<table>
<thead>
<tr>
<th>Title</th>
<th>Modelling and Verification of Nonlinear Electromechanical Coupling in Micro-Scale Kinetic Electromagnetic Energy Harvesters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors(s)</td>
<td>Sokolov, Andrii; Mallick, Dhiman; Roy, Saibal; Kennedy, Michael Peter; Blokhina, Elena</td>
</tr>
<tr>
<td>Publication date</td>
<td>2020-02</td>
</tr>
<tr>
<td>Publication information</td>
<td>IEEE Transactions on Circuits and Systems I: Regular Papers, 67 (2): 565-577</td>
</tr>
<tr>
<td>Publisher</td>
<td>IEEE</td>
</tr>
<tr>
<td>Item record/more information</td>
<td>http://hdl.handle.net/10197/11207</td>
</tr>
<tr>
<td>Publisher's statement</td>
<td>© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.</td>
</tr>
<tr>
<td>Publisher's version (DOI)</td>
<td>10.1109/tcsi.2019.2938421</td>
</tr>
</tbody>
</table>
Modelling and Verification of Nonlinear Electromechanical Coupling in Micro-Scale Kinetic Electromagnetic Energy Harvesters

Andrii Sokolov, Student Member, IEEE, Dhiman Mallick, Member, IEEE, Saibal Roy, Michael Peter Kennedy, Fellow, IEEE, and Elena Blokhina, Senior Member, IEEE

Abstract—Electromechanical coupling in kinetic energy harvesters is the key aspect of these devices that ensures an effective energy conversion process. When modelling and designing such devices, it is necessary to incorporate electromechanical coupling correctly since it will determine the amount of energy that will be converted during its operation. As the engineering community prefers compact (lumped) models of such devices, the conventional choice of the lumped model for the electromagnetic type of electromechanical coupling is linear damping, proportional to the velocity of the mechanical resonator in a harvester, leading to the idea of maximizing the velocity in order to improve the energy conversion process. In this paper, we show that electromechanical coupling in electromagnetic kinetic energy harvesters is inherently nonlinear and requires a number of aspects to be taken into account if one wants to optimize a device. We show that the proposed model, which is based on first principles of electromagnetics, can be reduced to a nonlinear lumped model that is particularly convenient for analysis and design. The modelling approach and the resulting lumped model are verified using two MEMS electromagnetic harvesters operating over a range of frequencies from 300 to 500 Hz (Harvester A) and from 50 to 70 Hz (Harvester B) generating from mV (Harvester A) to few volts (Harvester B) of RMS voltage, respectively. The proposed modelling approach is not limited to energy harvesters but can also be applied to magnetic sensors or other MEMS devices that utilise electromagnetic transduction.

Index Terms—MEMS interface, electromagnetic transduction, MEMS kinetic energy harvesting, lumped modelling, numerical methods, modelling and simulations, mixed-domain modelling, computer aided design.

I. INTRODUCTION

KINETIC energy harvesting is a technique to convert the motion of the environment to electricity. It has been widely discussed over recent years [1]–[4] with many implementations fabricated using micro- and nano-technologies (NEMS/MEMS). The conventional point of view is that out of three very common transduction mechanisms, the piezoelectric and electrostatic ones are particularity compatible with MEMS while the electromagnetic mechanism is seen as inefficient at a micro-scale. However, since the first implementations reported in the literature [5], many configurations of electromagnetic kinetic energy harvesters (emKEH) have been reported [6]–[14]. Electromagnetic harvesters show effectiveness similar to that of piezoelectric and electrostatic harvesters and feature nonlinear behaviour that allows them to increase the converted power and frequency band. An example of an emKEH is shown in Fig. 1(a) illustrating the electromagnetic transduction. A linear or nonlinear micromechanical resonator, with a magnet attached to it, moves as a response to external vibrations provided by the environment. The moving magnet creates a variable magnetic flux through a (usually) fixed coil

Fig. 1. (a) Schematic block diagram of a typical kinetic (vibration) energy harvester utilizing the electromagnetic transduction mechanism. The following convention will be used: displacement z and velocity u_z (belong to the mechanical domain) and current i and voltage v (belong to the electrical domain). The electromagnetic force F_{EM} provides transduction between the mechanical and electrical domains. The magnetic proof-mass oscillates in the vicinity of a coil. As a 3D system, the oscillations of the proof-mass can be classified as (b) translational or (c) rotational.
that is placed in the vicinity of the magnet. By Faraday’s law, this induces a voltage in the coil, and if a resistor is connected to the coil, the power converted from the mechanical to the electrical domain will be dissipated in the resistor.

The design, analysis and characterisation of a kinetic energy harvester (KEH) can be a challenging task for a number of reasons. Firstly, a KEH is a device combining at least two physical domains (mechanical and electrical) and a specific device may have a particularly advanced mechanical configuration with translational and rotational motion induced by ambient vibrations. Secondly, only the electrical response (voltage \(v \) and current \(i \)) of a device is usually observed and measured upon the application of external stimuli. In many cases, it is difficult or even impossible to access the mechanical state (displacement \(z \) and velocity \(u_z = \dot{z} \)) of a device. In addition to the above, the three common transduction mechanisms—piezoelectric, electrostatic and electromagnetic—that are responsible for electromechanical coupling are nonlinear in the most general case. For these reasons, the extraction of device parameters from an experiment and optimisation of a device become quite difficult.

With regard to emKEHs, while first principles of Electromagnetics are well understood, their application to a particular device usually results in equations written in three-dimensions. Since the research community prefers simplified lumped models, it is very common to see linear equations describing the electromagnetic mechanism in emKEHs. Usually, the electromotive force (e.m.f.) that expresses electromechanical coupling in the electrical domain is written as \(B \dot{z} \). On the other hand, the magnetic force that expresses electromechanical coupling in the mechanical domain is written as \(B li \). It is said that \(B \) is the magnitude of the magnetic field (in the form of the magnetic flux density) generated by the magnet and \(l \) is the length of the coil [15]–[18]. This simplification is not valid for typical emKEH configurations as we will show.

