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a b s t r a c t

A number of recent approaches to modeling social networks have focussed on embedding
the nodes in a latent ‘‘social space’’. Nodes that are in close proximity are more likely to
form links than those who are distant. This naturally accounts for reciprocal and transitive
relationships which are commonly found in many network datasets. The Latent Position
ClusterModel is one suchmodel that also explicitly incorporates clustering bymodeling the
locations using a finite Gaussian mixture model. Observed covariates and sociality random
effects may also be modeled. However, inference for the model via MCMC is cumbersome
and thus scaling to large networks is a challenge. Variational Bayesian methods offer an
alternative inference methodology for this problem. Sampling based MCMC is replaced by
an optimization that requires many orders of magnitude fewer iterations to converge. A
Variational Bayesian algorithm for the Latent Position ClusterModel is therefore developed
and demonstrated.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Hoff et al. (2002) introduced latent space models for networks. In this model, the nodes are embedded in an unobserved
‘‘social space’’; nodes closer together are more likely to link than nodes far apart and inference is performed on the latent
positions of the nodes. Links are modeled as occurring independently given the positions of the nodes (and optionally any
observed link or node covariates). One appealing characteristic of such models is that they naturally account for reciprocity
and transitivity. In addition, plotting the inferred positions of the nodes gives an intuitive visualization of the network.

Handcock et al. (2007) proposed the Latent Position Cluster Model (LPCM) which extends the latent space models to
allow for model based clustering of the nodes. This is to accommodate the clustering of nodes in the network beyond that
expected from simple transitivity. Clustering is thus included explicitly in themodel rather than found by a post-hoc analysis
of the estimated node locations. A spherical Gaussian mixture model structure is assumed for the latent positions.

1.1. Motivation for using the variational method

Currently, inference for the LPCM is via MCMC in a Bayesian setting. The disadvantage of this approach is computational
and fitting the model to large or even medium size network datasets is impractical or impossible. Variational Bayesian
inference offers one approximate solution to this problem. A closed form posterior is found that is ‘‘close’’ to the intractable
posterior. This method has already been exploited successfully for other fully Bayesian social network models. We next
motivate the contribution in this paper, namely to develop and assess Variational Bayesian algorithms for the LPCM.
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In the published discussion of Handcock et al. (2007), the following contributions are amongst those made:

• David Blei and Stephen E. Feinberg: ‘‘We have appealed to variational methods for a computationally efficient approx-
imation to the posterior (for a mixed membership blockmodel). These methods can scale to large matrices because of
the simplified approximation (but at an unknown cost to accuracy). It would be interesting to understand computational
trade-offs for the authors method (LPCM) as the sample size grows and when large numbers of covariates are added’’.
• Dirk Husmeier and Chris Glasbey: ‘‘Although a full reversible jump Markov chain Monte Carlo scheme might be compu-

tationally prohibitive, variational methods, which are currently very popular in themachine learning community, would
presumably provide amuch better approximation to the integration andmight therefore provide a promising avenue for
future research’’.
• David S. Leslie: ‘‘I congratulate the authors for their interesting paper. However, it seems that the Markov chain Monte

Carlo sampling scheme that was used results in extremely slow mixing, requiring 2 million iterations with only every
1000th iteration being used’’.

Thiswork is further prompted by Airoldi et al. (2008)when the authors state ‘‘It would be interesting to develop a variational
algorithm for the latent space models’’.

1.2. Specification of the latent position cluster model

In the LSM and LPCM, a binary interactions sociomatrix Y is modeled using logistic regression in which the probability
of a link between two nodes depends on the distance between the nodes in the latent space.

log− odds(yi,j = 1|z i, z j, β) = log


P{yi,j = 1}
P{yi,j = 0}


= β − |z i − z j|, (1)

where yi,j = 1 if node i links with node j and yi,j = 0 otherwise, β is an intercept parameter and |z i − z j| is the Euclidean
distance between the latent positions z i and z j of nodes i and j. The links are assumed to be independent conditional on the
latent positions of the nodes in the latent space.

Hence, the probability of the observed network Y given the latent positions Z = (z1, . . . , zN) of all of the nodes is

P(Y |β, Z) =
N
i=1

N
j≠i
j=1


exp(β − |z i − z j|)

1+ exp(β − |z i − z j|)

yi,j 
1

1+ exp(β − |z i − z j|)

(1−yi,j)
.

