \overline{\mathcal{Y}}$ has rank $mk - \dim \mathcal{C} + mk - mu$, which is the rank of H. For any $X \in \mathbb{F}_q^{k \times m}$, the elements of $(\mathcal{C} + X)(U) = (\mathcal{C} + X) \cap \mathcal{Y}$ correspond to vectors $(\overline{\mathcal{C}} + \overline{X}) \cap \overline{\mathcal{Y}}$, which have syndrome $[\overline{X}H_\mathcal{C}, 0]$ and every element of \mathbb{F}_q^{km} with this syndrome is an element of $(\overline{\mathcal{X}} \cap \overline{\mathcal{Y}})$. It follows that this set is a coset of $\overline{\mathcal{C}} \cap \overline{\mathcal{Y}}$, and hence that $(\mathcal{C} + X)(U)$ is a coset of $\mathcal{C}(U)$.

Remark 18. In general $(\mathcal{C} + X)(U)$ and $\mathcal{C}(U)$ may have different cardinality, as the following example shows. Let \mathcal{C} be the 1-dimensional code generated over \mathbb{F}_2 by the 3×3
all-ones matrix. Let \(U \subseteq \mathbb{F}_2^3 \) be the \(\mathbb{F}_2 \)-space generated by the vector \((1, 1, 1) \in \mathbb{F}_2^3\) and let e.g. \(X = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \).

Then \(\mathcal{C}(U) = \mathcal{C} \) has cardinality 2 while \((\mathcal{C} + X)(U) = \emptyset \).

A second preliminary result which will be needed later is the following.

Lemma 19. Let \(\mathcal{C} \subseteq \mathbb{F}_q^{k \times m} \) be a linear code. Then for all matrices \(X \in \mathbb{F}_q^{k \times m} \) and for any subspace \(U \subseteq \mathbb{F}_q^{k} \) with \(u := \dim(U) \geq k - d(\mathcal{C}^\perp) + 1 \) we have

\[
(\mathcal{C} + X)(U) = |\mathcal{C}|/q^{m(u-k)}.
\]

Proof. By Lemma 16 it suffices to prove the result for \(X = 0 \). By [20, Lemma 28], for any subspace \(U \subseteq \mathbb{F}_q^k \) of dimension \(u \) we have

\[
|\mathcal{C}(U)| = |\mathcal{C}|/q^{m(u-k)}|\mathcal{C}^\perp(U^\perp)|,
\]

where \(U^\perp \) denotes the orthogonal of \(U \) with respect to the standard inner product of \(\mathbb{F}_q^k \). By definition of minimum distance we have \(\mathcal{C}^\perp(U^\perp) = \emptyset \) for all \(U \subseteq \mathbb{F}_q^k \) with \(\dim(U^\perp) \leq d(\mathcal{C}^\perp) - 1 \). Therefore the lemma immediately follows from Equation (6) and the fact that \(\dim(U^\perp) = k - \dim(U) \).

We can now state our main result on the weight distribution of the translates of a linear rank-metric code.

Theorem 20. Let \(\mathcal{C} \subseteq \mathbb{F}_q^{k \times m} \) be a linear code, and let \(X \in \mathbb{F}_q^{k \times m} \) be any matrix. Write \(d^\perp := d(\mathcal{C}^\perp) \). Then for all \(i \in \{k - d^\perp + 1, \ldots, k\} \) we have

\[
W_i(\mathcal{C} + X) = \sum_{u=0}^{k-d^\perp} (-1)^{i-u} q^{i u} \sum_{j=0}^{u} W_j(\mathcal{C} + X) q^{j u} + \sum_{u=k-d^\perp+1}^{k} \sum_{u=k-d^\perp+1}^{i} \frac{|\mathcal{C}|}{q^{m(u-k)}}.
\]

In particular, the distance distribution of the translate \(\mathcal{C} + X \) is completely determined by \(k, m, |\mathcal{C}| \) and the weights \(W_0(\mathcal{C} + X), \ldots, W_{k-d^\perp}(\mathcal{C} + X) \).

Proof. Recall from [23] that the set of subspaces of \(\mathbb{F}_q^k \) is a graded lattice with respect to the partial order given by the inclusion. The rank function of this lattice is the \(\mathbb{F}_q \)-dimension of spaces, and its M"obius function is given by

\[
\mu(S, T) = (-1)^{i-s} q^{(i-s) t}
\]

for all subspaces \(S \subseteq T \subseteq \mathbb{F}_q^k \) with \(\dim(T) = t \) and \(\dim(S) = s \). Throughout the proof a sum over an empty set of indices is zero. For any subspace \(V \subseteq \mathbb{F}_q^k \) define

\[
f(V) := |\{M \in \mathcal{C} + X : \text{column-space}(M) = V\}| \quad \text{and} \quad g(V) := \sum_{U \subseteq V} f(U) = |(\mathcal{C} + X)(V)|.
\]

