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Abstract
Buccal delivery of macromolecules (biologics) sets a great challenge for researchers.  Although several niche small molecule products have been approved as simple sprays, tablets and oral films, it is not simply a case of adapting existing technologies to biologics. Buccal delivery of insulin has reached clinical trials with two approaches:  oromucosal sprays of the peptide with permeation enhancers, and embedded gold nanoparticles in a dissolvable film. However, neither of these approaches have led to FDA approvals likely due to poor efficacy, sub-maximal peptide loading in the dosage form, and to wide intra-subject variability in pharmacokinetics and pharmacodynamics. It is likely however that printed film designs with lower molecular weight stable biotech payloads including lipophilic glucagon-like 1 (GLP-1) agonists and macrocycles with long half-lives will generate greater efficacy than was achieved to date for insulin. 
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Highlights
● The buccal route has been exploited successfully for a selected potent small molecules using sprays and film-based dosage forms
● Research to achieve buccal insulin delivery has a rationale of avoiding the food effect seen with oral formulations, but clinical trial results have been variable with no approvals of macromolecules by this delivery route by the FDA
●There is a rationale for buccal delivery of glucagon-like peptide 1 (GLP-1) analogues
●The advent of printing films is timely and offers an opportunity to embed nanoparticles, permeation enhancers with long half-life- and potent payloads in one integrated system