Note that if the network is undirected then the product term is taken over i < j instead of i ≠ j.
For the LPCM, in order to represent clustering of nodes in the network, the latent positions Z aremodeled as coming from

a mixture of G multivariate normal distributions.

z i ∼
G

g=1

λg MVNd(µg
, σ 2

g Id), (2)

where λg is the probability that a node belongs to the gth group and Id is the d × d identity matrix. We let λ =
(λ1, λ2, . . . , λG),µ = (µ1

, µ
2
, . . . , µ

G
) and σ 2

= (σ 2
1 , σ

2
2 , . . . , σ

2
G ).

In order to fit the model in a Bayesian setting, the following hierarchical priors are assumed for β, λ, σ and µ:

λ ∼ Dirichlet(ν), (3)

β ∼ Normal(ξ , ψ2), (4)

µ
g
∼ MVNd(0, ω2Id), (5)

and

σ 2
g ∼ σ

2
0 Inverse χ2

α (6)

where the values ξ, ψ2, ν, σ 2
0 , α and ω2 are fixed prior hyper-parameters.

Hence, the posterior of the latent positions and the model parameters is given by,

p(Z, λ, β,µ, σ 2
|Y ) = Cp(Y |β, Z)p(Z |λ,µ, σ 2Id)p(λ|ν)p(β|ξ, ψ2)p(µ|0, ω2Id)p(σ 2

|σ 2
0 , α) (7)

where the proportionality constant C is unknown and therefore the posterior is only known up to proportionality.

1.3. Variational Bayesian inference

We develop a Variational Bayesian inference procedure for approximating the posterior distribution of the latent
variables in the LPCM. This approach facilitates the application of the LPCM to larger networks than is currently possible
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using the existing MCMC methodology for model fitting. The faster algorithm also permits more ambitious exploration of
the model space and the development of richer modeling.

We loosely follow the method of Airoldi et al. (2008) who use a variational approximation to fit a mixed-membership
stochastic blockmodel for networks. A closed form distribution q(Z,K , λ, β,µ, σ 2

|Y ) is formed, with unknown variational
parameters. These parameters are then optimized by minimization of the Kullback–Leibler divergence from q to the true
posterior p given in Eq. (7), which is known only up to proportionality.

The Kullback–Leibler divergence (KL) is defined by

KL = Eq[log(q)] − Eq[log(p)]. (8)

Note that minimization of KL does not require knowledge of the normalization constant of the true posterior because
Eq[log(Cp)] = Eq[log(p)] + log(C) for all C > 0.

This minimization is achieved via an iterative search algorithm that is similar to the Expectation–Maximization
algorithm (Dempster et al., 1977). Although both methods scale as O(N2), the computational overhead required to find the
(potentially local) optimal variational posterior is far less than for sampling basedmethods such asMCMC as the conditional
optimization requires comparatively few iterations to converge to a minimum. This variational posterior is then a closed-
form approximation to the true posterior.

2. Variational Bayesian inference for the LPCM

We apply the Variational Bayesian inference methodology (see Beal, 2003, for example) to the latent position cluster
model for network data. We have succeeded in deriving straightforward updates for a subset of the variational parameters
in our algorithm. The others involve low dimensional numerical optimizations; see Section 2.3 and Appendix B for details.
The non-standard part of the Variational Bayesianmethod for thismodel involves an approximation to the log-likelihood for
the links andnon-links, given the latent positions (see Section 2.2). All other elements of theKullback–Leibler (KL) divergence
calculation are available in the literature, given the form of the variational posterior.

2.1. Specification of the variational model

Using the restricted or quasi Variational Bayesian approach (see for example S̆mídl and Quinn (2006, Section 3.4.3)), we
propose a variational posterior in the same distributional form as the prior, but with unknown variational parameters. This
fully-factorized form is known as a mean-field approximation (see Consonni and Marin, 2007 for details and Armagan and
Zaretzki, 2011 for an important note). Fully-factorized forms are a common choice in Variational Bayesian inference as it
renders tractable the expectations required when evaluating the Kullback–Leibler divergence in Eq. (8).

