Provided by the author(s) and University College Dublin Library in accordance with publisher
policies. Please cite the published version when available.

Title Mixture of Experts Approach for Piecewise Modeling and Linearization of RF Power
Amplifiers
Authors(s) Brihuega, Alberto; Abdelaziz, Mahmoud; Anttila, Lauri; Li, Yue; Zhu, Anding; Valkama,

Mikko

Publication date

2022-01

Publication information

IEEE Transactions on Microwave Theory and Techniques, 70 (1): 380-391

Publisher

IEEE

Item record/more information

http://hdl.handle.net/10197/12388

Publisher's statement

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

Publisher's version (DOI)

10.1109/tmtt.2021.3098867

Downloaded 2022-05-16T13:10:27Z

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information, please see the item record link above.



https://twitter.com/intent/tweet?via=ucd_oa&text=DOI%3A10.1109%2Ftmtt.2021.3098867&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F12388

Mixture of Experts Approach for Piecewise
Modeling and Linearization of RF Power Ampli ers

Alberto Brihuega, Student Member, IEEE, Mahmoud Abdelaziz, Member, IEEE, Lauri Anttila, Member, IEEE,
Yue Li, Member, IEEE, Anding Zhu, Senior Member, IEEE, and Mikko Valkama, Senior Member, IEEE

Abstract Piecewise behavioral models are commonly adopted
for modeling and linearization of RF power ampli ers (PAs)
that exhibit strong amplitude dependent nonlinear distortion
characteristics, as global polynomial approximations tend to
underperform in such scenarios. In this paper, we consider a
new piecewise model for PAs based on the mixture of experts
(ME) approach, which builds on a probabilistic model that allows
the different submodels to cooperate as opposed to operating
in an independent fashion that is commonly the case in existing
reference methods. We rst introduce the ME framework theory,
while also extend it such that it can be applied to model complex
baseband signals and nonlinearities. Then, we show how the
ME model allows overcoming some of the intrinsic shortcomings
that existing piecewise behavioral models commonly exhibit,
which translates into improved modeling accuracy and improved
linearization performance. Furthermore, the extension of the ME
approach to a tree-structured regression model, referred to as
the hierarchical ME model, is also introduced, and shown to
provide further performance improvements over the basic ME
approach. The proposed solutions are validated with extensive
RF measurements, covering both PA direct modeling and digital
predistortion (DPD) based linearization, on a gallium nitride
(GaN) load modulated balanced PA, on a GaN Doherty PA as
well as on a class AB GaN high electron mobility transistor PA,
while being compared against several state-of-the-art piecewise
methods. The results demonstrate that the ME framework based
models outperform the state-of-the-art.

Index Terms 5G New Radio, behavioral modeling, digital
predistortion, mixture of experts, nonlinear distortion, piecewise
models, power ampli ers.

I. INTRODUCTION

VER the years, multiple power ampli er (PA) technolo-

gies have been developed with the goal of delivering
enhanced power ef ciency at different power back-off levels
and over wide bandwidths [1] [4]. Good examples are the
Doherty PA (DPA) [5], [6] and the load modulated balanced
(LMBA) PA [2], [7], which leverage the concept of load
modulation that allows the power ef ciency to be optimized
dynamically at a speci ¢ power back-off, by tuning the load
impedance. In order to further increase the power ef ciency,
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digital predistortion (DPD) solutions are commonly deployed
to compensate for the strong nonlinear distortion that origi-
nates inside the PAs whilst being operated with high ef ciency
[4], [8] [11]. However, due to the operation principle of
DPAs and LMBA PAs, their nonlinear distortion characteristics
become strongly amplitude dependent. This makes their mod-
eling and linearization through classical global polynomials
very challenging due to the global dependence on local effects
[12].

Piecewise models, on the other hand, utilize separate sub-
models that operate over speci ¢ subregions of the overall PA
response [13], [14]. Thus, they are capable of conveniently
modeling such distinct amplitude dependent behaviour. An-
other important feature of piecewise models is the fact that
global dependence on local effects can be largely avoided [12].
Consequently, piecewise models are well suited to model more
complicated nonlinearities, and a number of piecewise models
have been proposed in the literature [13] [16]. To this end,
a vector-switched (VS) model was proposed in [13], and is
based on hard partitions of the PA input signal space, which
de ne the range of operation of each of the submodels. Zhu et.
al. proposed in [15] a decomposed piecewise (DPW) \olterra
model, where each transmit sample is decomposed into several
sub-samples that are then processed by the different submodels
before the nal sample is reconstructed. A piecewise behav-
ioral model based on a vector rotation decomposition of the
canonical piecewise linear (CPWL) basis functions, referred
to as DVR model, was proposed in [16], and was shown to
require less amount of coef cients when modeling systems
with non-\olterra-like behavior, e.g., as that exhibited by DPA
or LMBA PAs.

Despite the noted piecewise models provide signi cantly
better modeling accuracy than global polynomials, they have
some inherent limitations. Speci cally, the VS model does
not impose any continuity constraint between the submodels,
potentially compromising its performance [14], [16]. The DVR
model in [16] considers an approximation of the original
CPWL basis functions so that the model is linear in parame-
ters, which may limit its performance. Additionally, in general,
memory modeling capabilities may be compromised in piece-
wise models as the different submodels operate independently,
whereas memory effects may involve samples belonging to
different subregions. As the signal BW increases, which is a
general trend in wireless communication systems such as 5G
New Radio (NR) [17], complicated nonlinearities and memory
effects are likely to appear, and hence, more robust models are
needed.