The aim of this paper is to develop a modelling framework allowing one to obtain nonlinear lumped models of the electromagnetic type of electromechanical coupling. We begin with the equations summarising the first principles of Mechanics and Electromagnetics, arriving to a model that uses only the physical parameters of the device. The resulting model is lumped, i.e., it utilises a finite number of electrical and mechanical variables. We address the issue of model self-consistency which is often overlooked in such examples of mixed-domain modelling and simulations. The proposed model is not limited to energy harvesters but can be applied to magnetic sensors or other MEMS devices utilising electromagnetic transduction.

Compared to the conference paper which introduced the approach described in this work [19], the presented manuscript contains the following new features. In addition to the detailed analysis of translational motion, we also present a compact model of rotational motion that, to the knowledge of the authors, has never been derived in the literature for such systems. The model describing rotational motion is also lumped and follows the same methodology as that for the translational mode. For both translational and rotational modes, we show how to calculate shape functions to obtain self-consistent lumped models of the generated electromotive and electromagnetic force. We use two examples of the most recent MEMS implementation of emKEHs of very different topologies to validate the methodology. The design of the experiments, data collection and data analysis are original to this manuscript and have not been presented elsewhere.

The paper is organised as follows. Section II presents the fundamental equations describing an emKEH in the mechanical and electrical domains. The presented statement of the problem is original, and, to the knowledge of the authors of this paper, has not been presented previously in the literature. Since the mechanical resonator of a KEH is a three-dimensional structure, it can exhibit spatial eigen-modes of different types, translational and rotational, and both types are taken into account in the statement of the problem. The statement of the problem also shows that the underlying quantity required to complete the model is the magnetic flux density. Section III presents different techniques to calculate the magnetic flux density. Despite the fact that it is a three-dimensional vector field, there are simple and effective techniques to calculate it. Section IV demonstrates a technique to reduce the model to a lumped one using shape functions. These functions are calculated for translational and rotational modes. They characterise the geometry of the system and do not depend on the mechanical parameters of the MEMS resonator. Section V explains the design of the experiment to validate the proposed model. Finally, Section VI presents the measured data and compares the results of experiments and modelling carried out for two devices with different configurations.

II. STATEMENT OF THE PROBLEM

We begin by presenting a self-consistent model of a harvester that will take into account the dynamics of its resonator (a magnetic proof-mass suspended on springs) in the mechanical domain, the coupling between the mechanical and electrical domains and the harvester state in the electrical domain. The formulated model will be valid for both types of oscillation modes of the mechanical resonator, translational and rotation, as well as their combination. The model presented in this Section will be the primary object of investigation and experimental validation in the paper. To the knowledge of the authors, this statement of the problem, while it is based on general principles, is original and has not been proposed or developed in the literature, in particular, for rotational type of motion.

A. Self-Consistent Dynamical Model of emKEH Including the Mechanical and Electrical Components

As a distributed mechanical system, the resonator (a magnetic proof-mass supported by springs) of a harvester can display different types of oscillations associated with spatial eigen-modes. The actuation of different modes depends primarily on the frequency of the actuating force [20], [21]. They are often classified into translational and rotational modes. Schematic views of these modes are shown in Fig. 1(b) and Fig. 1(c) respectively. When building a lumped model, one
follows a very common approach and reduces the partial differential equation describing a distributed system to an ordinary differential equation, i.e., a lumped model. There are many methods allowing such a reduction (see, for instance, [22], [23]) to be applied successfully to linear and nonlinear MEMS devices [24], [25].

We will not show the intermediate steps of reduction in this paper, but rather start with the already well-known second-order ordinary differential equation, often referred to as the ‘mass-spring-damper’ equation, describing the displacement of the resonator from Fig. 1 in the translational mode of oscillations:

\[m\ddot{z} + c_a\dot{z} + k z + F_{\text{nonlin}}(z) + F_{\text{EM}}(z, \dot{z}, i, v) = m A_{\text{ext}} \cos(\omega_{\text{ext}} t). \]

(1)

Here \(m \) is the mass of the resonator, \(z \) is its displacement, \(c_a \) is the linear air damping (dissipation) coefficient, \(k \) is the linear spring constant, \(F_{\text{nonlin}}(z) = \sum_{j=0}^N k_j z^j \) is the nonlinear restoring force, \(A_{\text{ext}} \) and \(\omega_{\text{ext}} \) are the magnitude of the external acceleration and the cyclic frequency of the external vibrations driving the harvester, respectively. We use polynomial of order up to \(N = 5 \) to describe the nonlinearity of the restoring forces in the harvesters presented in the paper for validation. The magnetic force \(F_{\text{EM}}(z, \dot{z}, i, v) \) depends on both the electrical and mechanical states of the system through the displacement \(z \), the velocity \(u_z = \dot{z} \), the current \(i \) and voltage \(v \), and, hence, relates both domains. The presence of mechanical \(F_{\text{nonlin}}(z) \) and electrical nonlinearities is very common in MEMS resonators [3], [21], [26], [27].

A similar formula is used to describe rotational motion of the proof-mass, but the angle of rotation \(\phi \) is used instead of the linear displacement \(z \). It can be shown that equation (1) can be transformed into the following expression [20]:

\[I \dddot{\phi} + c_r \dot{\phi} + k_r \phi + M_{\text{nonlin}}(\phi) + M_{\text{EM}}(\phi, \dot{\phi}, i, v) = I \omega_{\text{ext}} \cos(\omega_{\text{ext}} t). \]

(2)

Here \(I \) is the moment of inertia of the proof-mass, \(\phi \) is its rotation angle, \(\omega = \dot{\phi} \) is the angular velocity, \(c_r \) is the analogue of the air dissipation coefficient for the rotational mode, \(k_r \) is the analogue of the spring coefficient, \(M_{\text{nonlin}}(\phi) \) is the nonlinear restoring moment, \(M_{\text{EM}} \) is the analogue of the electromagnetic force in translational mode, the magnetic torque acting of the proof-mass, \(\omega_{\text{ext}} \) is the amplitude of the external angular acceleration applied to the device, which is linearly proportional to the translational acceleration \(A_{\text{ext}} \).

