Strategic Intellectual Property Protection Policy and North-South Technology Transfer

Alireza Naghavi, University College Dublin

WP03/13

April 2003
Strategic Intellectual Property Protection Policy and North-South Technology Transfer#

Alireza Naghavi*

University College Dublin

November 2002

Abstract

I analyze the welfare implications of protecting intellectual property rights (IPR) in developing countries through its impact on innovation, market structure, and technology transfer. FDI, tariffs, and joint ventures (JV) are introduced to the strategic IPR literature. In a North-South trade environment, the South sets the IPR policy strategically by anticipating the Northern firm’s R&D expenditure and multinationalization decision. A stringent IPR policy is always chosen in order to motivate technology transfer through FDI, which in turn improves welfare. JVs bring in more profits for the Southern firm, but FDI is the optimal form of transfer in terms of welfare.

JEL classifications: O34, F23, F13, L13, O32, L11, O38

Keywords: intellectual property rights; technology transfer; multinational firms; joint ventures; North-South trade

I am grateful for invaluable comments and extensive guidance and support by Peter Neary while working on this paper. Financial support from the Institute for the Study of Social Change at University College Dublin is gratefully acknowledged.

* Department of Economics, University College Dublin, Belfield, Dublin 4, Ireland. e-mail: alireza.naghavi@ucd.ie. telephone: ++353-86-309-5425.
1. Introduction

Protection of intellectual property rights (IPR) has been an issue of rising interest in both industrialized and developing nations. The controversies tend to cluster on the relatively new Trade Related Aspects of Intellectual Property Rights (TRIPS) agreement of the Uruguay round of GATT which has called for a standardization of IPR protection among all members of the World Trade Organization (WTO) and potential new entrants. It requires developing countries to raise their intellectual property protection level to the standard in force in industrialized nations at the time of negotiation\(^1\). The agreement was a consequence of complaints and lobbying undertaken by technology intensive firms in the North claiming to have lost billions of dollars through infringement of their property rights due to loose IPR protection regimes in the South. These firms urged the WTO to bring this issue into the ambit of GATT, arguing that weak IPR protection lowers trade volume, distorts trading patterns, and deters firms from transferring technology abroad. Developing countries have however continuously resisted adopting stronger IPR legislation and its enforcement with the fear that foreign interests would be the only beneficiaries of such policies at the expense of domestic consumers. For instance, South Africa has refused to abide by the TRIPS agreement with regard to drugs for HIV/AIDS, claiming that the prices are too high given the present living standards in the country. Is such behavior rational

\(^1\) TRIPS does however offer flexibility for developing countries and economies in transition. This is exactly what different levels of IPR protection can be interpreted as. For example, they are granted a four-year transition period (10 years for least developed countries extendible upon request) to adapt to the required obligations with an additional five years for technology-oriented product patents not protected at the date of agreement (braga, et al., 2000).
when it has a direct effect on the behavior of multinational pharmaceutical companies and could it be justified in terms of welfare in the long run?2

The literature on IPR has experience a number of phases with an erratic nature, shifting back and forth from views strongly against protecting IPR to opinions solidly in its favor verifying the need for such policies in a rapidly integrating world. In the early 1990s theoretical economists highlighted the negative consequences of such policies for the South. They showed the static welfare effects of IPR protection by examining the trade-off between the incentives it creates to innovate and the monopoly market power it yields to innovators.3 A sharp rise in international investments in the 90’s and a remarkable increase in the degree of IPR protection in the same period has nonetheless raised inquisitiveness about the link between technology transfer and IPR protection.4 This led the IPR literature to a turn in favor of IPR protection by analyzing firms’ decision on the form and the amount of technology transfer to the South. Helpman (1993), Lai (1998), and Yang and Maskus (2001) were among these papers and used endogenous growth models to show that protecting IPR could benefit the South by increasing the flow of technology

2 It can be argued that this particular case is of explicit nature as it involves human life concerns with sympathizing groups around the world demanding life before profits. Yet, South Africa was sued for the violation of IPR by the world pharmaceutical industry. Leading pharmaceutical companies have however recently withdrawn from the case and agreed to cut the prices of HIV/AIDS drugs for South Africa by more than 70%. (http://www.cptech.org/ip/health/sa/)

3 Chin and Grossman (1990) and Deardorff (1992) clearly displayed these trade-offs in a static welfare analysis. It was shown that the North always wins and that the South generally loses by adopting a patent policy from the North. Helpman (1993) extends the static welfare analysis to a dynamic general equilibrium model to find that stronger IPR protection hurts the South not only by diminishing its terms of trade and causing less efficient allocation of production, but also by slowing the rate of innovation in the long run.