In this paper, we propose a new piecewise behavioral/DPD
model for RF PAs based on the so-called mixture of experts
(ME) framework, originally proposed in the context of learn-
ing theories in [18] with some modi cations introduced in
[19], [20]. Furthermore, a good review of the ME theory
and its applications can be found in [21]. The ME model
is a probabilistic framework that allows to combine multiple
regression functions, the so-called experts, and make them
cooperate with a gating function to solve a regression or
classi cation problem. Since its introduction, different experts
based on support vector machine, Gaussian processes, or
hidden Markov models, amongst others, have been consid-
ered, and shown to provide systematically better performance
when combined with ME [21]. ME is of special interest in
the context of regression with piecewise data, or with data
containing different patterns, where a given expert can focus
on a speci c pattern, generally providing better accuracy than
the individual experts.

Motivated by above, the ME approach can be of special
interest also in the eld of PA modeling and linearization, as
shown in our early work in [22]. One distinct feature of the
ME model compared to other piecewise models is the fact
that ME utilizes soft partitions of the data. This implies that
the submodels work across overlapping regions. This is a very
important feature, as it avoids potential non-smooth transitions
between submodels, and facilitates the modeling of memory
effects between regions. Furthermore, the soft partitions or
gating networks are themselves nonlinear, which can enhance
the overall nonlinear modeling capabilities. Additionally, more
sophisticated decision boundaries and regions can be de ned
by implementing a tree-structured regression model, referred
to as the hierarchical ME (HME) model [20]. Hence, the ME
framework stands as a very exible and capable solution for
modeling and linearization of RF PAs.

In this article, we extended our preliminary work in [22],
where the basic single-layer ME model was considered for
direct modeling of RF PAs. The main contributions of this
article can be summarized and described as follows:

The ME framework is proposed for modeling and lin-
earization of RF power ampli ers. The classical ME
theory that is commonly applied to model real-valued
data, is extended so that it can be applied to model
complex baseband signals and nonlinearities. The ME
fundamentals are carefully revisited and the training
algorithm to learn the parameters of the model is detailed.
The extension of the ME model to a multi-level regression
tree is introduced and shown to provide better nonlinear
modeling capabilities and linearization performance than
more ordinary single-layer ME, thanks to the stronger
nonlinear behaviour of the composite gating network.
Extensive set of measurement results on a number of
different PA technologies are reported to validate and
showcase the capabilities of the ME framework in the
context of PA direct modeling and DPD based lin-
earization. The ME model is compared against several
state-of-the-art piecewise models in terms of complexity,
modeling accuracy and linearization performance.

Fig. 1. Block diagram illustrating the mixture of experts principle for
estimating or approximating y(n).

The rest of the paper is organized as follows. The ME
theory and its extension to model complex baseband signals
and nonlinearities are introduced in Section II, covering also
the tree-structure HME model. The algorithm to train the
parameters of the ME and HME model is described in 11l. The
complexity analysis of the proposed models and corresponding
comparisons against selected state-of-the-art piecewise models
are provided in Section IV, whereas RF measurement results
and their analysis are reported in Section V. Finally, Section VI
provides the main concluding remarks.

Il. MIXTURE OF EXPERTS FRAMEWORK FOR PA
MODELING AND LINEARIZATION

A. Basic ME Model

In general, linear-in-the-parameters models are preferred
in PA modeling and linearization as they can be trained by
utilizing simple linear regression techniques, e.g., the least-
squares (LS) t or gradient-based methods such as the least-
mean-squares algorithm [23]. For instance, polynomial-based
models from the Volterra-series family [8], [14], [15] or the
modi ed CPWL basis functions in [16] are good examples of
such models and are very widely adopted in the literature. In
this work, in the context of the ME framework, we thus also
consider linear-in-the-parameters experts, more speci cally,
polynomial-based experts, whilst note that any other expert
model can basically be adopted.

Let now x(n) and y(n) denote the 1/Q samples of the
input and target signals, respectively, in the context of the
ME framework illustrated in Fig. 1. Considering a linear-in-
the-parameters model, the target signal can be estimated or
approximated as

y= ) ; M)

where 9 = [(1);$(2);  ;9(N)]", with $(n) being an esti-
mate of y(n), and x = [x(1);x(2);  ;x(N)]". Furthermore,
(x) 2 CN B is the matrix containing the regressors of the



Fig. 2. High-level illustration of the hierarchical ME principle with two layers.

model, B is the total number of regressors, and 2 CB ! are
the model coef cients. In the context of PA direct modeling, x
is the PA input signal, whereas y corresponds to the PA output
signal. On the other hand, when adopting the ME model as a
postdistorter in the context of the indirect learning architecture
(ILA) [24], x and y correspond to the PA output (divided by
the target gain) and PA input data, respectively.

Assuming N statistically independent data points and |
experts, the ME model can be formulated as the following
decomposition of the input/output data [19], [21]

P(yix) = P (zi(n) = 1jx(n); vi)P (y(n)jx(n); wi)
n=1i=1
)

where zj(n) is a hidden/latent variable and P (zj(n) =
1jx(n);vj) is the gating function of parameters v;, mea-
suring the probability of the ith expert given the input.
P (y(n)jx(n); w;), in turn, denotes the probability of the ith
expert, with parameters wj, for generating y(n).