Introduction 
The buccal route of administration has been investigated for decades as a site for drug absorption to reach systemic circulation as an alternative to the conventional oral or the more efficient intravenous routes [1,2]. The buccal epithelium is located in the inner mucosal side of cheeks, and together with the sublingual epithelium, it is non-keratinized as opposed to other regions of the oral cavity. As a stratified epithelium with about 40 – 50 cell layers accounting for a 400 to 700 µm thick epithelium (variability due to invaginations) and a surface area of about 50 cm2 [3,4], the buccal route allows permeation of conventional  low molecular weight small molecules. Similar to other mucosal barriers in the body, absorption depends on the molecule’s physicochemical properties, their interaction with cell membranes, and the selected delivery system or dosage form selected for administration [2,5]. The main permeability barrier identified in this tight junction-free epithelium is in the upper third cell layers, where a lipid-rich domain is found [6]. As such, small lipophilic molecules permeate faster than hydrophilic molecules, and markedly more so than biologics. It is generally understood that biologics including peptides and proteins permeate poorly across the buccal epithelium, with macromolecules only being absorbed in the presence of chemical- and electrical-based permeation enhancement approaches [7,8]. This review is a critique of the most recent advancements in strategies to enhance bioavailability of macromolecules delivered via the buccal route.
Mucoadhesive polymers for buccal drug delivery
In order to achieve systemic circulation, drug molecules permeating through the buccal epithelium need to remain located in the dosage form at the mucosa for extended time, which depends on the physicochemical properties of molecule, the dosage form, and the molecule’s permeation kinetics across the buccal epithelium. Both the mechanical effects of the tongue and the salivary washout can quickly remove a dosage form from the buccal epithelium. In development of buccal dosage forms, mucoadhesive polymers have been used in formulations to achieve extended contact time and to enhance buccal bioavailability. Initial strategies in mucoadhesion included the use of hydrophilic polymers, especially the use of cationic ones, as the latter provide a favorable electrostatic interaction with the anionic groups of mucin [9]. First generation mucoadhesive polymers relied in non-covalent interactions with mucin via polymer chain entanglement and electrostatic pairing in order to achieve the required mucoadhesive bond. The next generation of mucoadhesive polymers further improved the strength of covalent bonding using thiol-derived polymer chains that attached to the cysteine groups of mucin resulting in thiolated polymers or “thiomers” [10]. Greater mucoadhesive efficacy in attaching to the buccal mucosa of thiomers has been confirmed compared with unmodified polymers [11–13]. Thiomers have therefore been used in formulations for buccal tablets, wafers, gels, and films, illustrating great versatility as excipients regardless of the dosage form (Figure 1) [14–16].
Recent advancements in films as mucoadhesive buccal delivery systems
The buccal drug delivery field has seen developments in dosage form design over the past decades including tablets, lozenge, sprays, mouthwashes, gels, and films [1]. While bioadhesive tablets continue to be developed as buccal dosage forms due to established industrial standard manufacturing processes and high dose capacity, in parallel they also present conventional matrices for sustained drug release. In recent years however, much research has moved toward bioadhesive and biocompatible film development for buccal drug delivery. Films comprise several useful characteristics for the buccal route: 1) they are thin and flexible and can adjust to the oral mucosa contours and can cope with mechanical stress; 2) their administration is simple and, due to bioadhesion, they can remain in place for the duration of absorption; 3) due to the flexibility of the manufacturing process (either solvent casting, hot melt extrusion, and inkjet printing) several functions can be combined, including incorporation of multiple drug layers and multiple release profile layers [17]. Due to the recognized safety of the excipient materials used to synthesize buccal films, (typically demonstrated in vitro [18]), they have been proposed as especially useful delivery systems for drugs used in pediatric therapy  [19–21]. The main limitation of films is related to the relatively low concentration of the active phamaceutical ingredient (API) that can be formulated within a structure of limited dimensions, although recent research in inkjet printing and hot melt extrusion may resolve this [22–24].
The use of inkjet printing to produce drug-loaded buccal films has brought about significant advances [17,22], and there are now numerous printing strategies being researched for manufacture [25,26,23]. Although still at the pre-clinical research stage, printing could address the dose limitation issue by optimizing the printing process using droplet formation mechanisms in inkjet cartridges. The printing concept can also provide personalized dosage forms to patients (Figure 2) [27,28].  