By the M"obius inversion formula, for any subspace \(V \subseteq \mathbb{F}_q^k \) we have

\[
f(V) = \sum_{U \subseteq V} |(\mathcal{C} + X)(U)| \mu(U, V).
\]
Fix any integer i with $k - d^\perp + 1 \leq i \leq k$. By definition, we have

$$W_i(C' + X) = \sum_{V \subseteq F_q^k \atop \dim(V) = i} f(V).$$

Therefore by Equation (7) the number $W_i(C' + X)$ can be expressed as

$$W_i(C' + X) = \sum_{U \subseteq F_q^k \atop \dim(U) = i} \sum_{V \supseteq U} |(C' + X)(U)| \mu(U, V)$$

$$= \sum_{U \subseteq F_q^k \atop \dim(U) = i} |(C' + X)(U)| \sum_{V \supseteq U} \mu(U, V)$$

$$= \sum_{U \subseteq F_q^k \atop \dim(U) = i} |(C' + X)(U)| \sum_{V \supseteq U} (-1)^{i - u} q^{(i - u)}$$

(8)

$$= \sum_{u = 0}^i (-1)^{i - u} q^{(i - u)} \left[\frac{k - u}{u - i} \right] \sum_{U \subseteq F_q^k \atop \dim(U) = u} |(C' + X)(U)|.$$

By Lemma 19, for $u \geq k - d^\perp + 1$ we have

(9) $$\sum_{U \subseteq F_q^k \atop \dim(U) = u} |(C' + X)(U)| = \left[\frac{k}{u} \right] |C'| / q^{m(k - u)}.$$

On the other hand, for $u \leq k - d^\perp$ we have

$$\sum_{U \subseteq F_q^k \atop \dim(U) = u} |(C' + X)(U)| = |\{(U, M) : U \subseteq F_q^k, \dim(U) = u, M \in (C' + X)(U)\}|$$

$$= \sum_{M \in \mathcal{C} + X} |\{U \subseteq F_q^k : \dim(U) = u, U \supseteq \text{column-space}(M)\}|$$

$$= \sum_{j=0}^u \sum_{M \in C' + X \atop \rk(M) = j} |\{U \subseteq F_q^k : \dim(U) = u, U \supseteq \text{column-space}(M)\}|$$

(10) $$= \sum_{j=0}^u W_j(C' + X) \left[\frac{k - j}{u - j} \right] q.$$
\(X \notin \mathcal{C}\). Then \(W_0(\mathcal{C} + X) = 0\). Theorem 20 with \(i := k - d^\perp + 1\) gives
\[
W_{k+d^\perp +1}(\mathcal{C} + X) = \sum_{u=1}^{k-d^\perp} (-1)^{u-k} q^{\binom{u}{2}} \left[k - u \right] \left[\frac{k-j}{u-j} \right] q + \sum_{j=1}^{u} W_j(\mathcal{C} + X) \left[\frac{k-j}{u-j} \right] q + \left[\frac{k}{k-d^\perp + 1} \right] |\mathcal{C}|/q^{m(d^\perp 1)}.
\]
In particular, \(W_1(\mathcal{C} + X), ..., W_{k-d^\perp +1}(\mathcal{C} + X)\) cannot be all zero. This implies the following.

Corollary 21 (Dual Distance Bound). For any linear code \(\mathcal{C} \subseteq \mathbb{F}_q^{k \times m}\) we have \(\rho(\mathcal{C}) \leq k - d(\mathcal{C} \perp) + 1\).

5. External Distance Bound. In this section, we apply Fourier transform methods to obtain further results on the weight distributions of the translates of a (not necessarily linear) code \(\mathcal{C} \subseteq \mathbb{F}_q^{k \times m}\). This yields an upper bound on the covering radius of a general rank-metric code in terms of its external distance. This is the rank distance analogue of Delsarte’s external distance bound for the Hamming metric [9, Theorem 3.2] (see also [6, 17]), and improves the dual distance bound of Corollary 21.

The approach uses \(q\)-Krawtchouk polynomials and Fourier transforms to obtain relations on the weight distribution of the translates of a code in \(\mathbb{F}_q^{k \times m}\). The properties of \(q\)-Krawtchouk polynomials were described in [9, 10]. The Fourier transform arguments used are independent of the choice of metric and so extend from the Hamming metric case. The principal novelty is the introduction of a \(q\)-annihilator polynomial, used in the proof of Lemma 26, which otherwise is very close to the Hamming metric version presented in [17], but avoids using the group algebra representation of codes and subsets of the ambient space.

Throughout the remainder of this section, \(\mathcal{C} \subseteq \mathbb{F}_q^{k \times m}\) denotes a (possibly non-linear) code, and \(\chi\) is a fixed non-trivial character of \((\mathbb{F}_q, +)\).