In general, the gating function can adopt multiple forms, the
so-called mixture model being the most commonly adopted
one [19], [21]. Such mixture model is de ned as a convex
sum of different density functions P (xj ;v;) [25], that is,

P(Xj ;v)= iP (Xjvi); @)
i=1

where j are the so-called mixing probabilities, that sum up to
one. By invoking Bayes’ rule and the total probability theorem,
the gating functions P (zj(n) = 1jx(n);vj) can be expressed

as
. aiP. (x(n)jzi(n) = 1; v;j
P (zi(n) = 1jx(n); vp) = ML) = Lv)

j=1ajP (x(n)jvj)

4)

where a;j= PJ!:l ajP (x(n)jv;j) is the effective mixing proba-
bility, a; = P (zi(n) = 1) is the prior probability of the ith
gate and ;a; = 1. In this work, P (x(n)jv;) is considered
to be a density among the exponential family, and speci cally
a Gaussian density, which allows obtaining v; in closed form
[19]. Furthermore, as the PA nonlinearities act on the envelope

of the transmit signal, the gates are assumed to make soft
partitions based on the amplitude of the input signal, denoted
as A(n) = jx(n)j, similar to other piecewise models [13],
[14]. Hence, in the following, P (zi(n) = 1jx(n);Vv;) will be
expressed as a function of A(n) rather than of x(n).

As for the experts, they are also commonly chosen from the
exponential family so that their parameters can be obtained in
closed form too. In this work, the experts are assumed to be
Gaussian distributed, i.e.,

P (y(mix(n);wi) = N(y(n)i i(x(n)) i; 2 ®)

where w; = f §; 29, %i(n) = i(x(n)) ; is the mean, and
gi is the variance. As y(n) is complex-valued, the probability
density function reads

H i2
PyMixMiw) = —yep D) IOF
ei ei

It is important to note that for a perfect sample estimate, i.e,

P(n) = y(n), P(y(n)jx(n);w;) reaches its maximum value.

This is one of the probabilities that the training algorithm will

try to maximize, resulting in the ME model iteratively yielding

better sample estimates.

In order for the ME model to make a single prediction, the

expectation of (2) is used, given as [21]

(6)

X

gi (A(n); vi)¥i(n); ()
i=1
which is a weighted sum of the outputs of the estimates of
the individual experts, and where gij(A(n);vi) = P (zi(n) =
LiA(N); vi).

$(n) =

B. Hierarchical ME Model

The nonlinear modeling capabilities of the ME model can
in general be enhanced by making the experts more nonlinear,
e.g., by increasing the nonlinear order of the polynomial-
based regression functions. However, high order polynomials
commonly have poor extrapolation properties and may easily
over t the data [26]. Alternatively, the gating networks are
nonlinear too, hence it is possible to make them more nonlin-
ear by considering that the experts themselves are ME models.



This approach results in a hierarchical ME model [20], [21],
which can be thought of as a tree-structured regression system,
which essentially adds additional nonlinear decision layers.
The leaves of the tree model contain the experts, whereas the
non-terminal nodes of the tree contain the gating functions.

An example two-level HME model is depicted in Fig. 2. The
gating network consists now of two layers, and each of them
must take into consideration the nodes beneath. Considering a
two level decision tree, the probabilistic model in (2) can be
re-written as follows [20]

Pyix) =

n=1

P (zj(n) = 1jA(n); vj)
j=1

P(z(n) = 1jzi(n) = HAQ) viy)  ©)
i=1

P (y(m)jx(n); wij)

where P (zj(n) = 1jA(n); v;j) is the probability of selecting
the jth gating network in the top layer given the current input
sample, whereas J is the number of nodes in the top layer. I;
stands for the number of experts connected to the jth gating
network and P (z;(n) = 1jzi(n) = 1jA(n);vij) is the ith
gating function at the bottom layer in branch j and is also of
the form of (4). The model formulation for an arbitrary tree
depth is done in a similar fashion. Similarly, we may re-write
(7) as

b4
gi(A(N);v;)  giji (AM); vijeij(n) — (9)

i=1

$(n) =

i=1

where g;j; (A(n); vij) is used as shorthand for P (zj(n) =
1jzi(n) = LJA(N); vij).

In the following section, the algorithm to train the ME
model parameters is described.

I1l. ME PARAMETER LEARNING:
THE EXPECTATION MAXIMIZATION ALGORITHM

A. EM Algorithm for the Basic ME Model

To train the ME model, the expectation maximization (EM)
algorithm is usually considered [19], [20], [27]. EM is an iter-
ative algorithm that calculates the maximum-likelihood (ML)
parameters of a probabilistic model, in which some variables
are observed and others are hidden/latent. For simplicity, the
EM algorithm is formulated in the context of the basic ME,
that is, a single layer model, whereas speci c steps for training
the HME model are detailed after the basic concepts are
introduced.

The observable data are the input and target vectors x and
y, whereas it is unknown which expert generated each data
point, formally expressed through the latent variable z. As
discussed above, in order for the gate and expert parameters
to be analytically solvable, the densities must belong to the
family of the exponential densities, and additionally, instead

of the likelihood function in (2), one should consider the joint
density P (X;y) = P (yjx)P (x) [21], which reads

¥ XK
P(Xy) =
n=1i=1
The joint density essentially allows canceling out the de-
nominator of the gating function in (4), which makes the
optimization analytically solvable.