The state in the harvester must also be represented in the electrical domain, see again Fig. 1(a). For both translational and rotational modes we use the Kirchhoff Voltage Law (KVL):

\[L \frac{di}{dt} + R_{\text{load}} i - E = 0, \]

(3)

where \(i \) is the current flowing in the loop obtained when the coil is connected to a load resistor, \(L \) is the inductance of the coil, \(R_{\text{load}} \) is the total resistance of the coil and the load resistor and \(E \) is the e.m.f. induced in the coil. The e.m.f. is related to the total magnetic flux \(\Phi \) passing through the coil loops through Faraday’s law of induction:

\[E = \sum_i \frac{d\Phi_i}{dt}, \]

(4)

where the further representation of the derivative of flux with respect to time can be made for the translational mode:

\[\frac{d\Phi_i}{dt} = \frac{d\Phi_i}{dz} \frac{dz}{dt} = \frac{d\Phi_i}{dz} \dot{z}, \]

(5)

and for the rotational mode:

\[\frac{d\Phi_i}{dt} = \frac{d\Phi_i}{d\phi} \frac{d\phi}{dt} = \frac{d\Phi_i}{d\phi} \dot{\phi}. \]

(6)

The complete model is obtained when the magnetic force \(F_{\text{EM}} \) (or magnetic torque \(M_{\text{EM}} \) in case of rotation) and the magnetic flux \(\Phi(z) \) (or \(\Phi(\phi) \) in case of rotation) are specified from first principles for a particular emKEH configuration.

In the most general case, the magnetic flux \(\Phi \) depends on the three-dimensional magnetic field (also known as the magnetic induction or magnetic flux density) \(\vec{B}(x, y, z) \) generated by a permanent magnet [28]:

\[\Phi_i(z) = \int \int \int (\vec{B} \cdot \vec{n}) dS = \int \int B_n dS, \]

(7)

where \(\vec{n} \) is the normal unit vector perpendicular to the surface element \(S \).

The electromagnetic force \(F_{\text{EM}} \) and torque \(M_{\text{EM}} \), as shown in Fig. 2, also depend on \(\vec{B} \). In the case of translational motion, for the force \(F_{\text{EM}} \) used in eq. (1), we write:

\[\vec{F}_{\text{EM}} = \oint \vec{i} \left[\vec{B} \times d\vec{l} \right], \]

(8)

where \(d\vec{l} \) is the infinitesimal displacement vector along the loop of integration. In the case of the rotational mode, for the torque \(M_{\text{EM}} \) from eq. (2) acting on the magnet, we have:

\[M_{\text{EM}} = I \oint \vec{i} \left[\vec{B} \times d\vec{l} \right], \]

(9)

where \(I \) is the projection of the position vector of the proof-mass on the rotation axis. In the most general case, the torque, the rotation angle and the angular velocity are vector quantities. However, in our case the rotation of the proof-mass occurs about a single axis. For this reason, the model developed in this Section utilizes their scalar equivalents.

Hence, we conclude that the calculation of \(\vec{B}(x, y, z) \) generated by an emKEH in three dimensions is the key step...
required to complete the model. Knowing \(\vec{B} \), we can calculate \(\Phi \), the e.m.f. \(\vec{E} \) and the current \(i \) generated in the loop when a load resistor \(R_{\text{load}} \) is connected to it. We usually assume that the inductance of the loop itself is negligible, and so the current can be found from Ohm’s law \(i = \vec{E}/R_{\text{load}} \). (For this reason, there is no need to use both electrical variables, \(i \) and \(v \) in the notation and we will omit one of them.) Knowing the flux density \(\vec{B} \), we can also calculate the force acting on the coil.

So far, the model is self-consistent and couples the electrical and mechanical domains, but it is not lumped since we are required to know the 3D vector field \(\vec{B} \). In order to provide a lumped model, one must obtain expressions for the electromagnetic force \(F_{\text{EM}} = F_{\text{EM}}(z, \dot{z}, i) \) and the e.m.f. \(\vec{E} = \vec{E}(z, \dot{z}, i) \) in terms of the lumped variables \(z \), \(\dot{z} \) and \(i \). These expressions could be found as an interpolation of the data calculated using the algorithm described in Fig. 3 [19]. Hence, our next step is the analysis of the calculated data sets to identify shape functions and physical parameters for the lumped model of electromagnetic coupling. For illustration purposes throughout the next sections, we will choose some fixed physical parameters for modelling and simulations of the system. They are presented in Table I, and they correspond to one of the two devices that will be used in Section V for experimental validation. We choose Harvester A as a universal example in this paper since its structure is very straightforward to describe and model. The structure of Harvester A is shown in Fig. 4(a), and it corresponds directly to the schematic model of Fig. 1. The device can display translation and rotation modes of motion.

B. Self-Consistency Check

As with any model involving multiple physical domains, it is essential to check its self-consistency. In our case, this means that the converted power, the most important figure of merit of a KEH, obtained independently by the state of the electrical and mechanical domains, must be the same, namely:

\[
P_{\text{elec}} = i^2 R_{\text{load}} \quad \text{and} \quad P_{\text{mech}} = (\vec{F}_{\text{EM}} \cdot \vec{u}).
\]

This important aspect of mixed-domain models is explained and tested in Section III-D. In addition, the proposed model will be verified experimentally in Section VI.