Definition 22. Let \(Y \in \mathbb{F}_q^{k \times m}\). Define the character map on \((\mathbb{F}_q^{k \times m}, +)\) associated to \(Y\) by
\[
\phi_Y : \mathbb{F}_q^{k \times m} \rightarrow \mathbb{C}^\times : X \mapsto \chi(\text{Tr}(YX^T)).
\]

Clearly \(\phi_Y(Y) = \phi_Y(X)\) for all \(X, Y \in \mathbb{F}_q^{k \times m}\). We denote by \(\Phi\) the \(q^{km} \times q^{km}\) symmetric matrix with values in \(\mathbb{C}^\times\) defined as having entry \(\phi_Y(X)\) in the column indexed by \(X\) and in the row indexed by \(Y\). Define the \(\mathbb{Q}\)-module of length \(km\): \(\mathcal{C} := \{ (\alpha_X : X \in \mathbb{F}_q^{k \times m}) : \alpha_X \in \mathbb{Q} \}\). For each \(Y\), extend \(\phi_Y\) to a character of \(\mathcal{C}\) as follows:
\[
\phi_Y : \mathcal{C} \rightarrow \mathbb{C}^\times : \alpha \mapsto (\alpha_X : X \in \mathbb{F}_q^{k \times m}) \mapsto \sum_X \phi_Y(X).
\]
Then \(\Phi \alpha = (\phi_Y(\alpha) : Y \in \mathbb{F}_q^{k \times m}) \in \mathcal{C}\). The rows of \(\Phi\) are pairwise orthogonal, as can be seen from:
\[
\sum_X \phi_Y(X) \phi_Z(X) = \sum_X \phi_X(Y) \phi_Y(Z) = \sum_X \phi_X(Y - Z) = \sum_X \phi_{Y - Z}(X) = \begin{cases} q^{km} & \text{if } Y = Z, \\ 0 & \text{otherwise.} \end{cases}
\]
Therefore \(\Phi^2 \mathcal{A} = \Phi^T \Phi \mathcal{A} = q^{km} \mathcal{A}\) and so \(\mathcal{A}\) is determined completely by its transform
\[
\mathcal{A}^* := \Phi \mathcal{A} = (\phi_Y(\mathcal{A}) : Y \in \mathbb{F}_q^{k \times m}).
\]

Any subset \(\mathcal{W} \subseteq \mathbb{F}_q^{k \times m}\) can be identified with the 0-1 characteristic vector \(\overrightarrow{\mathcal{W}} = (\mathcal{W}_Z : Z \in \mathbb{F}_q^{k \times m}) \in \mathcal{C}\), where
\[
\mathcal{W}_Z = \begin{cases} 1 & \text{if } Z \in \mathcal{W}, \\ 0 & \text{otherwise.} \end{cases}
\]
For any $X \in \mathbb{F}_q^{k \times m}$, the translate code $\mathcal{C} + X \subseteq \mathbb{F}_q^{k \times m}$ is then identified with $\mathcal{C} + X = (\mathcal{C}_Z - X : Z \in \mathbb{F}_q^{k \times m})$. It is straightforward to show that $\phi_Y(\mathcal{C} + X) = \phi_Y(\mathcal{C})\phi_Y(X)$. This immediately yields the inversion formula

$$\mathcal{C}_X = \frac{1}{q^m} \sum_Y \phi_Y(\mathcal{C} + X) = \frac{1}{q^m} \sum_Y \phi_Y(\mathcal{C})\phi_Y(X).$$

For each $i \in [k]$ we let Ω^i be the set of matrices in $\mathbb{F}_q^{k \times m}$ of rank i.

Lemma 23 (see [11]). Let $Y \in \mathbb{F}_q^{k \times m}$. Then $\phi_Y(\mathcal{C})$ depends only on the rank of Y. If Y has rank j, then this is given by

$$P_i(j) := \sum_{\ell=0}^{k} (-1)^{i-\ell} q^\ell \binom{j}{k-i} \binom{k-j}{\ell} q^\ell.$$

In terms of the transform of Ω^i this gives

$$\Phi_{\Omega^i} = (P_i(\text{rk}(Y)) : Y \in \mathbb{F}_q^{k \times m}).$$

It is known [10, 11] that the $P_i(j)$ are orthogonal polynomials of degree i in the variable q^{-j}. Therefore, any rational polynomial γ of degree at most k in q^{-j} can be expressed as a \mathbb{Q}-linear combination of the q-Krawtchouck polynomials: $\gamma(x) = \sum_{i=0}^{k} \gamma_i P_i(x)$. Again, the orthogonality relations mean that the coefficients of γ can be retrieved as

$$\gamma_i = \frac{1}{q^m} \sum_{i=0}^{k} \gamma(i) P_i(j).$$

We let $P = (P_i(j))$ denote the $(k+1) \times (k+1)$ matrix with (j,i)-th component equal to $P_i(j)$. Then the transform of $B(\mathcal{C}) = (B_i(\mathcal{C}) : 0 \leq i \leq k)$ is defined as $B^*(\mathcal{C}) := |\mathcal{C}|^{-1} B(\mathcal{C})P$. The coefficients of $B^*(\mathcal{C})$ are non-negative [11, Theorem 3.2].