In order to train the ME parameters, the maximum-
likelihood is calculated for InP (X;y;jv;w) and is done by
iterating the EM algorithm [21], [27], which consists of the
following two steps.

1) E-step: In the kth iteration of the E-step, the
expectation of the latent variables hX(y(n)jx(n)) =
EfP (z(n)jy(n); x(n))g is computed as

Pali(gi(A(n); VE)P (y(n)jx(n); wf)
i a9 (A(N); VAP (y(m)jx(n); W}()(il)

aigi (A(n); vi)P (y(n)ix(n); wi):  (10)

h¥(y(n)jx(n)) =

which measures the relative probability of x(n) belonging to
expert i, commonly referred to as membership probability or
responsibility.

2) M-step: Compute the maximum likelihood parameters
weighted by the mer;b(ership probabilities [19], expressed as

wi*t =argmax  h¥(y(n)ix(n))InP (y(n)jx(n); wk)
vil=argmax  h¥(y(n)jx(n))InP (A(n)jvk)

Vi >
al"* = arg max h¥(y(n)jx(n))ak

aj

(12)

To compute the ML parameters in (12), one needs to
differentiate with respect to the parameters and solve for
them. As the densities are considered to be Gaussian, the
parameters can be calculated in a straightforward manner. The
gate parameters v =T g;; gig are given by

P .
otk O(Mix(n)x(n)
T g aMEMixM)
o K QEiX()(x(n) 1?2
o n NE(N)ix(n)) ’
which are essentially the maximum-likelihood estimates of the
mean and variance of a Gaussian distribution, i.e., the sample
mean and the sample variance but weighted by the membership
probabilities.
Similarly, the expert parameters w; = T ; éig are calcu-
lated as

(13)

2k+1

k= Hogwk () ' Heowly
er _nMKQUOXO)iy(n) i (14)
o hE@y(Mix(n)) !

where WX 2 RN N s a diagonal matrix containing the
responsibilities hk(y(n)jx(n)); n =1;2;  ;N. The expres-
sion for i+1 is of the form of a weighted least squares
solution, where the responsibilities allow the expert parameters
to be trained by giving more relevance to the samples that



Fig. 3. Block diagram of the expectation maximization algorithm for ME model training.

lie on the span of the corresponding expert. Alternatively,
one could calculate the rst-order and second-order derivatives
with respect to  and approximate the closed-form solution
with an iterative algorithm based on gradient-descent. This
is the common approach when the model parameters are not
analytically solvable, e.g., when soft-max gating networks are
adopted [18].
Lastly, the prior probabilities are updated as [19]

k+l = 1

=< k H .
i N hi (y(n)ix(n));

n

a (15)

which represents the average membership probability of the
ith expert, or in other words, the proportion of the data that
is assigned to the ith model.

Prior to executing the EM algorithm, the gate and expert
parameters need to be initialized. In the rst place, the means
of the gates 8i are initialized, either randomly, or through
K-means clustering [28]. Once the means are initialized, the
membership probabilities are assigned in a hard sense, i.e.,
hk(y(n)jx(n)) = 1 if the data point bglongs to cluster i,
and 0 otherwise. Then, the variances Si can be calculated
as per (13). Once the responsibilities are known, the expert
parameters can be calculated as per (14), and the EM algo-
rithm can be iterated until convergence. The EM algorithm is
graphically illustrated in Fig. 3, and its pseudocode is provided
in Algorithm 1. A stopping criterion can be set based on
maximum number of iterations or by checking the convergence
of InP(X;y). In the measurement experiments reported in
Section V, the convergence criterion is utilized, by comparing
the increase in InP(X;y) in successive iterations against a
threshold.

B. EM Algorithm for HME

The EM algorithm for the HME structure follows the same
principle as the one discussed above, i.e., the maximization
of the joint density is pursued. However, as there are now
two gating layers that are mutually dependent, it is necessary

Algorithm 1 Expectation Maximization Algorithm

1: Inputs: X, y, (x)and I
T [o] (o]
2: Initialize: §,,a?, 3, 2 and ?
1 1 1

3: while learning do

4: Calculate P (A(n)jvi) and P (y(n)jx(n);w;)
Update h¥(y(n)jx(n)) as per (11)

Update & and Sk as per (13)

Update gk and X as per (14)

8:  Update ak as per (15)

9: end while
10: return: g,

N o

2 .
& and

to de ne the conditional posterior probability of the latent
variables, which reads
2ijj 9ijj (A(); Vi§)P (y(n)ix(n); wi§

hi. . — il
() = B ORVEIP Gy wh)

and corresponds to the bottom layer responsibilities or mem-
bership probabilities, and wherelgijj is the prior probability
of the bottom layer gates and  ;a;;; = 1, i.e., the prior
probabilities of the gates within the same parent node sum
up to one. On the other hand, the top layer responsibilities are
of the same form as those for the single-layer case in (11),
that is, h}‘(y(n)jx(n)) = EfP (z; (n)jy(n); x(n))g. Lastly, a
joint posterior probability is also de ned as h;j(y(n)jx(n)) =
hijj (y (M)ix(n))h; (y (n)jx(n)).