Aside from the potential of printing buccal films, solvent casting is typically the main method of f manufacture, as it allows formulation of small and large molecules due to its flexibility [17]. As an alternative to solvent casting, hot melt extrusion is another method to manufacture films. Recently domperidone was incorporated in PEO (poly(ethylene oxide) N750 and Hydroxypropyl methylcellulose (HPMC) E5 LV matrices by hot melt extrusion and these formulations were optimized for tensile strength, appropriate drug release profiles, and epithelial permeation ex vivo over a 6 hour period [24]. The optimized buccal extruded formulation exhibited 3.2 times higher bioavailability in comparison with orally-administered domperidone and achieved an ex vivo-in vivo type A correlation. Hot melt extruded dosage forms for buccal delivery have also been demonstrated to accommodate other small molecules for enhanced dissolution and bioavailability (Fig. 1) [29,30]. Due to the levels of heat exposure during extrusion however, biologic-loaded matrices using the proteins, nisin and lysozyme, were degraded [17,31,32]. However, recent investigations in the optimization of extrusion conditions with plasticizers used have shown potential in formulating biologics in extruded polymer matrices [33] and this adaptation could increase use of extrusion for macromolecules.
Nanoparticles and microparticles enhance delivery across the buccal epithelium
Although it is a stratified epithelium with limited permeation for macromolecules, the buccal mucosa has been investigated as a delivery site for particulates. Among these studies, several describe the use of nanoparticles as means to formulate poorly water soluble molecules and achieve higher buccal bioavailability by increasing dissolution [34–37]. Similarly, others have focused on drug-releasing nanoparticles by quantifying drug permeation across the epithelium, although the mechanism for translocation has yet to be elucidated [38–43]. Evidence of intact nanoparticle permeation across the buccal epithelium has been suggested from investigations using model nanoparticles. For example, studies of  inorganic nanoparticles, including those made from silver (19 nm in diameter) [44] and titanium dioxide (~30–150nm in diameter) [45], indicate a relationship between nanoparticle permeation and their physicochemical properties. Also pertaining to use of nanoparticles as drug carriers, polymeric nanoparticle permeation studies show that a combination of particle diameter and agglomeration properties influence particle permeability across the buccal epithelium [46,47]. Specifically, a study of 20 and 200 nm diameter anionic carboxyated- (20 and 200nm diameter) and cationic  amine-modified polystyrene nanoparticles (200nm) revealed that the anionic versions were less efficient than cationic particles in permeating isolated porcine buccal tissue in Franz Cell diffusion experiments [46]. While the larger diameter 200nm anionic nanoparticles agglomerated and failed to permeate, the smaller 20nm anionic particles permeated to the top third region of the buccal epithelium by the transcellular route. On the other hand, while the 200nm cationic nanoparticles had a tendency to agglomerate, they had the capacity to permeate into lower regions of the buccal epithelium by endocytotic mechanisms [46]. A study examining the fate of neutral polystyrene nanoparticles highlighted the role of mucus and microplicae as barriers to nanoparticle permeation: 200 nm neutral nanoparticles penetrated faster and to deeper regions of the buccal epithelium in comparison to 25 and 50 nm particles in isolated porcine buccal mucosae [47].
The buccal mucosa has also been examined as a potential site for vaccine administration. Compared to other mucosal sites, the buccal mucosa is an easily accessible mucosa [48], and is rich in antigen presenting cells that can mediate innate and adaptive immune responses to battle local and systemic infection [49]. In order to overcome the delivery barriers associated with rapid clearance by saliva and tongue movement, several strategies have been developed to achieve buccal vaccination, (typically in murine models) including supersaturation, nanoparticulates, nanofibers, iontophoresis, electroporation, and mucoadhesion (Fig. 1) [50–52]. Recently, a multilayered mucoadhesive film including an electrospun nanofiber layer was developed in order to increase vaccine loading by exploiting the large surface area provided by the nanofibers. PEGylated liposomes and PLGA nanoparticles were used as delivery carriers and penetrated the porcine sub-lingual epithelium and were recognized by dendritic cells both ex vivo and in vivo [53]. In another attempt to increase contact time and exposure to delivery systems, Zhen et al. developed liposome-loaded microneedles for convenient and stable mucosal vaccination of mice [54]. After oral mucosal administration to mice, the microneedle system achieved robust systemic and mucosal immune responses against bovine serum albumin in comparison with conventional intradermal administration. This strategy was also used to develop a murine oral mucosa vaccine against hepatitis B virus using liposomes-loaded microneedles. The vaccine was stable for up to 3 days at 40 °C and able to elicit a strong systemic response comparable to intradermal and subcutaneous routes, where there was a much stronger mucosal response after oral mucosal administration with microneedles [55]. A caveat to some of these studies is that the physiological relevance of the murine oral mucosa buccal or sublingual epithelium to man is questionable due to differences in surface area and the degree of keratinization, however it is more practical to do immunology in  mice compared to large animal models due to the availability of mouse-specific reagents.
Buccal permeation-enhancing strategies