Wewill distinguish the variational parameters with a tilde. Hence, our variational posterior for the latent position cluster
model for binary interaction networks is of the form:

q = q(Z,K , λ, β,µ, σ 2
|Y )

= q(Z |Z̃, σ̃ 2
)q(K |λ̃)q(λ|ν̃)q(β|ξ̃ , ψ̃2)q(µ|η̃, ω̃2

)q(σ 2
|α̃), (9)

where the six distributions appearing in Eq. (9) are of the same functional form as the priors in Eqs. (2)–(6) respectively.
A variational posterior with fewer terms can be constructed comprising only distributions on the latent positions Z ,

the cluster membership indicators K and the intercept term β . However, we wish to capture as much of the detail in
the original MCMC posterior as possible, hence the inclusion of the other terms. Without these, our variational posterior
would not inform us on the size and location of the groups/clusters. Eq. (9) represents a fully Bayesian variational posterior.
Typically, the factorized variational posterior gives an approximation to the true posterior but has support that is too
compact (see Consonni and Marin, 2007; Bishop, 2006, Section 10.1.2).

The expectation of the log-likelihood with respect to this variational posterior is intractable. We next present an
approximation to this expectation.

2.2. Expectation of the log-likelihood

A tractable approximation of the expected log-likelihood is derived by using a series of three first order Taylor expansions
to get:

Eq[log(p(Y |β, Z))] =
N
i

N
j

yi,jEq[β − |z i − z j|] − Eq

log


1+ exp(β − |z i − z j|)


≃

N
i

N
j

yi,jEq[β − |z i − z j|] − log

1+ Eq[exp(β − |z i − z j|)]


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Fig. 1. Comparison of the accuracy of the approximate expectation given by Eq. (10) and the bound derived in Jaakkola and Jordan (2000). 20 draws from
the variational posterior given themodel fit to Sampson’s monks networkwere drawn. Both approximate expected log-likelihoodswere evaluated at these
latent variable values along with an unbiased, but expensive Monte-Carlo approximation using 1000 samples. The approximate expectations are plotted
against the Monte-Carlo results for various samples from the variational posterior.

=

N
i

N
j

yi,j


ξ̃ −


|z̃ i − z̃ j |

2
+d(σ̃ 2

i + σ̃
2
j )
 1

2


− log


1+ Eq(β)[exp(β)]Eq(z)[exp(−|z i − z j|)]


≃
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i
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j
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2
+ d(σ̃ 2
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2
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 1
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− log
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1+ exp


ξ̃ +

ψ̃2

2
+ Eq(z)[−|z i − z j|]



≃

N
i

N
j

yi,j


ξ̃ −


|z̃ i − z̃ j|

2
+ d(σ̃ 2

i + σ̃
2
j )
 1

2



− log


1+ exp


ξ̃ +

ψ̃2

2
−

|z̃ i − z̃ j|

2
+ d(σ̃ 2

i + σ̃
2
j )
 1

2


. (10)

This approximation is simpler than the variational bound used in Jaakkola and Jordan (2000) and is quicker to compute.
A simple simulation study shows that our approximation is also more accurate (Fig. 1). The three approximations in Eq. (10)
are in fact an upper bound, a lower bound and a lower bound respectively. Following a fit of the LPCM to Sampson’s monks
network (Sampson, 1969), exhaustive Monte-Carlo simulation was used to evaluate the log-likelihood for the network
for various qβ and qz values. These were compared with the approximation in Eq. (10) and the Jaakkola–Jordan bound.
For a derivation of the approximate expected log-likelihood using the Jaakkola–Jordan bound see Appendix A. Unlike the
Jaakkola–Jordan bound, our approximation may return results that are above or below the true log-likelihood but is closer
in expected absolute terms.

2.3. Updating the variational parameters

The variational parameters are optimized to minimize the Kullback–Leibler divergence from q to p. In order to do this,
we compute the approximate KL divergence and then differentiate the resulting expression with respect to each of the
variational parameters in turn.