The learning rules for the parameters of the top layer gating
function are of the same form as those in (13). On the other
hand, the learning rules for the bottom layer parameters are
given by the foIIowigg( expressions

wit = arg max hi§ (y()ix(n))InP (y (n)jx(n); wi)
ij
Vi =argmax i (y(mix(m)ingig; (AM); vij)
k+1 ’ > k i k
ajj ! = argmax hij (y(m)jx(n))ay;
ij

n i

(17



TABLE |
DPD MAIN PATH PROCESSING COMPLEXITY PER LINEARIZED SAMPLE

VS model [13] DPW model [15]

DVR model [16] ME model HME model

BF generation P + 2 + 2G(P
Filtering 8B 2

1) R(P +2+2G(P
R(@BB 2)

1)) + 2R 11R +8RMcpw. P +2+2G(P 1)

P+2+2G(P 1)

8Bcpwl 2 1(8B 2)+4l 2 I(8B 2)+4(1+J 1)

where ajj = a;ajjj.

It is noted that the original HME work [20] is formulated
in the context of soft-max gating functions. Hence, the steps
detailed in [19] to derive the simpli ed learning rules when
Gaussian mixtures are adopted need to be considered.

Similarly as in the single layer model, the gate and expert
parameters need to be initialized. To that end, the parameters
of the top layer gating networks can be initialized following
the same principle as that of the basic ME model. Then,
we proceed with the initialization of the bottom layer gating
networks. In this case, it is important that the means of the
gates lie within the span of the gate in the parent node,
otherwise the conditional probabilities will be zero, and the
algorithm won’t be able to train the parameters. Then, the top
and bottom layer responsibilities are calculated by assigning
the data in the hard sense, and the expert parameters are
initialized accordingly. For notational simplicity, it is assumed
that all the submodels utilize the same parameterization, but
these can be chosen freely in practice.

IV. ME COMPLEXITY ANALYSIS AND COMPARISON

In this section, we analyze the computational complexity
of the ME and HME models, and compare against the VS
model in [13], the DPW model in [15] and the DVR in [16].
Here, we focus only on assessing the main path complexity,
i.e., the complexity stemming from predistorting the transmit
signal. The reason for this is that in general, the main path
complexity is far more critical than that of the learning path,
as the predistortion process is to be executed in real time
along with the data transmission, whereas the learning is
executed at a much lower rate. Additionally, it is noted that the
iterative fashion in which the parameters of the ME model are
trained, seeks to nd the optimal soft partition of the input
data. Once the partition is known, the model parameters of
the regression functions are learned with a single iteration of
the weighted least squares in (14). Consequently, assuming
that the amplitude distribution of the transmit signal does
not change signi cantly over time, the EM algorithm can be
executed of ine, while occasional parameter adaptation can be
pursued to keep track of changes in the operating conditions of
the transmitter system, e.g., due to device aging or temperature
drifts through a single weighted least squares t.

It is assumed that the VS, the DPW, the ME and the HME
models build on polynomial-based regressors of the following

form

XK
y(n) =

p=1 m=0
p odd

XX
+ pm;gX(N

p=1 m=0g=1
p odd

KO X
+ p;m;gX(N

p=1 m=0g=1
p odd

pmx(n - mM)jx(n  m)j°

m)ix(n  m )" *

m)ix(n  m+g)i® *

(18)

where P is the maximum nonlinearity order, M is the memory
depth and G is the maximum envelope delay. On the other
hand, the DVR model considers the basis functions (BFs)
described in [16, Eq. (17)].

The complexity analysis is done in terms of oating point
operations (FLOPs). It is assumed that a complex multipli-
cation involves 6 FLOPs, whereas a complex addition and
a real/complex multiplication both cost 2 FLOPs [29]. In
order to generate the pth order polynomial-based instantaneous
BFs, it is considered that the process is done recursively, i.e.,

rst the term jx(n)j% is calculated, and then, the pth order
instantaneous BFs denoted as p(n) are built as ,(n) =

p 2(Mjx(n)j?, with  1(n) = x(n). It is further assumed
that generating the time-aligned memory BFs, i.e., the BFs
corresponding to m & 0 on the rst line of (18), does not cost
any FLOP, as they are delayed versions of the instantaneous
BFs. As all the piecewise models rely on the envelope of the
transmit signal, it is assumed that it is known by all models,
and hence, the cost involved in its computation is excluded
from the comparison.

The exact complexity expressions for each of the models
are gathered in Table I, whereas speci ¢ complexity numbers
are reported in Section V along with the corresponding exper-
imental results. For completeness, the execution time required
to train the different PW models is also provided. In Table I, R
is the number of submodels/regions of the reference solutions,
whereas Bepwi and Mcpw stand for the total number of
regressors and memory depth of the DVR model. B stands
for the number of regressors per submodel. The main path
processing involves generating the corresponding BFs, and the
actual predistortion or Itering of the transmit signal. The BF
generation for the VS, the ME and the HME model consist
of generating the basis functions given by (18). The DPW
model is also assumed to utilize BFs of the form of (18),
however before doing so, it requires decomposing every trans-
mit sample into subsamples by following the vector threshold
decomposition approach in [15, Eqg. (3)]. Such decomposition
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Fig. 4. (a) Hard and soft partitions provided by K-means and the ME model, respectively; (b) measured and modeled AM/AM and AM/PM responses; (c)

measured and modeled spectra by different piecewise models.