The use of permeation (or penetration) enhancers (PE) to improve buccal bioavailability has been studied extensively due to both the barrier feature of the buccal epithelium and its capacity to tolerate permeation enhancers. While mucoadhesive systems have been described as a method for permeation enhancement, functional excipients that modify the physicochemical properties of the barrier are normally assigned the term “permeation enhancers”, also described as “chemical enhancers”. Surfactants, bile salts, and fatty acids have been used as PEs in buccal dosage form development with permeability increases seen both  small drug molecules and biologics in a variety of bioassays [56,57,9].  More recently, basic amino acids have been studied as PEs for buccally-administered insulin (Fig. 1). The cationic amino acids, lysine, histidine, glutamic acid, and aspartic acid enhanced insulin permeation across human filter-grown TR146 buccal monolayers to different degrees, but without damaging r the cell barrier or the insulin [58]. It was hypothesized that due to the ionic state of the amino acids and insulin, ion-pairing resulted in non-covalent complexes that could exploit the amino acid-mediated transport for enhanced insulin permeation through the epithelial model, while being non-cytotoxic at effective concentrations compared to the narrow window of permeability/cytotoxic concentrations seen with the bile salt, sodium deoxycholate [58]. It is important to note that comparison of permeability between the human TR146 model and isolated porcine buccal tissue mucosae using PEs is somewhat problematic, as the monolayers are less resilient and have higher basal permeability compared to the tissue mucosae.  Iontophoresis is a method to enhance the permeation of molecules through biological barriers by applying an external electric potential and thus generating a flow of ionic hydrophilic molecules. This method has been successfully used in enhancing the permeation of small molecules and biologics through porcine model buccal and oesophageal epithelia as well as in vivo [8,59-61]. Ren et al. have shown that iontophoresis can enable drug transport even in keratinized palate regions of the oral cavity mucosa, highlighting its potential for permeation enhancement in periodontal disease [62].
Clinical translation of buccally-administered molecules
The initial products for the buccal route were developed for a local effect, and only more recently have small molecule products exploited the concept of buccal absorption aimed at systemic drug delivery [17]. While used successfully for marketed small drug molecules (fentanyl, nicotine, ondansetron, donepezil, risperidone, diphenhydramine, dextromethorphan, phenylephrine, buprenorphine, and naloxone) (Table 1), limited success with buccal delivery has been achieved to date for biologics. Amongst macromolecules,  buccal delivery of insulin has been most widely investigated strategy in order to overcome effects of food on absorption that are expected to occur after oral administration [17,56,57]. Oral-lyn™ by Generex (Canada) is a micellar insulin solution buccal spray in combination with the PEs, bile salts and sodium caprate, and has been approved and commercialized in Ecuador and Lebanon, but has been discontinued in India pending more evidence of clinical efficacy evidence. It has been under review by the FDA since 2011 without gaining approval. Part of the problem is that it is reported to require up to 12 puffs to achieve delivery, and so is viewed as quite an inefficient system requiring a complicated administration protocol for patients.  In another clinical development for buccal insulin, MonoSol Rx (USA) and Midatech (USA) collaborated to try and develop a buccal insulin delivery formulation, PharmaFilm®, in which recombinant human insulin was non-covalently bound to gold glycan-coated nanoparticles and then embedded in a film. After encouraging results in a Phase I clinical trial, the program was recently terminated after a Phase II trial that revealed low buccal insulin bioavailability [63]. Current clinical trials for buccal delivery of small molecules and macro molecules is summarized (Table 2)The challenge to deliver biologics across the buccal epithelium therefore remains as difficult as ever. Nonetheless, there is interest in testing the buccal route for formulated stable low molecular weight macromolecules with long half-lives, for example, lipophilic GLP-1 agonist analogues and macrocycles. Table 1 shows marketed and clinical phase small molecules and macromolecules.
Conclusions and future directions
Buccal delivery of macromolecules including peptides and proteins is one of the delivery routes less investigated compared to the oral or pulmonary routes.  Successful approaches to formulating small molecules in biocompatible films involve solvent casting and so far to a lesser extent, hot melt extrusion and ink-jet printing.  In terms of formulating biologics for buccal delivery, permeability and stability at the buccal mucosa seem to be increased compared to oral formulations, but the downside is the difficulty in achieving high loading of API in the low surface area bioadhesive systems.  The drivers for buccal delivery of peptides and proteins are the avoidance of the liver first pass effect, the potential for rapid delivery, and also the avoidance of potential food effects on pharmacokinetics. The current research approach for such formulations is to formulate the molecule in malleable biocompatible thin films, while iterations are to embed nanoparticles with payload and PEs in similar systems.  Buccal delivery has also generated recent interest from transdermal delivery researchers, who are starting to leverage dissolvable microneedles for this route. As such, true progress in buccal delivery for macromolecules requires study of compatibility of drug-device combinations, and this requires collaboration between bioengineers, pharmaceutical formulators, and pharmacologists.
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Table 1. List of pharmaceutical products for buccal drug delivery. Adapted with permission from ref. [17].
	Drug and doses
	Therapeutic use
	Target
	Manufacturer
	Region of commercialization