Before commencing the minimization procedure, an initial configuration of the variational parameters is chosen (see
Section 2.4). The algorithm then iterates through the set of variational parameters performing minimizations with respect
to a subset of the parameters, keeping the remaining parameters fixed. Convergence to a steady state (local minimum on
the KL surface) is reached after a low number of iterations, depending on the convergence criterion used.
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For the variational parameters λ̃, η̃, ω̃2, a closed formupdate equationwas found. For all other variational parameters, nu-
merical optimizationwas required. A fast bracketing-and-bisection algorithm (e.g. Press et al., 1992, Chapter 9.1)was used to
find theminimumKL divergence for each scalar variational parameter. The latent position variational means z̃ i are d dimen-
sional variables and are optimized in our algorithm using a conjugate gradient routine (e.g. Press et al., 1992, Chapter 10.6).

The mathematics relating to the variational approximation to the LPCM for networks is provided in Appendix B. This
includes calculation of the KL divergence terms, all first order partial derivatives with respect to the variational parameters
and the analytical update equations, where available.

The Variational Bayesian inference algorithm proceeds via iterative conditional minimization as outlined below and is an
example of Variational Bayes Expectation Maximization. Analytical updates are available only when the partial derivative
of the Kullback–Leibler divergence set equal to zero is re-expressible with the updated term appearing only on one side.
Otherwise, a more complicated equation with multiple instances of the updated term is found and numerical optimization
must be used (see Section 2.2). In cases where the term being updated is a vector or a matrix the entries are cycled through
in a random order for each iteration of the variational algorithm.

• initialize z̃ i, σ̃
2
i , λ̃i,g , ν̃g , ξ̃ , ψ̃

2, η̃
g
, ω̃2

g , α̃g for all i, g .
• repeat in a randomized order:

– update ξ̃ via bisection.
– update ψ̃2 via bisection.
– update Z̃ via conjugate gradient.
– update η̃ via analytical function.

– update σ̃ 2 via bisection.
– update λ̃ via analytical function.
– update ω̃2 via analytical function.
– update α̃ via bisection.
– update ν̃ via bisection.
• until convergence.

2.4. Initialization method

The use of a good initialization of the variational parameters is crucial to the Variational Bayesian method because the
Kullback–Leibler divergencemay containmultiple localminima. Starting the algorithm at different values for the variational
parameters and updating as per Section 2.3 demonstrates that the algorithm is prone to convergence to local minima.
Furthermore, the closer the initial values are to the optimum, the fewer iterations will be required for convergence.

There are two desirable criteria for the initial configuration: the initialization procedure should be fast and the resul-
tant configuration should be as close as possible to the global minimum; this will minimize the chances of the iterative
updates becoming stuck in a local minimum. The obvious choice is to use the Maximum Likelihood estimates for the la-
tent positions and the intercept parameter and to apply a clustering algorithm to these. Using latentnet we obtain these
estimates on a 3 GHz processor machine in 7.2 s for Sampson’s monks dataset (18 nodes). We consider this too slow, and
therefore present an approximation to the MLEs for the latent positions and the intercept that is an iterative optimiza-
tion. Our method delivers results similar to the MLEs in a much shorter time (0.38 s for the same dataset on the same
machine).

Our initialization procedure is inspired by the Fruchterman and Reingold (1991) network visualization method, which
updates a random initial configuration by allowing inter-node forces to act on the nodes. Within the Fruchterman–Reingold
method, attractive forces exist between linked nodes which are assumed to be analogous to a spring force. A repulsive force
which is analogous to an electrical force exists between all node pairs, whether linked or not.

We adapt the Fruchterman–Reingold method to find initial positions for nodes in the latent space. The method uses the
log-likelihood terms for these forces; i.e. there is an attractive force between linked node pairs i and j equal to β − |z i − z j|
and a repulsive force between all node pairs equal to log


1+ exp(β − |z i − z j|)


. The positions Z are randomly initialized

and then, cycling through all z i, z j pairs, the forces are calculated and the positions updated accordingly. After a number of
cycles, the intercept parameter β is updated via maximum-likelihood. These steps may be iterated until convergence. This
is followed by the use of the model-based clustering methods implemented in mclust (Fraley and Raftery, 2000, 2003) for
the initialization of the clustering variables.