TABLE |1
MODELING ACCURACY OF DIFFERENT CONSIDERED MODELS IN TERMS OF
NMSE, ACEPR AND AMOUNT OF MODEL PARAMETERS

# parameters NMSE (dB) ACEPR (dB)
GP model 640 -31.19 -32.40
VS model 672 -32.24 -32.42
DPW model 672 -31.55 -33.43
DVR model 663 -32.37 -33.89
ME model 672 -32.97 -34.42
HME model 484 -32.95 -34.32

is assumed to cost, on average, 2 FLOPs per region. On the
other hand, the DVR is assumed to utilize the BFs in [16,
Eg. (17)]. The ME predistorting process basically builds on
two steps, rst the linear transformation in (1) is computed
for every expert, and then, their outputs are combined as per
(7) and (9), for the ME and HME models, respectively. This
implies that all regression functions are active at the same
time. Similarly, for the DPW model, every transmit sample is
decomposed into as many subsamples as submodels are de-

ned, and each subsample is predistorted by its corresponding
submodel prior to reconstructing the composite output signal,
i.e., all submodels are active simultaneously. As for the DVR,
the submodels are built in the actual CPWL basis functions,
which are all used to predistort every transmit sample. On the
other hand, the VS model in [13] only computes the linear
regression in (1) for the active submodel, as the gating network
can be thought of as a binary decision.

V. RF MEASUREMENT RESULTS

In order to evaluate the capabilities of the proposed ME and
HME models, both in terms of direct modeling accuracy and
linearization performance, several RF experiments including
different PA technologies such as a gallium nitride (GaN)
LMBA PA, a GaN Doherty PA as well as a GaN HEMT class
AB PA are conducted. As gures of merit, we consider the
normalized mean squared error (NMSE), the adjacent channel
error power ratio (ACEPR), as well as the adjacent channel
leakage ratio (ACLR) [30]. The Matlab implementation of the
ME model and the EM algorithm is shared along with the
article.

Fig. 5. Illustration of the outputs of the individual experts weighted by their
corresponding gating functions and the composite model output. Direct PA
modeling experiment with LMBA GaN PA at 2.1 GHz.

A. ME for Behavioral Modeling of RF PAs

The modeling accuracy of the different piecewise models is
evaluated through RF measurements on an in-house designed
LMBA GaN PA. The LMBA PA operates at 2.1 GHz carrier
frequency with an average power of +37 dBm and 41% drain
ef ciency under the stimulus of a 320 MHz wide OFDM
waveform composed of sixteen 20 MHz component carriers.
Further details on the PA design and its characteristics can
be found in [2]. The sampling frequency of the signal is
1.2 Gsamples/s and its sample-level PAPR measured at 10 4
CCDF is ca. 8 dB.

The ME model is assumed to utilize three experts, each of
them utilizing the basis functions given by (18) with P =7,
M =7 and G = 4. The VS and DPW reference models are
considered to utilize three regions, given by K-means, and
have the same parameterization as the ME model, whereas the
HME model considers J = 2 top layer nodes, each of them
having I = 2 experts with BFs parameters P = 5, M = 10,
G = 2. The DVR model utilizes fteen uniformly spaced
regions, and memory depth of Mcpw = 12 [16]. The global
polynomial (GP) model utilizes P =7, M =9 and G = 4,
and is assumed to also utilize even order nonlinear BFs on top



Fig. 6. RF measurement setup utilized in the DPD experiments containing the PXle-5840 VST, the ZFL-2500VH+ driver ampli er, the DUTs as well as a

high power attenuator.

of the odd order ones described in (18). The reason for this is
that even order BFs can help in the modeling of complicated
nonlinearities [31]. The PA output data is recorded, taken to
baseband and synchronized to the digital waveform. Then,
the reference models are tted by utilizing an LS approach,
whereas the proposed ME and HME models are tted by
iterating the EM algorithm until convergence.

The hard partitions provided by the K-means algorithm
utilized in [13] as well as the soft partitions given by the ME
model after the convergence of the EM algorithm, are illus-
trated in Fig. 4(a). The vertical blue lines de ne the amplitude
intervals over which the different submodels operate. On the
other hand, the soft partitions should be interpreted as how
much a given expert contributes from zero to one to gener-
ating a given output sample. Whereas with the hard partitions,
these contributions are either one or zero. The different experts
in the ME model can be interpreted as global polynomials
that learn to specialize thanks to the responsibilities in the
weighted least squares t. Fig. 5 illustrates the output of every
expert weighted by its corresponding gating function, which
corresponds to the terms gi(A(n); vi)$i(n), as well as the
composite output of the ME model, which is the sum of the
three submodels. This gure essentially shows the operation
principle of the ME model, i.e., a set of experts cooperate to
execute regression.

The performance of the different models is compared in
terms of the NMSE and the ACEPR metrics, and are given
in Table Il along with the number of coef cients of each
model. As it can be seen, the modeling accuracy of the GP
falls signi cantly behind the accuracy of the piecewise models
due to the strong amplitude dependent characteristics of the
LMBA PA. The best modeling accuracy is provided by the
proposed ME and HME models, both for the NMSE and
the ACEPR metrics, as a result of its improved memory-
modelling capabilities. The HME achieves a similar modeling
accuracy with much less model parameters. This is due to the
better nonlinear modeling capabilities provided by the two-
layer gating network, which allows to adopt lower polynomial
orders for the experts.