C. Simplified Model-Problem With no Mechanical Dynamics to Test Electromagnetic Coupling

Since the full coupled electromechanical model outlined earlier is quite complex, in this Section we propose a simple ‘toy’ model to check the correctness of our electromagnetic calculations. As a matter of fact, one does not have to consider the dynamical equation (1) in order to understand the electromechanical coupling in this system and quantify \(\Phi \) and \(F_{\text{EM}} \). It would be enough to consider only one loop (instead of a multi-turn coil) and move this loop with a constant velocity relative to a permanent magnet that exerts a magnetic field. For simulations, the parameters of the system are as in Table I and the algorithm of Fig. 3 is applied. We find the e.m.f. and the electromagnetic force acting on the coil as a function of the displacement of the coil with respect to the magnet. We use the power dissipated by the force acting on the loop (\(P_{\text{elec}} \)) and by force acting on the magnet (\(P_{\text{mech}} \)) as a figure of merit for self-consistency.

III. Accurate Calculation of the Magnet Flux Density

At the core of the original algorithm summarised in Fig. 3 is the calculation of the magnetic flux density \(\vec{B} \) in three-dimensions exerted by a permanent magnet. Knowing the vector field \(\vec{B} \) allows one to calculate the magnetic flux \(\Phi \) through a given surface and the force \(F_{\text{EM}} \). Three methods to calculate \(\vec{B} \) have been implemented and tested.

A. Magnetic Scalar Potential

The magnetic scalar potential (MSP) method is common in simulators that rely on finite-element-methods (FEMs). In the MSP, one solves Poisson’s equation in terms of the magnetic field. The main advantage of the MSP combined with FEM is that it is universal and can be applied over a wide range of
The major disadvantage of the method is its complexity. This leads to significant resource usage, although we note again that it allows one to solve arbitrary geometry configurations.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
D. Comparison of the Three Methods and Evaluation of Model Self-Consistency

The performance of all the three methods—magnetic scalar potential, magnetic dipoles and equivalent current—is summarised in Fig. 7, where the z-component of the magnetic flux density \(\vec{B} \) is shown. It is easy to see that the magnetic flux density calculated using each of the three methods has the same general dependence on \(z \). However, there are some numerical discrepancies (around 10%) between the results obtained from the MSP method (implemented in COMSOL) and the results obtained from the MD and EC methods. The latter two are completely consistent with each other. The difference in the results for the magnetic flux density \(\vec{B} \) calculated using the MSP method and the MD/EC methods is small, but it yields a more significant difference when the magnetic flux and electromagnetic force are obtained from \(\vec{B} \).

The model’s self-consistency test is performed by calculating the power dissipated in the electrical and mechanical domains. If the simulations are correct, both quantities must be the same according to the power balance principle. We use the device whose parameters are listed in Table I and whose measured data will be used for experimental validation (Harvester A).

With three methods for calculating the vector field \(\vec{B}(x, y, z) \) at hand, we can use the algorithm described in Section II-A to complete the lumped model of an emKEH. We note again that as an example of such a harvester we use the device whose parameters are listed in Table I and whose measured data will be used for experimental validation (Harvester A).

Fig. 8 shows the electrical and mechanical power \(P_{\text{elec}} \) and \(P_{\text{mech}} \) and the relative error \(\varepsilon \) calculated using all the three methods of magnetic field evaluation. The two methods (MD and EC) described in Sections III-B and III-C appear to be self-consistent with a very small difference between \(P_{\text{elec}} \) and \(P_{\text{mech}} \). The MSP method based on FEM simulations is not self-consistent, displaying a large discrepancy between the power in the two domains, while also being most time consuming (42 minutes on an Intel Core i5-7300U CPU, 16 Gb RAM).

\[
\varepsilon = \frac{2 |P_{\text{elec}} - P_{\text{mech}}|}{P_{\text{elec}} + P_{\text{mech}}} \times 100\% ,
\]

which is the relative difference in the power dissipated in the electrical and mechanical domains. The formula implies that the error must tend to zero in the ideal case. Figure 8 shows the electrical and mechanical power \(P_{\text{elec}} \) and \(P_{\text{mech}} \) and the relative error \(\varepsilon \) calculated using all the three methods of magnetic field evaluation. The two methods (MD and EC) described in Sections III-B and III-C appear to be self-consistent with a very small difference between \(P_{\text{elec}} \) and \(P_{\text{mech}} \). The MSP method based on FEM simulations is not self-consistent, displaying a large discrepancy between the power in the two domains, while also being most time consuming (42 minutes on an Intel Core i5-7300U CPU, 16 Gb RAM).
Fig. 10. (a) Electromotive force versus the rotation angle and angular velocity in rotational mode. (b) Magnetic torque versus the rotation angle and angular velocity in rotational mode.

TABLE III

<table>
<thead>
<tr>
<th>E.M.F.</th>
<th>Electromagnetic force</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_{E1}</td>
<td>-1.19×10^5 V/m</td>
</tr>
<tr>
<td>a_{E2}</td>
<td>3.00×10^6 V/m</td>
</tr>
<tr>
<td>a_{E3}</td>
<td>-3.30×10^6 V/m</td>
</tr>
<tr>
<td>a_{E4}</td>
<td>2.07×10^{12} V/m</td>
</tr>
<tr>
<td>a_{E5}</td>
<td>8.11×10^{14} V/m</td>
</tr>
<tr>
<td>a_{E6}</td>
<td>2.02×10^{17} V/m</td>
</tr>
<tr>
<td>a_{E7}</td>
<td>-3.14×10^{19} V/m</td>
</tr>
<tr>
<td>a_{E8}</td>
<td>2.78×10^{21} V/m</td>
</tr>
<tr>
<td>a_{E9}</td>
<td>-1.07×10^{23} V/m</td>
</tr>
</tbody>
</table>

The interpolation coefficients a_{E1} and a_{F1} are given in Table III. The shape functions do not change if one alters the parameters of the systems from Table I. However, changing the shape of the magnet or the coil may change the shape functions, but they can be easily recalculated using the developed algorithm.