4 See Maskus (1998) for empirical evidence.
to the South. This branch of IPR literature has however only explored the consequences of IPR protection on the rate of innovation and the rate of multinationalization neglecting the implications of the results on Southern welfare. Yet in the last couple of years attention has once again been focused on the welfare implications of TRIPS and literature has again turned against globally harmonized IPR standards. Recent interesting works such as Lai and Qiu (2001) and Grossman and Lai (2002) for example show the adverse effects of IPR protection for the South in a trade environment. Although they use a rich model to derive the welfare implications, they share the same feature as the skeptical literature of the early 1990’s that FDI and technology transfer play no role in the analyses.

This paper fills in this gap and presents a welfare analysis explicitly for the South that embodies the consequences of the Southern IPR policy on technology transfer as well as market structure and incentives to innovate. The results not only reinforce the optimistic views on IPR protection

5 The first basic model of this was introduced in the last section of Helpman (1993) to include FDI. It was shown that with exogenous innovation, FDI rises with a tightening of Southern IPR protection. Lai (1998) extended the model to show that when FDI is the channel of transfer, the rate of innovation also increases along with the rate of FDI as a result of a tighter IPR protection policy. Glass and Saggi (2002) however argued that imitation is a costly activity and came up with the exact opposite results with falling rates of innovation and FDI as a cause of wasted scarce resources in the South. Yang and Maskus (2001) showed that when the channel of diffusion is licensing, both rates of innovation and technology transfer increase for several reasons including less transfer costs and less rent sacrifice for the licensor to prevent possible imitation by the licensee.

6 These papers apply patent length as opposed to the level of spillover as an indicator of IPR protection.

7 Recent empirical work by McCalmen (2001) also suggests that the South has been worse off with the TRIPS agreement using the resulting transfers of income from the South to the North as evidence. Gains from FDI and technology transfer are also absent in his analysis.
that suggest an increase in technology transfer, but also show that the latter brings about a welfare gain for the South.

The first paper written on IPR in the context of strategic behavior by firms was Chin and Grossman (1990). It showed that enforcing full IPR protection hurts the South while leading to a welfare gain for the North. Zigic (1998) extended this model to allow for different levels of IPR protection and found that while this conflict holds when R&D efficiency is low, the interests could actually be in congruence for moderate and high R&D efficiency levels. The model presented in this paper takes a step further and endogenizes Southern IPR protection policy, Northern firm’s multinationalization decision and the tariff regime in the South. Shedding light on these three missing points in the strategic IPR literature, it overturns the results attained in existing literature that show the South to generally lose from practicing adequate IPR protection. This paper shows rather that the South gains or at least never loses from enforcing a stringent IPR protection regime. Additionally, the possibility of joint ventures (JV) is for the first time introduced to the IPR literature.

First, I apply an optimal IPR protection policy set strategically by the South. In both papers mentioned above, the firms compete in a two-stage game. The Northern firm chooses the optimal level of R&D in the first stage and the firms compete in the second stage with the level of IPR protection exogenous. There is no endogenous Southern IPR policy anticipating the channel chosen by the Northern firm to serve the Southern market. The latter can be summarized as a decision whether to allow technology transfer to take place by going multinational or not. Such concerns over technology transfer cannot be neglected, as they can be the only means of enhancing growth and prosperity in many FDI-hungry low-income countries. Exactly these countries appear to be those considered as the South in the above papers because they are assumed to be incapable of engaging in any R&D activity. Also, examples in the real world such as the South Africa case show that governments in the South do possess the authority to choose
their IPR regime, although they may have to face the consequences of choosing a policy discordant with the WTO agenda. I add an extra stage to the game allowing the Southern government to choose the level of IPR protection strategically to maximize welfare.

The Northern firm is given a choice of several channels to serve the Southern market. It could obstruct exposure of its technology to the South by producing in the North and exporting to the South. It can alternatively avoid trade costs by going multinational, though this could cause a spillover of its innovative technology to the Southern firm. The level of cost reduction in production enjoyed by the Southern firm depends on the degree of the spillover, which in turn is directly determined by the IPR protection level in the South. Once FDI has been undertaken, the Northern firm can still deter entry by choosing the exact level of R&D investment that makes it unprofitable for the South to produce.

The model also includes an optimal tariff put on imports from the North. Although tariffs have been neglected in most strategic IPR literature including Chin and Grossman (1990) and Zigic (1998), they are essential when dealing with developing countries, which are the most likely candidates to enforce a protectionist trade policy. I introduce tariffs as an extra cost endured by the Northern firm if it decides to punish the lack of IPR protection by exporting to the South. It is set after the IPR protection level to separate trade policy from IPR policy in the South. 8

Firms in industrial countries can also decide to form North-South JVs to bypass investment regulations in the South or to share risks involved in entering a new market. It could also be profitable to enter a JV agreement to avoid tariff and FDI fixed costs by taking advantage of the

8 Tariffs are legally left more flexible by the WTO for antidumping measures. The opposite holds for IPR protection as it they can by no means be used as an instrument for reciprocal action against tariffs or any other policy. It will be seen that such timing also avoids the unrealistic application of tariffs as a tool for the South to leave the Northern firm no alternative but FDI despite practicing weak IPR protection.
already existing resources in the South. An extension is introduced by including this option as means of moving production to the South, giving firms the chance to cooperate through a “take it or leave it” JV proposal made by the Northern firm. The proposal consists of an offer on the share of profits that leaves the Northern firm at least as well off as under the non-cooperative equilibrium. The Southern firm then accepts the offer if it brings higher profits than competition against the Northern multinational. If accepted, the JV is only approved if Southern welfare is not lower than the level attained under the non-cooperative equilibrium.