In the following, the linearization capabilities of the differ-

Fig. 7. Example convergence of the expectation maximization algorithm for
ME-DPD parameter learning, within a single ILA iteration, with GaN Doherty
PA at NR band n3.

ent PW models is assessed. As global polynomials are known
to largely underperform in the linearization of wideband
Doherty PAs, as reported for instance in [13], [14], they will
not be considered in the following experiments.

B. ME for Linearization of RF PAs

The measurement setup for the DPD experiments is depicted
in Fig. 6 and includes a National Instruments PXle-5840 vector
signal transceiver (VST), which serves both as a vector signal
generator and as a vector signal analyzer. The baseband 1/Q
samples of the transmit waveform are generated with Matlab
in the VST environment, and the modulated waveform is
upconverted to the desired carrier frequency utilizing the VST
TX chain. The TX waveform is preampli ed with a linear
driver ampli er (ZFL-2500VH+), and then fed to the actual
device under test (DUT). A GaN Doherty PA and a class AB
GaN HEMT PA are considered as DUTs. The DUT output
signal is then attenuated with a high power attenuator, whose



Fig. 8. (a) Soft partitions provided by the ME model; (b) top layer soft partitions provided by the HME model; (c) composite soft partitions provided by the

HME model.

Fig. 9. Measured spectra at the GaN Doherty PA output for a TX power of
+39 dBm.

output signal is observed via the VST receiver, where the
signal is taken to baseband and sampled. The received samples
are processed in the VST environment utilizing Matlab, where
the different DPD solutions are trained and executed. All the
models are learned through the ILA, and the reference models’
parameters are tted through LS. The learning consists of
3 ILA iterations with block size of N = 10;000 samples.
Within every ILA iteration, the ME and HME models run
the iterative EM algorithm until convergence, an example of
which is depicted in Fig. 7 for the ME model, where it can
be seen that convergence is achieved within 40 EM iterations
for the experiment considering the GaN Doherty PA. It is
however noted that the convergence speed heavily depends
on the initialization of the gate parameters. For complexity
assessment, we consider the expressions derived in Table I.
1) Measurement 1: GaN Doherty PA: The rst DPD mea-
surement experiment focuses on a GaN Doherty PA operating
at 1.8425 GHz center frequency (NR band n3) at an average
output power of +39 dBm, which corresponds to an output
power back-off of ca. 7.5 dB with respect to saturation. The

test waveform is composed of ve 15 MHz component carri-
ers, resulting in a total BW of 75 MHz that spans the whole
NR band n3 and the PA BW. The PAPR of the test waveform,
after iterative clipping and ltering (ICF), at 10 # CCDF is
ca. 7 dB and the sampling frequency is 368.64 Msamples/s.

The ME and HME models are assumed to have I = 6
experts, each of them utilizing the polynomial-based BFs in
(18) for P =5, M = 5and G = 2. The HME model considers
J = 3 top layer nodes, each of them having I; = 2 experts.
The gating networks for the ME and HME models are shown
in Fig. 8, together with the linearized amplitude response of
the PA. Fig. 8(a) illustrates the soft partitions provided by the
ME model, whereas Fig. 8(b) and Fig. 8(c) show the top and
composite, i.e., top times bottom layer, gates. The means of
the gates of the ME model and of the top layer gating network
in the HME model are randomly initialized, whereas those of
the bottom layer gating network are initialized so that they lie
in the span of their corresponding top layer gating function.

The VS and DPW reference models are considered to
utilize R = 6 regions, given by K-means, and have the
same parameterization as the ME and HME experts. The DVR
model utilizes R = 9 uniformly spaced regions, and memory
depth of Mcpw = 8 [16].

The spectra at the output of the DUT when considering the
different piecewise models are illustrated in Fig. 9, whereas
their corresponding ACLR values are gathered in Table III.
As it can be observed, the proposed ME models offer su-
perior linearization capabilities compared to the state-of-the-
art piecewise DPD models, with the HME providing the
best performance thanks to its enhanced nonlinear modeling
capabilities due to the two-layer gating network. To the
best of our understanding, the overall improvement in the
linearization/modeling performance is a result of the improved
modeling between submodels thanks to the soft partitions, and
a better modeling of the memory effects.

As for the complexity, all the models employ a similar
number of model coef cients, however, the corresponding
complexity in terms of FLOPs/sample depend heavily on their
operation principle. The VS, ME, and HME models require
the lowest amount of operations to generate the required basis
functions because all the submodels employ the very same



Fig. 10. Measured AM/AM and AM/PM responses for the GaN Doherty PA
w/o DPD and w/ the HME DPD for a TX power of +39 dBm.

TABLE 111
LINEARIZATION PERFORMANCE IN TERMS OF ACLR, AMOUNT OF MODEL
PARAMETERS AND ASSOCIATED COMPLEXITY IN TERMS OF
FLOPS/SAMPLE FOR THE GAN DOHERTY PA EXPERIMENT.

# parameters BF gen. Filtering ACLR (dB)
w/o DPD 24.52
VS model 264 23 350 42.23
DPW model 264 156 2100 43.36
DVR model 247 675 1974 42.83
ME model 264 23 2122 43.62
HME model 264 23 2132 44.25

regressors, whereas the piecewise processing is embedded
in their switching/gating functions. On the other hand, the
DPW and DVR models incorporate the piecewise operations
within the basis functions, hence, the different submodels
employ different regressors. The VS model presents the
lowest Itering complexity, essentially because of its switching
principle, in which only one of the submodels is active at a
given time instant. On the other hand, the rest of the models
require ltering every transmit sample with all the submodels
or the whole set of BFs. Additionally, the ME and the HME
models require applying the gating function to weight the
output of every submodel. However, the ME and HME models
offer signi cantly better performance compared to the VS
model, and it also outperforms the DPW and DVR at a similar
overall computational cost. Fig. 10 illustrates the AM/AM and
AM/PM response of the PA without DPD and with the HME
DPD model.