The same algorithm is applied to the case of the rotational mode of the resonator (see Fig. 1(c)). To simplify the calculations, we solve a problem that is mechanically equivalent to the original problem, but in this case the coil rotates with respect to the magnet. Figure 10(a) and Fig. 10(b) show that the e.m.f. and magnetic torque are also linear with respect to the angular velocity (the counterpart of velocity in the translational mode) and nonlinear with respect to the rotation angle (the counterpart of displacement in translational mode). These functions are also found using interpolation:

$$E_{\text{rot}}(\phi, \omega) = \omega \left(\sum_{i=0}^{4} b_{E2i+1} \cdot \phi^{2i+1} \right),$$

$$M_{\text{EM}}(\phi, \omega) = \omega \left(\sum_{i=0}^{3} b_{F2i} \cdot \phi^{2i} \right).$$

The interpolation coefficients b_{E2i+1} and b_{F2i} are given in Table IV.

We want to highlight that the electromotive force represents electromechanical coupling in emKEHs in the electrical domain while the electromagnetic force does so in the mechanical domain. The analysis of the obtained e.m.f. and electromagnetic force shows that, as expected, strong coupling between the domains exists in the translational mode and it is very weak in the rotational mode. This can be understood by noting that both quantities depend on the slope of the magnetic flux (see expressions (5) and (6)), and the slope of the magnetic flux with respect to the rotation angle drops significantly (as shown in Fig. 10) when a rotational mode of motion is actuated by external driving.

We also observe another extremely useful property of the system. The shape functions can be easily scaled to fit any given magnetic material used as the harvester’s magnetic proof-mass. The magnetic properties of the proof-mass are defined by the residual magnetization B_{res}. In the proposed method, it is proportional to the current density i_m in the equivalent coil. Therefore, the magnetic flux density B, the magnetic flux Φ and, finally, the e.m.f. E are all proportional to the magnetisation B_{res}:

$$\frac{E_2}{E_1} = \frac{B_{\text{res}2}}{B_{\text{res}1}}.$$
residual magnetisation of the magnet:

\[\frac{B_{\text{res} 2}}{B_{\text{res} 1}} = \left(\frac{F_{\text{EM} 2}}{F_{\text{EM} 1}} \right)^2 = \left(\frac{M_2}{M_1} \right)^2. \]

The quadratic scaling can be seen in Fig. 11(b) and Fig. 12(b). Therefore, when solving an optimisation problem to find the optimal magnetisation of the proof-mass to enhance electromechanical coupling in electromagnetic harvesters, it is not required to use the algorithm of Fig. 3 for different magnetic materials. It should be used only once, and then the results should be multiplied by an appropriate scaling factor. This dramatically reduces the computational time needed to optimize the system.

With the shape functions and the scaling factors identified, we have a self-consistent lumped model of a harvester. The proposed lumped model is verified experimentally in the next Section.

V. DESCRIPTION OF THE EXPERIMENTAL SET-UP AND EXPERIMENT METHODOLOGY

The experimental verification of the proposed modelling methodology has been carried out using two MEMS electromagnetic harvesters, denoted Harvester A and Harvester B, whose structures and allocations of the permanent magnets with respect to the coils are very different. The experimental set-up is shown in Fig. 13, and the arrangement of the experiment is the same for both devices. The schematic structures of the two harvesters are shown in Fig. 4. In this Section we make a direct comparison between the experiment and the model. We also note that the modelling approach is not limited to this configuration and can be applied to many micro- and macroscopic electromagnetic harvesters [11], [27], [35].
of the actuation frequency and time has been already done, as described below). As can be seen from the figure, the data sets are not always the same, even though the parameters of the experiment are the same. The high-voltage branch occurs in the region of bi-stability, and the device, when driven to that branch, is sensitive to small perturbations. From the high-voltage branch (corresponding to the translational mode) it can drop to a lower branch (corresponding to mixed translational and rotational modes, also bi-stable) or to the lowest branch (translational mode again). We note that since the actuation frequency \(A_{\text{ext}} \) is swept over a wide range of values, it is possible to observe resonances associated with multiple spatial eigen-modes, as explained in Section II. However, since the system is nonlinear, its bandwidth becomes wide as a result. The resonances of eigen-modes are not clearly distinctive, and often the resonance response of one eigen-mode (for instance, translational mode) overlaps with the resonance response of another mode (for example, rotational mode). This is what is seen in Fig. 14.

It should be noted that the obtained data sets, although measured at the same parameters, may be shifted by some \(\Delta f_{ij} \) due to different initial conditions, and for this reason cannot be simply averaged. We also want to avoid the situation where two different data sets (as, for example, set 1 and set 6 from Fig. 14) are used for the comparison with the model. Hence, in order to perform a correct comparison between the measured data and modelled results, we use the following approach to pre-process the experimental data:

- Match time \(t \) with the frequency \(f_{\text{ext}}(t) \) for each of the data sets using their Fast Fourier Transform (FFT) spectra.
- Calculate the RMS voltage for each data set for a given time window \(T_w \):
 \[
 V_{\text{RMS}} = \sqrt{\frac{1}{T_w} \int_{t_i}^{t_i+T_w} V^2 dt}
 \]
 and exclude the unsuitable set(s).
- Match all the sets by their frequency shifts \(\Delta f_{ij} \) using the least squares method, i.e., by minimising the cost function:
 \[
 \sum_k \left[V_i(f_k) - V_j(f_k + \Delta f_{ij}) \right]^2.
 \]
- Calculate the average RMS voltage \(\langle V_{\text{RMS}} \rangle \) and the measurement errors \(\Delta f \) and \(\Delta V_{\text{RMS}} \). The error \(\Delta x \) of a signal \(x \) is calculated using the formula \(\Delta x = 3.1 \cdot \sigma_x / \sqrt{N} \) where \(\sigma_x \) is the standard deviation of this signal waveform, \(N \) is the number of samples in it and 3.1 is the Student’s distribution coefficient providing the authenticity 95%.

