Stationary Boundary Points for a Laplacian Growth Problem in Higher Dimensions

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Gardiner, Stephen J.
dc.contributor.author Sjödin, Tomas
dc.date.accessioned 2014-06-10T14:07:31Z
dc.date.available 2015-04-23T03:00:12Z
dc.date.copyright 2014 Springer en
dc.date.issued 2014-08
dc.identifier.citation Archive for Rational Mechanics and Analysis en
dc.identifier.uri http://hdl.handle.net/10197/5643
dc.description.abstract It is known that corners of interior angle less than π/2 in the boundary of a plane domain are initially stationary for Hele–Shaw flow arising from an arbitrary injection point inside the domain. This paper establishes the corresponding result for Laplacian growth of domains in higher dimensions. The problem is treated in terms of evolving families of quadrature domains for subharmonic functions. en
dc.language.iso en en
dc.publisher Springer en
dc.rights The final publication is available at www.springerlink.com en
dc.subject Mechanics en
dc.subject Physics, general en
dc.subject Theoretical, Mathematical and Computational Physics en
dc.subject Statistical Physics, Dynamical Systems and Complexity en
dc.subject Fluid- and Aerodynamics en
dc.title Stationary Boundary Points for a Laplacian Growth Problem in Higher Dimensions en
dc.type Journal Article en
dc.internal.authorcontactother stephen.gardiner@ucd.ie
dc.internal.availability Full text available en
dc.status Peer reviewed en
dc.identifier.volume 213 en
dc.identifier.issue 2 en
dc.identifier.startpage 503 en
dc.identifier.endpage 526 en
dc.identifier.doi 10.1007/s00205-014-0750-0
dc.neeo.contributor Gardiner|Stephen J.|aut|
dc.neeo.contributor Sjödin|Tomas|aut|
dc.internal.rmsid 404480460
dc.date.updated 2014-05-30T14:56:04Z


This item appears in the following Collection(s)

Show simple item record

This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.

If you are a publisher or author and have copyright concerns for any item, please email research.repository@ucd.ie and the item will be withdrawn immediately. The author or person responsible for depositing the article will be contacted within one business day.

Search Research Repository


Advanced Search

Browse