2) Measurement 2: GaN HEMT PA: The second DPD
measurement experiment considers a GaN HEMT-based class
AB PA (CGHV27030S-AMP1) operating at 2.6 GHz center
frequency at +35.5 dBm average output power. The test
waveform is composed of eight 20 MHz component carriers,
resulting in a total BW of 160 MHz. The PAPR of the test
waveform, after ICF, at 10 + CCDF is ca. 7 dB and its
sampling frequency is 645.12 Msamples/s. The ME and HME
models are assumed to have | = 6 experts, each of them
utilizing polynomial-based basis functions withP =5 M =5
and G = 1. The HME model considers J = 3 top layer
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Fig. 11. Measured spectra at the HEMT-based PA output for a TX power of
+35:5 dBm.

TABLE IV
LINEARIZATION PERFORMANCE IN TERMS OF ACLR, AMOUNT OF MODEL
PARAMETERS AND ASSOCIATED COMPLEXITY IN TERMS OF
FLOPS/SAMPLE FOR THE HEMT-BASED PA EXPERIMENT.

# parameters BF gen. Filtering ACLR (dB)
w/o DPD 33.59
VS 168 15 222 425
DPW 168 108 1332 43.13
DVR 158 469 1262 43.53
ME 168 15 1354 44.72
HME 168 15 1364 45.33

nodes, each of them having I; = 2 experts. The VS and DPW
reference models are considered to utilize R = 6 regions,
given by K-means, and have the same parameterization as the
ME and HME experts. The DVR model, on the other hand,
utilizes R = 7 uniformly spaced regions, and memory depth
of McpwL =7 [16]

The linearized spectra at the PA output are illustrated in
Fig. 11, and the associated complexity and speci ¢ ACLR
values are gathered in Table IV. As it can be observed, the
ME models again achieve the best linearization performance,
giving up to 2 dB ACLR improvement while entailing similar
complexity to that of the reference piecewise models. Based
on the different conducted measurement experiments, it can be
stated that the ME framework stands as a exible and robust
model for modeling and linearization of RF PAs. It allows
working around some of the inherent limitations that state-of-
the-art piecewise models commonly exhibit, which are mostly
related with the way such models handle memory effects in
the system.

C. Model Adaptation Runtime Comparison

In order to provide a complexity comparison between the
different PW models, their adaptation time is shortly discussed
in the following.

The iterative principle of the EM algorithm seeks to nd the
optimal soft partition. Since the amplitude distribution of the



transmit signal remains rather constant over time, the partition
can be calculated of ine and is then seldom updated. Once
the partition is known, a single iteration of the weighted least-
squares is utilized to calculate the DPD coef cients, which
need to be updated at a faster pace than the soft partitions
(e.g., whenever the PA operating characteristics change). The
following runtime numbers consider an Intel(R) Core(TM) i7-
10850H CPU @2.70 GHz machine running Matlab 2021, and
the parameterization of Measurement 1.

It is important to differentiate between the runtime required
to obtain the region partitioning, which is 5.33 s for the ME
model and 8.876 s for the HME model, and the runtime of the
BF generation plus the weighted least-squares t to estimate
the DPD model parameters, which is 0.0787 s. Similarly,
for the VS model, we differentiate between the runtime of
0.0216 s of the K-means algorithm to nd the region parti-
tioning, which is seldom executed, and the runtime of the BF
generation plus least-squares t, which totals 0.0667 s. On
the other hand, the DPW model also requires to execute the
K-means algorithm, whereas the BF generation plus the LS

t take 0.1532 s. The DVR model considers equally spaced
regions, which is assumed to require no computing time,
whereas the BF generation plus the LS t require 0.1359 s.

Overall, the adaptation complexity of the ME, HME and
VS models is rather similar, whereas the DPW and DVR
models need approximately twice the time for adapting their
coef cients.

V1. CONCLUSION

In this article, a new piecewise model for modeling and
linearization of RF PAs based on the ME framework was
proposed. The ME model utilizes soft partitions of the data,
which implies that the different submodels overlap with one
another. This ensures that the overall regression function is
smooth and can thus facilitate accurate modeling of memory
effects between regions. This feature is a notable improve-
ment over the other existing piecewise models wherein the
partitions are commonly disjoint and the models operate
and are also being learned independently. The ME model
was also extended to a tree-structured regression model with
multi-layer nonlinear gating networks, which allow for further
enhanced nonlinear modeling capabilities. The proposed ME
approach was shown to provide the best modeling accuracy
and linearization performance amongst the tested models in a
large variety of RF measurement experiments on different PA
technologies.

In the reported results, the gating network was considered to
make partitions based on the envelope of the signal. However,
more sophisticated decisions can be studied and incorporated
in the model, e.g., by considering bivariate densities or by ex-
ploiting the multi-layer gating network structure. Overall, the
ME approach is a new framework for PA modeling and DPD
research, with rich opportunities for further developments and
tailoring to different linearization tasks.
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