The measured and processed data are used to compare the experiment with the model.

VI. EXPERIMENTAL VERIFICATION

A. Verification Using Harvester A

The comparison of the theory and modelling with the experiment begins by verifying the parameters of the harvester.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air damping coefficient (c_0)</td>
<td>(3.39 \times 10^{-3}) kg/s</td>
</tr>
<tr>
<td>Quality factor (Q = \sqrt{mk/c_0})</td>
<td>69.2</td>
</tr>
<tr>
<td>Linear spring coefficient (k)</td>
<td>556.59 N/m</td>
</tr>
<tr>
<td>Cubic spring coefficient (k_3)</td>
<td>(-8.1 \times 10^{10}) N/m³</td>
</tr>
<tr>
<td>Fifth-order spring coefficient (k_5)</td>
<td>(1.19 \times 10^{24}) N/m⁵</td>
</tr>
<tr>
<td>Seventh-order spring coefficient (k_7)</td>
<td>(-2.90 \times 10^{28}) N/m⁷</td>
</tr>
<tr>
<td>Moment of inertia of the resonator (I)</td>
<td>(5.17 \times 10^{-11}) kg m</td>
</tr>
<tr>
<td>Torsional stiffness (k_T)</td>
<td>(4.62 \times 10^{-3}) N m</td>
</tr>
<tr>
<td>Torsional air damping coefficients (c_{ij})</td>
<td>(3.45 \times 10^{-4}) N m s</td>
</tr>
</tbody>
</table>

While some of these are known (for instance, the mass of the resonator or its natural frequency, see Table I), others are not known and cannot be predicted from the design and simulation stage (for instance, the nonlinear spring coefficients). The mechanical parameters, including the nonlinear spring coefficients \(k, k_3, k_5 \) and \(k_7 \) and the quality factor \(Q \), are calculated from the experimental data obtained when the electrical load is disconnected. The optimization procedure uses the standard least square differences technique with the cost function:

\[
\min \sum_{i=1}^{N} \left(V_{\text{RMS}}^{\text{theor}} - V_{\text{RMS}}^{\text{exp}} \right)^2.
\]

The mechanical parameters that were not known but reconstructed from the experiment are summarised in Table V.

The proposed model, based on the theory summarised in equations (1) to (9) with the shape functions (14) to (17), is solved numerically using a standard scheme (a Runge-Kutta method) and analytically using the Harmonic Balance Method (HBM). The results are compared with the experiment and presented in Fig. 15. This graph shows the experimental data, processed as described in Section V, in the form of the induced RMS voltage as a function of external driving frequency \(f_{\text{ext}} \). The graphs have a typical shape of nonlinear resonance due to the mechanical nonlinearity of the spring supporting the oscillating magnetic proof-mass. Two frequency sweeps, forward and backward, are shown in the figure to demonstrate the bi-stability of the system. The mechanical nonlinearity leads to a wideband frequency response of the harvesters, as desired for these type of devices. As an additional reference, the graph shows the amplitude \(A_0 \) of the linear response \(A_0(f_{\text{ext}}) \) that would be expected in the system if it were linear:

\[
A_0 = \frac{m A_{\text{ext}}}{(k^2 - m \omega_{\text{ext}}^2)^2 + \omega_{\text{ext}}^2 c_0^2}.
\]

In the above formula, \(\omega_{\text{ext}} = 2\pi f_{\text{ext}} \). The linear response allows us to cross-validate the air damping coefficient \(c_0 \) and the quality factor \(Q \) of the system. The result of the model and the experimental results are in a very good agreement, validating the theory presented in this paper.

The additional use of the HBM to solve the model equations is a significant advantage compared to the sole use of a numerical integration technique. The HBM is not resource intensive, and, in addition, it provides another tool for verification as we deal with a nonlinear system. The fact that the HBM and
Fig. 15. Experimentally measured RMS voltage \(V_{\text{RMS}} \) (black circles with error bars) as a function of the actuation frequency \(A_{\text{ext}} \) compared to the proposed model (green circles). For reference, a semi-analytical Harmonic Balance Method is also shown (red lines) together with the linear response (21) (blue triangles). The data is measured at three different external acceleration amplitudes: 3 m/s\(^2\), 4 m/s\(^2\) and 5 m/s\(^2\) respectively.

Fig. 16. The schematic drawing of the kinetic energy harvester Model B. It consists of the array of four identical permanent magnets and the cylindrical multi-layer coil.

The Runge-Kutta methods are consistent with each other and with the experimental data speaks towards the validity of the model and the techniques to solve the model. We also point out that the experimental results contain the responses associated with both translational and rotational modes, as highlighted in Fig. 15. All such modes can be accommodated in the presented theory.

B. Verification Using Harvester B

The second device used to demonstrate the applicability of our approach is shown in Fig. 4(b), with the details outlining its geometry presented in Fig. 16. This system consists of an array of permanent magnets and a movable cylindrical coil which oscillates in the magnetic field generated by the fixed magnets. It is interesting to note that this arrangement idea is opposite to Harvester A where, by contrast, a square magnet is attached to elastic nonlinear springs and oscillates in the vicinity of a fixed multi-layered square coil under external driving. The known physical parameters of Harvester B are listed in Table VI. As in the case of Harvester A, some mechanical parameters are unknown, including the air damping and nonlinear spring coefficients; these have to be extracted from the experimental data in the same fashion as described in the previous Section. These parameters are calculated from experimental characteristics using an optimization procedure with a standard least square differences technique when the electrical load is disconnected. We reiterate that these parameters cannot be predicted at the design stage (in particular for nonlinear MEMS) or measured directly. Hence, some indirect procedure of extraction must be employed. The additional parameters reconstructed from the experiment are given in Table VII.