Let $\mathcal{D} := (D_Z : Z \in \mathbb{F}_q^{k \times m})$ where $D_Z = \{(X,Y) : X,Y \in \mathcal{C}, X+Y = Z\}$. It can be checked that

$$\phi_Y(\mathcal{D}) = \phi_Y(\mathcal{C})\phi_Y(\mathcal{C}) = \phi_Y(\mathcal{C})^2.$$

Then

$$\sum_{Y \in \Omega^i} \phi_Y(\mathcal{D}) = \sum_{Z} D_Z \sum_{Y \in \Omega^i} \phi_Y(Z) = \sum_{Z} D_Z \phi_Z(\Omega^i) = \sum_{Z} D_Z P_i(\text{rk}(Z)) =

= |\mathcal{C}| \sum_{j=0}^{k} B_j(\mathcal{C})P_i(j) = |\mathcal{C}|(B(\mathcal{C})P)_i,$$

and in particular we have

$$|\mathcal{C}| B^*_i(\mathcal{C}) = (\sum_{Y \in \Omega^i} \phi_Y(\mathcal{D}) : 0 \leq i \leq k) = (\sum_{Y \in \Omega^i} \phi_Y(\mathcal{C})^2 : 0 \leq i \leq k).$$

Clearly $B^*_i(\mathcal{C}) = 0$ implies that $\phi_Y(\mathcal{C}) = 0$ for each $Y \in \Omega^i$.

Definition 24. The **external distance** of a code $\mathcal{C} \subseteq \mathbb{F}_q^{k \times m}$ is the integer

$$\sigma^*(\mathcal{C}) := |\{i \in [k] : B^*_i(\mathcal{C}) > 0\}|,$$

the number of non-zero coefficients of $B^*(\mathcal{C})$, excluding $B^*_0(\mathcal{C})$.
For ease of notation in the sequel we write $\sigma^* := \sigma^*(C)$. Let $0 < b_1 < \ldots < b_{\sigma^*} \leq k$ denote the indices i of non-zero $B_i^*(C)$ for $i > 0$.

Definition 25. The annihilator polynomial of degree σ^* in the variable q^{-x} of C is

$$\alpha(x) := \frac{q^{mn}}{|C|} \prod_{j=1}^{\sigma^*} \frac{1 - q^{b_j - x}}{1 - q^{b_j}} = \sum_{j=0}^{\sigma^*} \alpha_j P_j(x).$$

This is the q-analogue of the Hamming metric annihilator polynomial [17, pg. 168]. Notice that the b_j are the zeroes of α and $\alpha(0) = \sum_{j=0}^{\sigma^*} \alpha_j$.

Lemma 26. Let $X \in \mathbb{F}_q^{k \times m}$ be an arbitrary matrix. Then

$$\sum_{j=1}^{\sigma^*} \alpha_j W_j(C + X) = 1.$$

In particular, there exists some $j \in [\sigma^*]$ such that $W_j(C + X) > 0$.

Proof. We must show that $\sum_{j=1}^{\sigma^*} \alpha_j W_j(C + X) : X \in \mathbb{F}_q^{k \times m} = (1 : X \in \mathbb{F}_q^{k \times m})$. Since Φ is invertible, this holds if and only if for all Y,

$$\phi_Y \left(\sum_{j=1}^{\sigma^*} \alpha_j W_j(C + X) : X \in \mathbb{F}_q^{k \times m} \right) = \phi_Y(1 : X \in \mathbb{F}_q^{k \times m}) = \begin{cases} 0 & \text{if } Y \neq 0 \\ q^{km} & \text{if } Y = 0. \end{cases}$$

This was the approach taken, for example, in [17, Chapter 6, Lemma 18], using the group algebra $\mathbb{Q}[x]$. Let $Y \in \mathbb{F}_q^{k \times m}$. Then

$$\phi_Y \left(\sum_{j=1}^{\sigma^*} \alpha_j W_j(C + X) : X \in \mathbb{F}_q^{k \times m} \right) = \sum_{j=1}^{\sigma^*} \alpha_j \sum_{X \in \Omega_j} W_j(C + X) \phi_Y(X)$$

$$= \sum_{j=1}^{\sigma^*} \alpha_j \sum_{X \in \Omega_j} \phi_Y(C + X)$$

$$= \sum_{j=1}^{\sigma^*} \alpha_j \phi_Y(C) \sum_{X \in \Omega_j} \phi_Y(X)$$

$$= \sum_{j=1}^{\sigma^*} \alpha_j \phi_Y(C) \phi_Y(\Omega_j)$$

$$= \sum_{j=1}^{\sigma^*} \alpha_j \phi_Y(C) P_j(\text{rk}(Y))$$

$$= \phi_Y(C) \sum_{j=1}^{\sigma^*} \alpha_j P_j(\text{rk}(Y))$$

$$= \phi_Y(C) \alpha(\ell),$$

where Y has rank ℓ.

12
Now \(\alpha(0) = \frac{\sigma^m}{|C|} \) and \(\phi(Y) = |C| \), so \(\phi(Y)\alpha(0) = q^l \). Suppose that \(Y \) has rank \(\ell > 0 \). The roots of \(\alpha \) are precisely those \(j \geq 1 \) such that \(B_j^*({C}) \) is non-zero. On the other hand, if \(B_j^*({C}) = 0 \) then \(\phi(Y) = 0 \). It follows that the product \(\phi(Y)\alpha(\ell) = 0 \) and so

\[
\Phi \left(\sum_{j=1}^{\sigma^*} \alpha_j W_j({C} + X) : X \in \mathbb{F}_q^{k \times m} \right) = \Phi(1 : X \in \mathbb{F}_q^{k \times m}),
\]

as claimed. \(\square \)

We can now upper-bound the covering radius of a general rank-metric code in terms of its external distance as follows.