The comparison between this initialization method and the direct optimization of the log-likelihood may be extended
to a comparison between our overall method and a direct optimization of the total Kullback–Leibler divergence. Again, as
speed is ourmajor concern in this workwe prefer the iterative algorithmwe have presented in Section 2.3 to a simultaneous
optimization over all parameters, using off-the-shelf software. Indeed, since the closed-form Variational approximation to
the full-posterior is a product of independent parts, ourmethodmay be thought of as a conjugate descent algorithm, tailored
to the LPCM.
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2.5. Case-control approximation to the likelihood

Raftery et al. (in press) demonstrate an approximation to the log-likelihood that enables MCMC based inference for the
LPCMon larger networks. This approximation involves stratified case-control sampling of the non-links so that the algorithm
scales as O(N). The computational bottleneck in the LPCM (as in all statistical models of networks) lies in calculating the
likelihood as this involves indexing over all possible pairs of nodes which is an O(N2) calculation which must be performed
every time the likelihood is calculated. The case-control approximation replaces the likelihood with a term that is quicker
to compute due to the sparsity of the network. All links are considered but a random sample of non-links are used; this is
because most of the information is carried by the links.

A stratification depending on geodesic distance between the non-linked nodes in the network is employed. Within each
stratum a random sample of node pairs is considered, rather than the full cohort. In Raftery et al. (in press) they use a set
small number of samples per stratum; in our work we decided on a fixed proportion: e.g. for the nodes that are not linked
and have 3 degrees of separation we sample 10% of all possible dyads if we set our sample ratio to 0.1. This proportion can
be set as a trade off between speed and accuracy with 1 being the full likelihood calculation. Our experimentation with
this approximation is in agreement with Raftery et al. (in press) that it works well. Although our R package VBLPCM makes
use of this approximation as an option, we do not employ it in obtaining the results in the next section in order to avoid
confounding between it and the approximation inherent in using Variational Bayes.

3. Results

We examine a subset of the Irish blogoshphere; the data come from Wade et al. (2011) and comprise 604 blogs based
in Ireland. This is a set of blogs surrounding recipients of 2010 Irish Blog Awards. We examine a network based on the
‘‘blogroll’’. This is the list of links arising from the template for the blog (as such it is nearly static and we examine a single
snapshot). They are the other blogswhich the blogger chooses to list as recommended. There are a total of 4640 such blogroll
links in the network. Such a large network cannot be practically analyzed using the existing MCMC methodology.

3.1. Goodness-of-fit plots

Following Krivitsky and Handcock (2008), we present analysis of our algorithm and the model using goodness-of-fit
visualizations based on a comparison of high-order statistics of random networks simulated from the fitted model. The
model appears to capture the correct in-degree structure, performing less well on out-degree. The minimum geodesic
distances of networks simulated from the fitted model tend to over-sample paths of length 2 and 3 but capture paths of
other lengths well. Naturally, these results summarize the fit of the LPCM to the data and do not validate our Variational
Bayesian algorithm as such; we present the result as an example of an interesting dataset that is amenable to the LPCM but
which requires the use of an algorithm more scalable than MCMC. For example, an out-degree of zero is the most common
out-degree in the data, but this is due to not all blogs using the blogroll option to list blogs they are interested in, a fact that
is not accounted for by the LPCM. One possible correction for this would be to treat as missing all out-links from blogs with
an out-degree of zero. Similarly, the low end of the Edgewise Shared Partner distribution is not captured well (see Fig. 2).

3.2. Groups in the blogosphere

Wade et al. (2011) performed a text-based classification of the content of the blogs using an ensemble non-negative
matrix factorization algorithm (Greene et al., 2008) and found 12 groups across 475 of the nodes, with the rest labeled
unknown. Comparisons between these textual analysis based groupings and the clusters found by our Variational Bayes
algorithm are favorable; in fact we obtain over 69% of total agreement when we model 12 clusters in 3-dimensional latent
space with social effects. We calculate this value as the mean percentage of maximally assigned blogs: i.e. we look at each
group based on the textual analysis in turn; for that group we then examine the vector of maximally assigned cluster
memberships (hard-clusterings) obtained fromour algorithm; the final comparison is themeanpercentage of blogs correctly
assigned by our algorithm. As a control, we randomly generated fifty networks and found a mean agreement of 22.87% with
a standard deviation of 2.24%. The text-based classifications do not represent a ground truth validation; the large level of
agreement between the two complementary methods merely illustrates the interesting result that the blogroll tends to list
blogs of similar textual content.