	Breakyl® (fentanyl; 200, 400, 600, 800 and 1200 µg)
	Narcotic pain relief
	Systemic
	Lohmann Therapie-Systeme AG, Germany
	Europe

	Onsolis® (fentanyl; 200, 400, 600, 800 and 1200 µg)
	Narcotic pain relief
	Systemic
	
	USA

	Niquitin® (nicotine; 2.5 mg)
	Smoking cessation
	Systemic
	
	Europe

	Setofilm® (ondansetron; 4 and 8 mg)
	Antiemetic
	Systemic
	
	Europe

	
Effentora® (fentanyl; 100, 200, 400, 600, and 800 µg)
	
Narcotic pain relief
	Systemic
	TEVA Pharma BV, Israel
	Europe

	Chloraseptic® (benzocaine; 2 mg)
	Sore throat relief
	Local
	Prestige Brands Inc
	USA

	Donepezil Hexal® SF (donepezil; 5 mg and 10 mg)
	Alzheimer’s treatment
	Systemic
	Hexal AG, Germany
	Europe

	Gas-X® (simethicone; 62,5 mg)
	Anti-flatulence
	Local
	GSK, USA
	USA

	Risperidone Hexal ®SF (risperidone; 0.5, 1, 2 and 3 mg)
	Neuroleptic
	Systemic
	Hexal AG, Germany
	Europe

	Triaminic® or Theraflu® night time (diphenhydramine, phenylephrine; 12.5 mg/5 mg)
	Cough and cold
	Systemic
	Novartis, Switzerland
	USA / Europe

	Triaminic® or Theraflu® day time (dextromethorphan, phenylephrine; 5 mg/2.5 mg)
	Cough and cold
	Systemic
	Novartis, Switzerland
	USA / Europe

	Triaminic® or Theraflu® (diphenhydramine; 12.5 mg)
	Allergy
	Systemic
	Novartis, Switzerland
	USA / Europe

	Suboxone® (buprenorphine, naloxone)
	Opioid addiction 
	Systemic
	Reckitt Benckiser, UK

	USA




Table 2. Current clinical trials on formulations designed for systemic delivery following for buccal administration. Adapted with permission from ref. [17].
	Clinical trials
	Indication
	Phase
	Identifier

	Buccal prochlorperazine versus i.v. prochlorperazine for migraine, a RCT

	Migraine
	Phase III
	NCT02779959

	A comparison of sublingual and buccal misoprostol regimens after mifepristone for mid-trimester abortion

	Legally- induced abortion
	Phase IV
	NCT02708446

	Pharmacokinetics and pharmacodynamics of oral transmucosal dexmedetomidine

	Sedation 
	Phase II, 
phase III
	NCT03120247

	Nasal fentanyl and buccal midazolam

	Pain relief in terminal cancer
	Phase IV
	NCT02009306

	The use of oxytocin, carbetocin and buccal misoprostol in patients undergoing elective cesarean section

	Postpartum hemorrhage
	Phase III
	NCT02053922

	Active comparator study of Generex’s (Canada) Oral-lyn™ insulin spray with injected human insulin

	Type 1 and 2 diabetes mellitus
	Phase III
	NCT00668850

	Use of Generex’s Oral-lyn™ insulin 
	Type 1 and 2 diabetes mellitus
	Phase III
	NCT00948493



Fig. 1. Current developments in buccal drug delivery and the direction of future research.
[image: ]


Fig. 2. Diagram of the process of buccal film manufacture using a thermal inkjet printer. Reprinted with permission from [22].
[image: ]
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