Theorem 27 (External Distance Bound). For any code \(C \subseteq \mathbb{F}_q^{m \times n} \) we have \(\rho(C) \leq \sigma(C) \). Furthermore, if \(C \) is \(\mathbb{F}_q \)-linear then \(\rho(C) \) is no greater than the number of non-zero weights of \(C \), excluding \(W_0(C) \).

Proof. The first part of the theorem is an immediate consequence of Lemma 26. The second part follows from the fact that \(B_j^*(C) = B_j(C) = W_j(C) \), provided that \(C \) is linear. This can be easily seen from the definition of \(B_j^*(C) \) on page 11 and the MacWilliams identities for the rank metric [11]. \(\square \)

Example 28. Let \(m = rs \) and let \(C = \{ \sum_{i=0}^{s-1} f_i q^{si} : f_i \in \mathbb{F}_q^m \} \). Then \(C \) is the set of all \(\mathbb{F}_q \)-linear maps from \(\mathbb{F}_q^m \) to itself. Therefore \(C \) has elements of \(\mathbb{F}_q \)-ranks \(0, 1, 2, \ldots, r \). Let \(f \) have rank \(i \) over \(\mathbb{F}_q \). Let \(\text{Im} f \subseteq \mathbb{F}_q^m \) have \(\mathbb{F}_q \)-basis \(\{ v_1, \ldots, v_l \} \) and let \(\{ u_1, \ldots, u_l \} \) be an \(\mathbb{F}_q \)-basis of \(\mathbb{F}_q^m \). Then \(\{ u_i v_j : 1 \leq i \leq s, 1 \leq j \leq l \} \) is an \(\mathbb{F}_q \)-basis of \(\text{Im} f \) in \(\mathbb{F}_q^m \), and so has dimension \(s \). Then \(C \) has non-zero rank weights \(\{ s, 2s, \ldots, rs \} \) over \(\mathbb{F}_q \), so that \(\rho(C) \leq r \).

Remark 29. Lemma 26 implies that \(W_{\sigma^*}(C + X) \) is dependent on the set of integers \(\{ W_j(C + X) : j \in \{ 1, \ldots, \sigma^* - 1 \} \} \). This argument can be iteratively applied to deduce that for each \(j \geq \sigma^* \), \(W_j(C + X) \) is determined by the weights \(W_1(C + X), \ldots, W_{\sigma^* - 1}(C + X) \). Since \(\sigma^* + d(C) \leq k + 1 \), Corollary 21 and part of the statement of Theorem 20 can be deduced from Lemma 26, but the explicit formula obtained using Möbius inversion is not more easily deduced from it.

6. Initial Set Bound. In this section we define the **initial set** of a linear rank-metric code, inspired by work in [18]. Moreover we exploit the combinatorial structure of such a set to derive an upper bound for the covering radius of the underlying code. Our technique relies on the specific “matrix structure” of rank-metric codes.

Notation 30. Given positive integers \(a, b \) and a set \(S \subseteq [a] \times [b] \), we denote by \(\Pi(S) \in \mathbb{F}_2^{a \times b} \) the binary matrix defined by \(\Pi(S)_{ij} := 1 \) if \((i, j) \in S \), and \(\Pi(S)_{ij} := 0 \) if \((i, j) \notin S \). Therefore, \(\Pi(S) \) is the characteristic matrix of the set \(S \) in \([a] \times [b] \).

Moreover, we denote by \(\lambda(S) \) the minimum number of lines (rows or columns) required to cover all the ones in \(\Pi(S) \). The number \(\lambda(S) \) is known as the term rank of the matrix \(\Pi(S) \) (c.f. [3, pg. 7]).

The initial set of a linear code is defined as follows.

Definition 31. Let \(\preceq \) denote the lexicographic order on \([k] \times [m] \). The **initial entry** of a non-zero matrix \(M \in \mathbb{F}_q^{k \times m} \) is \(\text{in}(M) := \min_{\preceq} \{(i, j) : M_{ij} \neq 0 \} \). The **initial set** of a non-zero linear code \(C \subseteq \mathbb{F}_q^{k \times m} \) is

\[
\text{in}(C) := \{ \text{in}(M) : M \in C, M \neq 0 \}.
\]

We start with a preliminary lemma.
LEMMA 32. Let $\mathcal{C} \subseteq \mathbb{F}_q^{k \times m}$ be a non-zero \mathbb{F}_q-linear code. The following hold.

1. $\dim(\mathcal{C}) = |\text{in}(\mathcal{C})|$.
2. $\text{in}(\mathcal{C}) \subseteq [k - d(\mathcal{C}) + 1] \times [m]$.