The algorithm proposed in Section II can also be applied to model a system of the configuration described above. We note that the complexity of modelling in this case increases since we have to model four permanent magnets and a coil that has 2500 turns. Nevertheless, such modelling is feasible, and the lumped expressions for the e.m.f and the \(z \)-component of the electromagnetic force can be obtained:

\[
\mathcal{E}(v, z) = \nu \left(e_0 + e_2 z^2 + e_4 z^4 + e_6 z^6 + e_8 z^8 + e_{10} z^{10}\right).
\]

(22)

\[
F_{\text{em}}(v, z) = \nu \left(f_0 + f_2 z^2 + f_4 z^4 + f_6 z^6 + f_8 z^8 + f_{10} z^{10}\right).
\]

(23)

Here, \(e_i \) and \(f_i \) are the interpolation parameters, and their numerical values for Harvester B are summarised in Table VI and VII.
Fig. 17. Resonance curves of Harvester B (experimental data shown by red and modelled data shown by blue) in the form of RMS voltage as a function of the frequency f_{ext} of external driving. The top row shows the results for the open-circuit measurement (without electromechanical coupling) at accelerations of 0.3 g, 0.5 g, 0.8 g and 1.0 g. The bottom row shows the results for the system with an electrical load of $R_L = 3114 \, \Omega$ (with electromechanical coupling) at the same acceleration levels.

TABLE VIII

<table>
<thead>
<tr>
<th>E.M.F.</th>
<th>Electromagnetic torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_0</td>
<td>6.17 V/m</td>
</tr>
<tr>
<td>e_2</td>
<td>-2.24×10^6 V/m2</td>
</tr>
<tr>
<td>e_4</td>
<td>-1.38×10^{14} V/m4</td>
</tr>
<tr>
<td>e_6</td>
<td>1.69×10^{12} V/m6</td>
</tr>
<tr>
<td>e_8</td>
<td>-4.06×10^{14} V/m8</td>
</tr>
<tr>
<td>e_{10}</td>
<td>2.65×10^{21} V/m10</td>
</tr>
</tbody>
</table>

in Table VIII. For the obtained lumped expressions, we have performed the self-consistency test as described in the earlier Section and have calculated the magnetisation of the magnetic material as a function of the relative speed of the coil and the magnets, similar to Fig. 9 and Fig. 11 presented in Section IV.

Finally, knowing the parameters of the electromagnetic coupling in Harvester B, we can make a direct comparison between its modelling and experimental characterisation, as shown in Fig. 17. This figure presents a comparison between the measured (red points) and modelled (blue points) RMS voltage as a function of the frequency f_{ext} of external vibrations with and without an electrical load. The four figures in each row correspond to four amplitudes A_{ext} of external vibrations (0.3 g, 0.5 g, 0.8 g and 1.0 g). The top row shows the results without an electrical load (without electromechanical coupling) while the bottom row shows the results with an electrical load of $R_L = 3114 \, \Omega$ (with electromechanical coupling) at the same accelerations levels. Firstly, we note that, as expected, increasing A_{ext} results in larger RMS voltage generated in the system. Secondly, it can be clearly seen that adding an electrical load results in electromechanical coupling and energy transfer from the mechanical to the electrical domain. The presence of the electromagnetic force is seen as an additional dissipation (damping) force reducing the amplitude of the resonance characteristic. We note that the measured and modelled data show very good agreement, and the minor discrepancy may be caused by some natural uncertainties of measurements.

VII. CONCLUSIONS

This paper proposed an accurate theory allowing one to model electromagnetic coupling in kinetic energy harvesters. The usual approach used in the literature reduces the electromagnetic coupling to a linear damper when one models such devices. However, due to the nature of the magnetic flux density and magnetic flux, the coupling is nonlinear, and its incorrect use may result in significant errors. We showed how first principles of electromagnetics can be applied to an electromagnetic kinetic energy harvester and how they result in a reduced order lumped model through the use of shape functions. The obtained lumped model is fully compatible with the ordinary differential equation describing the mechanical dynamics of the magnetic proof-mass and the Kirchhoff Voltage Law describing the electrical state of the system. The presented methodology was verified experimentally for two qualitatively different emKEH topologies. We described the design of the experiment and the data processing method in detail, since, as usual with MEMS devices, we could readily have access only to the electrical parameters of the system. Following this approach, experimental data was acquired, processed and compared with the developed model. Since we...
dealt with a nonlinear system, a range of tools to solve nonlinear differential equations were used to ensure that the solution we obtained was indeed correct. The comparison between the model and the experiment shows very good agreement, and we conclude that the methodology proposed in this paper is accurate and verified.

REFERENCES

Andrii Sokolov (S’18) received the B.Sc. degree in computational physics and the M.Sc. degree in theoretical physics from Odessa National I.I. Mechnikov University, Ukraine, in 2009 and 2010, respectively. He joined the Ph.D. Program in the School of Electrical and Electronic Engineering, University College Dublin, Ireland, in 2018. His research interests are vibration-based energy harvesters.

Dhiman Mallick (M’12) received the B.Sc. degree (Hons.) in physics and the B.Tech. (Post-Graduate) and M.Tech. degrees in radio physics and electronics engineering from the University of Calcutta, in 2007, 2010, and 2012, respectively, and the Ph.D. degree in electrical and electronic engineering from Tandon National Institute, University College Cork, in February 2017. Before that, he was a Post-Doctoral Researcher with the Tandon National Institute, Ireland. He is currently an Assistant Professor with the Department of Electrical Engineering, Indian Institute of Technology Delhi (IITD), New Delhi, India. Till date, he has authored/coauthored 40 published articles in peer-reviewed journals and conference proceedings, one book chapter and one patent (filed). His research interests include MEMS, NEMS, energy harvesting, and wireless power transfer.
Saibal Roy received the M.Sc. degree in physics from the Indian Institute of Technology (IIT) Kharagpur, Kharagpur, India, in 1987, and the Ph.D. degree in physics/materials science from IACS, in 1994.