3.3. Exploration of the model space

Model comparison techniques are required to select the number of groups (G) in the Latent Position Cluster Model.
Following Handcock et al. (2007), this can be done by selecting the lowest value of the Bayesian Information Criterion (BIC)
(Schwarz, 1978) for the number of groups. Using the same calculation of the BIC given in Section 4 of Handcock et al. (2007),
we present results for the blogs dataset in a latent space of dimension 2 in Fig. 3. We used multiple random restarts to
avoid convergence to a local minimum of the Kullback–Leibler surface. A 25 group model is selected but the BIC has several
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Fig. 2. Goodness of fit diagnostic plots for the blogs dataset with social effects. The heavy line represents summary statistics for the observed network.
The boxplots superimposed summarize the same statistics across 100 networks generated from the posterior for all latent variables of the model given the
observed network.

Fig. 3. BIC versus G plot for MCMC and Variational Bayesian inference for the blogs data in 2 latent space dimensions. The 25 group model is selected.

local minima between 10 and 35. This phenomenon is not unexpected; for example, a highly connected set of nodes may
be readily modeled using 1 or 4 equi-size spherical groups but less easily so using 2 or 3.

4. Discussion

We have presented a Variational Bayesian algorithm to lessen the computational burden associated with Bayesian
analysis of social networks using the Latent Position Cluster Model. Although our method is approximate, it captures the
essentials of the current standard MCMC methodology with much less computational burden.

Our algorithm converges in a short number of fast iterations so we can analyse larger graphs than are possible with
the MCMC method. Our primary contribution is thus to present a practical inference methodology for the LPCM rather
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than development of a new model for network data. Although we have only discussed our method in terms of binary
link data, our method extends readily to other network data types (as does the MCMC based methodology). Our R
package for fitting the LPCM using our Variational Bayes algorithm is available on the CRAN R repository at http://cran.r-
project.org/web/packages/VBLPCM/index.html.
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Appendix A. Jaakkola–Jordan Bound

Starting out with the Jaakkola and Jordan (2000) paper (and subbing−x for x):
− log(1+ exp(x)) = log (g(−x))

= −
x
2
− log


exp

 x
2


+ exp


−

x
2


= −

x
2
+ f (x). (A.1)

Note that f (x) is convex in x2, not x. Use a first order Taylor expansion in x2 to get a lower bound:

f (x) ≥ f (a)+
∂ f (a)
∂a2

(x2 − a2)

= −
a
2
+ log(g(−a))+

1
4a

tanh
 a
2


(x2 − a2) (A.2)

which is Eq. (6) in Jaakkola and Jordan (2000).
We can now use this bound in finding the expectation w.r.t. q(β, Z) of − log(1 + exp(β − |z i − z j|)) by setting x to be

β − |z i − z j|.
We expand around the expectation of β − |z i − z j| squared: i.e. set

a = ξ̃ −

|z̃ i − z̃ j|

2
+ d(σ̃ 2

i + σ̃
2
j )
 1

2 . (A.3)
Therefore:
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
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
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(β − |z i − z j|)

2
+ f (β − |z i − z j|)

≥
(β − |z i − z j|)

2
+ f (a)+

∂ f (a)
∂a2

(x2 − a2)

= −
(β − |z i − z j|)

2
−

a
2
+ log(g(−a))+

1
4a

tanh
 a
2


(x2 − a2)

= −
(β − |z i − z j|)

2
−

a
2
+

a
2
− log


exp

 a
2


+ exp


−

a
2


+

1
4a

tanh
 a
2


(x2 − a2)

= −
(β − |z i − z j|)

2
− log


exp

 a
2


+ exp


−

a
2


+

1
4a

tanh
 a
2


(x2 − a2). (A.4)

We require the expectation of the above, w.r.t. q(β) and q(Z). There are still occurrences of x = β − |z i − z j| in this
equation. The expectation of x is a. The expectation of x2 − a2 is:

E[β2
+ |z i − z j|

2
− 2β|z i − z j| − a2] = ξ̃ 2 + Ψ̃ 2

+ |z̃ i − z̃ j|
2
+ d(σ̃ 2

i + σ̃
2
j )− 2ξ̃


|z̃ i − z̃ j|2 + d(σ̃ 2

i + σ̃
2
j )− a2

= ψ̃2. (A.5)
Eq. (A.4) then becomes:

−
a
2
− log


exp

 a
2


+ exp


−

a
2


+

1
4a

tanh
 a
2


(Ψ 2). (A.6)

This is the approximation used in the simulation experiment depicted in Fig. 1.

http://cran.r-project.org/web/packages/VBLPCM/index.html
http://cran.r-project.org/web/packages/VBLPCM/index.html
http://cran.r-project.org/web/packages/VBLPCM/index.html
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Appendix B. Variational parameter updates

B.1. Kullback–Leibler divergence

KLq∥p = Eq[log(p)] − Eq[log(q)]. (B.1)

Setting the notation that:

p̂i = Eq[log(pi)]. (B.2)

q̂i = Eq[log(qi)]. (B.3)

Note that the log of the factorizable p and q posteriors is a sum of logs.
It now remains to find the sum of p̂1, p̂2, q̂2, p̂3, q̂3 with the differences p̂4− q̂4, p̂5− q̂5, p̂6− q̂6, p̂7− q̂7 simply available

from the literature on Kullback–Leibler divergences between these forms of distributions (the other terms involving more
than one expectation over the model parameters). Note that p̂i is the expected log-likelihood.

KLq∥p = p̂1 + p̂2 − q̂2 + p̂3 − q̂3 + (p̂4 − q̂4)+ (p̂5 − q̂5)+ (p̂6 − q̂6)+ (p̂7 − q̂7). (B.4)

p̂1 =
N
i

N
j

yi,jEq2,5 [β − |z i − z j|] − Eq2,5


log


1+ exp(β − |z i − z j|)


≃

N
i

N
j

yi,jEq2,5 [β − |z i − z j|] − log

1+ Eq2,5 [exp(β − |z i − z j|)]


=

N
i

N
j

yi,j


ξ̃ −


|z̃ i − z̃ j|

2
+ d(σ̃ 2

i + σ̃
2
j )
 1

2


− log


1+ Eq5 [exp(β)]Eq2 [exp(−|z i − z j|)]


≃

N
i

N
j

yi,j


ξ̃ −


|z̃ i − z̃ j|

2
+ d(σ̃ 2

i + σ̃
2
j )
 1

2


− log


1+ exp


ξ̃ +

ψ̃2

2
+ Eq2 [−|z i − z j|]



≃

N
i

N
j

yi,j


ξ̃ −


|z̃ i − z̃ j|

2
+ d(σ̃ 2

i + σ̃
2
j )
 1

2


− log


1+ exp


ξ̃ +

ψ̃2

2
−

|z̃ i − z̃ j|

2
+ d(σ̃ 2

i + σ̃
2
j )
 1

2


. (B.5)

p̂2 = Eq3,7,6,2 [log(p2)]

= Eq3,7,6,2


−

N
i

(z i − kiµ)
T (z i − kiµ)

2kiσ 2
− d log kiσ

2


+ constant

= Eq3,7,6


−

N
i

σ̃ 2
i +

(z̃ i − kiµ)
T (z̃ i − kiµ)

2Kiσ 2
− d log kiσ

2


+ constant

= Eq3,7


−

N
i

σ̃ 2
i + kiω̃

2
+
(z̃ i − kiη̃)

T (z̃ i − kiη̃)

2Kiσ 2
− d log kiσ

2


+ constant

= Eq3


−

N
i

kiα̃
2σ 2

0


σ̃ 2
i + kiω̃

2
+ (z̃ i − kiη̃)

T (z̃ i − kiη̃)

+ dΨ


kiα̃
σ 2
0


+ constant

=

G
g

N
i

λ̃i,g


dΨ


α̃g

σ 2
0


−

α̃g

2σ 2
0


σ̃ 2
i + ω̃

2
g + (z̃ i − η̃g)

T (z̃ i − η̃g)

+ constant. (B.6)

p̂3 =
G
g

N
i

λ̃i,g


Ψ

ν̃g

− Ψ


G
j

ν̃j


(Schervish, 1995). (B.7)

−q̂2 =
N
2


1+ log(2π)+

d
2

N
i

log(σ̃ 2
i )


. (B.8)

−q̂3 = −
G
g

N
i

λ̃i,g log(λ̃i,g). (B.9)
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p̂4 − q̂4 = − log