Proof. Let $t := \dim(\mathcal{C})$, and let $\{M_1, \ldots, M_t\}$ be a basis of \mathcal{C}. Without loss of generality we may assume $(1, 1, \ldots, 1) \in \text{in}(M_1) \setminus \{0\}$, then there exist elements $a_1, \ldots, a_t \in \mathbb{F}_q$ such that $M = \sum_{i=1}^{t} a_i M_i$, hence $\text{in}(M) \in \{\text{in}(M_1), \ldots, \text{in}(M_t)\}$. This shows $\text{in}(\mathcal{C}) = \{\text{in}(M_1), \ldots, \text{in}(M_t)\}$. In particular, $|\text{in}(\mathcal{C})| = t = \dim(\mathcal{C})$. Notice moreover that if $\text{in}(M_i) \succ (k - d(\mathcal{C}) + 1, m)$, then clearly $\text{rk}(M_i) \leq d(\mathcal{C}) - 1$, a contradiction. Therefore we have

$$(1, 1) \leq \text{in}(M_1) \times \cdots \times \text{in}(M_t) \leq (k - d(\mathcal{C}) + 1, m).$$

This shows $\text{in}(\mathcal{C}) \subseteq [k - d(\mathcal{C}) + 1] \times [m]$. \hfill \Box

REMARK 33. Let a, b be positive integers and let $S \subseteq [a] \times [b]$ be a set. Assume that $M \in \mathbb{F}_q^{a \times b}$ is a matrix with $M_{ij} = 0$ whenever $(i, j) \notin S$. Then $\text{rk}(M) \leq \lambda(S)$. This can be proved by induction on $\lambda(S)$.

We can now state the main result of this section, which provides an upper bound on the covering radius of a linear rank-metric code \mathcal{C} in terms of the combinatorial structure of its initial set.

THEOREM 34 (Initial Set Bound). Let $\mathcal{C} \subseteq \mathbb{F}_q^{k \times m}$ be a non-zero linear code. We have $\rho(\mathcal{C}) \leq d(\mathcal{C}) - 1 + \lambda(S)$, where $S := [k - d(\mathcal{C}) + 1] \times [m] \setminus \text{in}(\mathcal{C})$.

Proof. Let $X \in \mathbb{F}_q^{k \times m}$ be any matrix. It is easy to see that there exists a unique matrix $M \in \mathcal{C}$ such that $X_{ij} = M_{ij}$ for all $(i, j) \in \text{in}(\mathcal{C})$. Such matrix satisfies $(X - M)_{ij} = 0$ for all $(i, j) \in \text{in}(\mathcal{C})$. Let $X - M$ be the matrix obtained from $X - M$ deleting the last $d(\mathcal{C}) - 1$ rows. We have

$$d(X, M) = \text{rk}(X - M) \leq d(\mathcal{C}) - 1 + \lambda(S),$$

where S denotes the complement of $\text{in}(\mathcal{C})$ in $[k - d(\mathcal{C}) + 1] \times [m]$, and the last inequality follows from Remark 33. Since X is arbitrary, this shows that $\rho(\mathcal{C}) \leq d(\mathcal{C}) - 1 + \lambda(S)$. \hfill \Box

REMARK 35. The initial set of a linear code $\mathcal{C} \subseteq \mathbb{F}_q^{k \times m}$ can be efficiently computed from any basis of \mathcal{C} as follows. Denote by $w : \mathbb{F}_q^{k \times m} \to \mathbb{F}_q^{mk}$ the map that sends a matrix M to the mk-vector obtained concatenating the rows of M. Given a basis $\{M_1, \ldots, M_t\}$ of \mathcal{C}, construct the vectors $v_1 := w(M_1), \ldots, v_t := w(M_t)$. Perform Gaussian elimination on $\{v_1, \ldots, v_t\}$ and obtain vectors $\tilde{v}_1, \ldots, \tilde{v}_t$. Clearly, $\{w^{-1}(\tilde{v}_1), \ldots, w^{-1}(\tilde{v}_t)\}$ is a basis of \mathcal{C}, and one can check that

$$\text{in}(\mathcal{C}) = \{\text{in}(w^{-1}(\tilde{v}_1)), \ldots, \text{in}(w^{-1}(\tilde{v}_t))\}.$$

The following example shows that Theorem 34 gives in some cases a better bound than Theorem 27 for the covering radius of a linear code.

EXAMPLE 36. Let $q = 2$ and $k = m = 3$. Denote by \mathcal{C} the linear code generated over \mathbb{F}_2 by the four matrices

$$
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix},
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{bmatrix}.
$$

We have $d(\mathcal{C}) = 2$. Moreover, since

$$
\begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{bmatrix} \in \mathcal{C}^\perp,
$$

the covering radius of \mathcal{C} is at most 2. In fact, \mathcal{C} is a self-orthogonal code, and hence $d(\mathcal{C}) = 2$. Therefore, \mathcal{C} has minimum distance 2.
that the initial set of \(C \) is in \(\text{in}(C) = \{(1,1),(1,2),(2,1),(2,2)\} \). Thus following the notation of Theorem 34 we have \(S = \{(1,3),(2,3)\} \) and \(\lambda(S) = 1 \). It follows \(\rho(C) \leq d(C) - 1 + \lambda(S) = 2 \). Therefore Theorem 34 gives a better bound on \(\rho(C) \) than Theorem 27. In fact, one can check that \(\rho(C) = 2 \).