In 2013, he was invited in a sabbatical position hosted by Electrical Engineering Department and supported by Materials Science Department, Stanford University. He is currently a Research Professor with the Department of Physics, University College Cork (UCC), and the Head of Micropower Systems and Nanomagnetics Research Group, Tyndall National Institute, Ireland. To date, he has three granted global patents, written seven book chapters and published over 180 articles in leading journals and conference proceedings, with over 5000 international citations and h index of 33 to date. Within the last decade, he was able to bring over eight Million competitive research grants focusing these areas. Some of his published works on ‘Miniaturized/MEMS vibrational energy harvesting through EMT’ have received over 1000 citations to date and featured widely in international media. On the other hand, Tyndall ‘Magnetics on Si’ team successfully licensed the micro-transformer/inductor technology recently with a substantial license fee (over $1 Million) to two major multinational companies.

Prof. Roy has served as a member of several programme committees, chaired sessions and delivered invited talks in many International Conferences & Corporate R&Ds. In 2015, he was awarded the ‘A. S. Paintal visiting Chair Professorship’ in Engineering by INSA (Indian National Science Academy). The award was given to three outstanding foreign scientists in that year. He is also holding Science Foundation Ireland (SFI) Principal Investigator (PI) Grant Award and also a Funded Investigator in SFI €39 Million Research Center on ‘Internet of Things - CONNECT’. In recognition, the team was awarded as the Research Team by the University (UCC), in 2015. This was in recognition for the contribution, he made in the field of Thin-films, micro-nano-magnetics, Micro/Nano Technologies, and Sciences over previous 20 years.

Michael Peter Kennedy (S’84–M’91–SM’95–F’98) received the B.E. degree in electronics from the National University of Ireland, Dublin, in 1984, and the M.S. and Ph.D. degrees from the University of California (UC Berkeley), Berkeley, in 1987 and 1991, and the D.Eng. degree from the National University of Ireland, in 2010.

He was a Design Engineer with Philips Electronics, a Post-Doctoral Research Engineer with the Electronics Research Laboratory, UC Berkeley, and as a Professeur Invité with the Federal Institute of Technology Lausanne (EPFL), Switzerland. From 1992 to 2000, he was on the Faculty of the Department of Electronic and Electrical Engineering, University College Dublin (UCD), Dublin, Ireland, where he taught electronic circuits and computer-aided circuit analysis and directed the undergraduate Electronics Laboratory. In 2000, he joined University College Cork (UCC), Cork, Ireland, as a Professor and the Head of the Department of Microelectronic Engineering. He was the Dean of the Faculty of Engineering, UCC, from 2003 to 2005, and the Vice-President for Research, from 2005 to 2010. He returned to UCD as a Professor of microelectronic engineering, in 2017, where he is currently the Head of the School of Electrical and Electronic Engineering.

Dr. Kennedy was contributions to the study of Neural Networks and Nonlinear Dynamics. He was a recipient of the 1991 Best Paper Award from the International Journal of Circuit Theory and Applications and the Best Paper Award at the European Conference on Circuit Theory and Design 1999. He served as an Associate Editor for the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, from 1993 to 1995 and from 1999 to 2004. He was awarded the IEEE Third Millennium Medal, the IEEE Circuits and Systems Society Golden Jubilee Medal, in 2000, and the inaugural Parson’s Medal for Engineering Sciences by the Royal Irish Academy (RIA), in 2001. He was an elected to membership of the RIA, in 2004, served as a RIA Policy and International Relations Secretary from 2012 to 2016, and as the President, in 2017. He was the Vice-President for Region eight of the IEEE Circuits and Systems Society (CASS), from 2005 to 2007, a CASS Distinguished Lecturer, from 2012 to 2013, and the Chair of the CASS Distinguished Lecturer Program, in 2017. He served on the IEEE Fellows Committee and the IEEE Gustav Robert Kirchhoff Award Committee.

Elena Blokhina (S’05–M’06–SM’13) received the M.Sc. degree in physics and the Ph.D. degree in physical and mathematical sciences from Saratov State University, Russia, in 2002 and 2006, respectively, and the Habilitation (HDR) degree in electronic engineering from UPMC Sorbonne Universities, France, in 2017. Since 2007, she has been with the School of Electrical and Electronic Engineering, University College Dublin, Ireland, where she is currently an Academic Staff Member and the Coordinator of the Circuits and Systems Research Group. Her research interests include the analysis, design, modeling, and simulations of nonlinear circuits, systems and networks with particular focus on complex, mixed-domain, and multi-physics systems.

Dr. Blokhina had been elected to serve as a member of the Boards of Governors of the IEEE Circuits and Systems Society, from 2013 to 2015, and has been a re-elected, from 2015 to 2017. She has served as a member of organizing committees, a review and programme committees, a session chair, and a track chair at many leading international conferences on circuits, systems, and electronics, including the IEEE International Symposium on Circuits and Systems (ISCAS), IEEE International Conference on Electronics, Circuits and Systems (ICECS), IEEE International Conference on Synthesis, Modeling, Analysis and Simulation Methods, and Applications to Circuit Design (SMACD) and others. She served as the Programme Co-Chair for the first edition of the IEEE Next Generation of Circuits and Systems Conference, in 2017 and of the 2018 edition of the IEEE International Conference on Electronics, Circuits and Systems. She is also the Chair of the IEEE Technical Committee on Nonlinear Circuits and Systems. She has served as a Guest Editor of the IEEE ACCESS and Springer Analog Integrated Circuits and Signal Processing, and as an Associate Editor for the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I, where she is also the Deputy Editor-in-Chief.