Γ


g

ν̃g


+ log


Γ


g

νg


+


g

(log(Γ (ν̃g))− log(Γ (νg))− (ν̃g − νg)(Ψ (ν̃g)− Ψ (νg))). (B.10)

p̂5 − q̂5 =
1
2


d log


ψ̃2

ψ2


− d


ψ̃2

ψ2


−
(ξ̃ − ξ)T (ξ̃ − ξ)

ψ2
+ d


. (B.11)

p̂6 − q̂6 =
G
g

1
2


d log


ω̃2

g

ω2


− d


ω̃2

g

ω2


−

(η̃
g
− 0)T (η̃

g
− 0)

ω2
+ d


. (B.12)

p̂7 − q̂7 =
G
g

log

Γ


α̃g

2


− log


Γ

αg

2


+
(αg − α̃g)

2


Ψ


α̃g

2


. (B.13)

B.2. First order partial derivatives

with a = ξ̃ −

(z̃ i − z̃ j)

T (z̃ i − z̃ j)+ d(σ̃ 2
i + S2j )

 1
2 :

∂KL
∂ z̃ i
=

N
j

z̃ i − z̃ j
a

yi,j −
1

1+ exp

−a− ψ̃2

2


+ G
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(η̃
g
− z̃ i)λ̃i,g

α̃g

2σ 2
0
. (B.14)
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∂σ̃ 2
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=


j
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σ̃ 2
i


1+ exp


−a− ψ̃2

2
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i
. (B.15)
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
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0
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α̃g

2σ 2
0
(σ̃ 2
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2
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j
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− 1− log(λ̃i,g). (B.16)
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λ̃i,g
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0
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−

1
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− 0)T . (B.17)
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=
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i

−
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2σ 2
0
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2ω2
+
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∂KL
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=
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λ̃i,g


d
σ 2
0
Ψ ′

α̃g

2σ 2
0


−

1
2σ 2

0
(σ̃ 2

i + ω̃
2
g + (z̃ i − η̃g)

T (z̃ i − η̃g))


+
(α̃g − αg)

2
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
α̃g

2


− Ψ


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2


+

Ψ


α̃g
2


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
Γ


α̃g
2

 . (B.19)

∂KL
∂ν̃g
=

N
i

λ̃i,g


Ψ ′(ν̃g)− Ψ

′


G
j

ν̃j


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
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j
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′(ν̃g). (B.20)

∂KL
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=

N
i
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j

yi,j −
1

1+ exp

−a− ψ̃2

2
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. (B.21)

∂KL

∂ψ̃2
= −

1

2

1+ exp


−a− ψ̃2

2

 + D
2


1

ψ̃2
−

1
ψ2


. (B.22)

Eqs. (B.16)–(B.18)may be updated directly. The Z̃ are optimized using conjugate gradient. Updates based onminimization
are denoted with an←. Others are with an = sign. Thus:

z̃ i ← minimize KL(z̃ i)w.r.t. z̃ i using Eq. (B.14). (B.23)
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σ̃ 2
i ← minimize KL(σ̃ 2

i )w.r.t. σ̃ 2
i using Eq. (B.15). (B.24)

λ̃i,g ∝ exp


−1+ Ψ


α̃g

2σ 2
0


−

α̃g

2σ 2
0
(σ̃ 2

i + ω̃
2
g + (z̃ i − η̃g)

T (z̃ i − η̃g))+ Ψ (ν̃g)− Ψ


G
j

(ν̃j)


. (B.25)

η̃
g
=

N
i
λ̃i,g

α̃g

2σ 2
0
z̃ i +

0
2ω2

N
i
λ̃i,g

α̃g

2σ 2
0
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1
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. (B.26)

ω̃2
g =


N
i
(λ̃i,g α̃g)

dσ 2
0
+

1
ω2


−1

. (B.27)

α̃g ← minimize KL(α̃g)w.r.t. α̃g using Eq. (B.19). (B.28)

ν̃g ← minimize KL(ν̃g)w.r.t. ν̃g using Eq. (B.20). (B.29)

ξ̃ ← minimize KL(ξ̃ )w.r.t. ξ̃ using Eq. (B.21). (B.30)

ψ̃2
← minimize KL(ψ̃2)w.r.t. ψ̃2 using Eq. (B.22). (B.31)
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