7. Covering Radius of MRD and Dually QMRD Codes. It is well known [11] that if \(C \subseteq F_q^{k \times m} \) is a code with \(|C| \geq 2 \), then \(\log_q |C| \leq m(k - d(C) + 1) \). A code \(C \subseteq F_q^{k \times m} \) is MRD if \(|C| = 1 \) or \(|C| \geq 2 \) and \(\log_q |C| = m(k - d(C) + 1) \). MRD codes have the largest possible cardinality for their minimum distance. In particular, they are maximal. Therefore combining Proposition 5 and Proposition 7 we immediately obtain the following result.

Corollary 37. Let \(C \subseteq F_q^{k \times m} \) be an MRD code with \(|C| \geq 2 \). Then \(\rho(C) \leq d(C) - 1 \). Moreover, equality holds if and only if the maximality degree of \(C \) is precisely 1.

The upper bound of Corollary 37 is not sharp in general, as we show in the following example. This proves in particular that not all MRD codes \(C \subseteq F_q^{k \times m} \) with \(|C| \geq 2 \) can be nested into an MRD code \(D \supseteq C \) with \(d(D) = d(C) - 1 \).

Example 38. Take \(q = 2 \) and \(k = m = 4 \). Let \(C \) be the linear code generated over \(F_2 \) by the following four matrices:

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
\end{bmatrix}, \quad \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
\end{bmatrix}, \quad \begin{bmatrix}
0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 \\
\end{bmatrix}, \quad \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 \\
\end{bmatrix}.
\]

We have \(\dim(C) = 4 \) and \(d(C) = 4 \). In particular, \(C \) is a linear MRD code. On the other hand, one can check that \(\rho(C) = 2 \neq d(C) - 1 = 3 \), and that \(\mu(C) = 2 \).

We conclude observing that combining Properties 1, 2 and 4 of Proposition 14 one can easily obtain the following general result on the puncturing of an MRD code.

Corollary 39. Let \(C \subseteq F_q^{k \times m} \) be an MRD code. Then for any \(A \in \text{GL}_k(F_q) \) and for any \(1 \leq u \leq k - 1 \) the punctured code \(\Pi(C,A,u) \) is MRD as well.

Dually QMRD codes were proposed in [8] as the best alternative to linear MRD codes for dimensions that are not multiples of \(m \). A linear rank-metric code \(C \subseteq F_q^{k \times m} \) is **dually QMRD** if \(\dim(C) \mid m \) and the following two conditions hold:

\[
d(C) = k - \left\lfloor \dim(C) / m \right\rfloor + 1, \quad d(C^\perp) = k - \left\lfloor \dim(C^\perp) / m \right\rfloor + 1.
\]

Clearly, a code is dually QMRD if and only if its dual code is dually QMRD. The following proposition summarizes the most important properties of dually QMRD codes.

Lemma 40 (see Proposition 20 of [8]). Let \(C \subseteq F_q^{k \times m} \) be a linear code. The following are equivalent.

1. \(C \) is dually QMRD,
2. \(C^\perp \) is dually QMRD,
3. \(\dim(C) \mid m \) and \(d(C) + d(C^\perp) = k + 1 \).

Moreover, the weight distribution of a dually QMRD code \(C \) is determined by \(k, m \) and \(\dim(C) \).

We now apply the external distance bound to derive an upper bound on the covering radius of dually QMRD codes. We start by computing the external distance, \(\sigma^*(C) \), of a dually QMRD code \(C \) of given parameters. Since \(C \) is linear by definition, as in the proof
of Theorem 27 we have \(\sigma^*(\mathcal{C}) = |\{i \in [k] : W_i(\mathcal{C}^\perp) \neq 0\}|. \) We will need the following preliminary lemma.

Lemma 41. Let \(1 \leq t \leq km - 1 \) be any integer. There exist linear codes \(\mathcal{C} \subseteq \mathcal{D} \subseteq \mathbb{F}_q^{k \times m} \) such that \(\mathcal{C} \) is dually QMRD, \(\mathcal{D} \) is MRD, \(\dim(\mathcal{C}) = t \) and \(d(\mathcal{C}) = d(\mathcal{D}) \).

Proof. Let \(\alpha := \lceil t/m \rceil \). It is well known (see e.g. the construction of [11, Section 6] or [22]) that there exist linear MRD codes \(\mathcal{E} \subseteq \mathcal{D} \) with \(\dim(\mathcal{E}) = m\alpha \) and \(\dim(\mathcal{D}) = m(\alpha + 1) \). Let \(\mathcal{E} \subseteq \mathcal{C} \subseteq \mathcal{D} \) be a subspace with \(\dim(\mathcal{C}) = t \). Since \(\mathcal{E} \) is MRD, it is maximal. Therefore \(d(\mathcal{C}) = d(\mathcal{D}) \). Now consider the nested codes \(\mathcal{D}^+ \subsetneq \mathcal{C}^\perp \subsetneq \mathcal{E}^\perp \). Since \(\mathcal{D} \) and \(\mathcal{E} \) are MRD, their dual codes \(\mathcal{D}^\perp \) and \(\mathcal{E}^\perp \) are MRD as well (see [11, Theorem 5.5] or [20, Corollary 41] for a simpler proof). In particular, \(\mathcal{D}^\perp \) is maximal, and so \(d(\mathcal{C}^\perp) = d(\mathcal{E}^\perp) \). Since \(\mathcal{D} \) and \(\mathcal{E} \) are MRD, we have \(d(\mathcal{D}) = k - (\alpha + 1) + 1 \) and \(d(\mathcal{E}) = k - (k - \alpha) + 1 \). Therefore

\[
d(\mathcal{C}) + d(\mathcal{C}^\perp) = d(\mathcal{D}) + d(\mathcal{E}^\perp) = k - (\alpha + 1) + 1 + k - (k - \alpha) + 1 = k + 1,
\]

and the result easily follows from Lemma 40. \(\square \)

We can now compute the external distance of a dually QMRD code.

Theorem 42. Let \(\mathcal{C} \subseteq \mathbb{F}_q^{k \times m} \) be a dually QMRD code. Then \(\sigma^*(\mathcal{C}) = d(\mathcal{C}) \).

Proof. Since \(\mathcal{C} \) is linear, as in the proof of Corollary 27 we have \(\sigma^*(\mathcal{C}) = |\{i \in [k] : W_i(\mathcal{C}^\perp) > 0\}| \). By Lemma 41 there exist a dually QMRD code \(\mathcal{G}_1 \) and a linear MRD code \(\mathcal{D} \) such that \(\mathcal{G}_1 \subseteq \mathcal{D} \subseteq \mathcal{C} \), \(\dim(\mathcal{G}_1) = \dim(\mathcal{C}) \) and \(d(\mathcal{G}_1) = d(\mathcal{D}) \). Since \(\mathcal{C} \) and \(\mathcal{G}_1 \) have the same dimension and are both dually QMRD, by Lemma 40 the dual codes \(\mathcal{C}^\perp \) and \(\mathcal{G}_1^\perp \) have the same weight distribution. In particular, \(\sigma^*(\mathcal{G}_1) = \sigma^*(\mathcal{C}) \). Therefore it suffices to prove the theorem for the code \(\mathcal{G}_1 \). By Lemma 40 we have \(d(\mathcal{G}_1^\perp) = k + 1 - d(\mathcal{G}_1) \). This clearly implies

\[
\sigma^*(\mathcal{G}_1) \leq k - (k + 1 - d(\mathcal{G}_1)) + 1 = d(\mathcal{D}).
\]

On the other hand, by Theorem 27 we have \(\sigma^*(\mathcal{G}_1) \geq \rho(\mathcal{G}_1) \), and by Lemma 4 we have \(\rho(\mathcal{G}_1) \geq d(\mathcal{D}) \). Therefore

\[
\sigma^*(\mathcal{G}_1) \geq \rho(\mathcal{G}_1) \geq d(\mathcal{D}) = d(\mathcal{G}_1).
\]

The theorem can now be easily obtained combining Inequalities (11) and (12). \(\square \)

Corollary 43. The covering radius of a dually QMRD code \(\mathcal{C} \) satisfies \(\rho(\mathcal{C}) \leq d(\mathcal{C}) \). Moreover, equality holds if and only if \(\mathcal{C} \) is not maximal.

Proof. It suffices to combine Theorem 27, Theorem 42, Proposition 7 and the fact that \(\mathcal{C} \) is not maximal if and only if \(\mu(\mathcal{C}) = 0 \), by definition of maximality degree. \(\square \)

The upper bound of Corollary 43 is not sharp in general, as we show in the following example. This proves in particular that there exist dually QMRD codes that are maximal. In particular, as observed in [8], there exist dually QMRD codes that are not contained into an MRD code with the same minimum distance.

Example 44. Take \(q = 2 \) and \(k = m = 4 \). Let \(\mathcal{C} \) be the linear code generated over \(\mathbb{F}_2 \) by the following three matrices:

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix},
\begin{pmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0
\end{pmatrix},
\begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{pmatrix}.
\]

We have \(\dim(\mathcal{C}) = 3 \) and \(d(\mathcal{C}) = 4 \). Hence \(\dim(\mathcal{C}^\perp) = 13 \) and \(d(\mathcal{C}^\perp) = 1 \). Therefore \(d(\mathcal{C}) + d(\mathcal{C}^\perp) = 5 \), and \(\mathcal{C} \) is dually QMRD by Lemma 40. One can check that \(\rho(\mathcal{C}) = 3 \neq d(\mathcal{C}) = 4 \), and that \(\mu(\mathcal{C}) = 1 \).
Acknowledgements. The authors would like to thank the reviewers of this paper for suggestions and remarks that improved the presentation of the results.

REFERENCES