The game takes place in five stages. In the first stage, the Southern government strategically sets the optimal IPR protection level. In the second stage, the Northern firm decides its mode of supply, namely whether to export or to move production to the South. The South sets tariffs in the third stage. The Northern firm then invests in R&D according to its decision made in the second stage and finally firms engage in production. The extension on cooperation is then brought into the game by giving the Northern firm the extra option of a JV. The JV offer is made in the second stage and only goes through if the Southern government accepts the offer. Due to the full information aspect of the model, the cooperation game takes a simultaneous nature.

The rest of this paper is structured as follows: section 2 presents the basics of the model following Chin and Grossman (1990) and Zigic (1998) and briefly examines the final stage of the game on production. Section 3 describes the scenarios facing the Northern firm regarding its decisions on R&D investment, which in turn depends on the path it takes regarding the supply mode in the second stage. In case of exports, optimal tariffs used by the South are also introduced. Section 4

9 See Miller, et al., (1996) for a complete explanation of incentives for the Northern firm to enter in a JV with a established firm in the South.

10 This restriction is only made because the paper attempts to find the optimal policies for the South.

11 As there is no uncertainty in the model, the Northern firm can calculate the Southern problem and is fully aware if its offer will be accepted or not.
focuses on the welfare maximization problem faced by the Southern government in the first stage with IPR policy as its instrument. Section 5 introduces the possibility of JVs and shows whether it could be an equilibrium outcome. Section 6 concludes the paper.

2. The Model

2.1. Basic Assumptions

There are two countries North and South: one firm resides in each country. The firms produce a single homogeneous good and compete in a Cournot duopoly setting. Only the Northern firm is capable of engaging in R&D aimed at improving the production technology.\(^{12}\) R&D reduces costs of production at a diminishing rate. Knowledge gained through R&D is assumed to have a public good character and can be imitated at zero cost.

A familiar linear inverse demand (market clearing price) \(P = A - Q \) is used where \(A \) represents the size of the market and \(Q \) the total quantity produced by the North and the South: \(Q = q_n + q_s \). As the market of interest here is the Southern market, it is assumed that the Northern firm exports all of its production to the South. Alternatively, the Northern subsidiary and the Southern firm both produce only for the domestic (Southern) market. In other words, we are looking at goods particularly targeted for the South. Southern consumer surplus is found by solving for the area under the demand curve:

\[
S = \frac{(q_n + q_s)^2}{2}. \tag{1}
\]

On the supply side, the costs of production for the Northern and the Southern firm are respectively

\[
C = \alpha - (gx)^{1/2}, \tag{2}
\]

\[
c = \alpha - \beta(gx)^{1/2}, \tag{3}
\]

\(^{12}\) This assumption can be justified by the fact that less than 1% of existing patents are held by developing countries. (See appendix C in Zigic (2000) for the R&D expenditures statistics of the North and the South)
where \(x \leq \alpha^2/g, A > \alpha, \) and \(0 \leq \beta \leq 1; \) parameter \(\alpha \) reflects pre-innovative basic unit costs, \(\beta \) is the strength of IPR protection in the South which causes a North-South spillover of knowledge (with \(\beta = 0 \) reflecting full protection/no spillover and \(\beta = 1 \) no protection/full spillover), \(g \) is the efficiency of the R&D process, and \(x \) measures the level of R&D investment which reduces production costs.

The timing of the game is illustrated in figure 1. Actions by the South are shown in white boxes while those of the Northern firm are specified with shaded boxes. I start by briefly explaining the fifth stage of the game, namely the production stage, where the firms compete in quantity.

2.2. Production

Under no cooperation, the Northern firm maximizes operating profits \(q_n(P-C) \) less research expenditure \(x \) and, in the case of exports, the total tariff costs \(t q_n \). Its maximization problem can therefore be written as

\[
\max_{q_n} \pi_n(x) = [A - (q_n + q_s)]q_n - Cq_n - t q_n - x.
\]

The optimal quantity produced for exports is derived by solving for \(q_n \) from the first order conditions of (4) and setting \(q_s \) to zero\(^{13} \) giving

\[
q_{nm}^*(x) = \frac{A - \alpha + (gx)^{1/2} - t}{2},
\]

where subscript \(m \) denotes monopoly exporting. If FDI is the outcome, the Northern firm solves (4) with \(t = 0 \) and the Southern firm simply maximizes operating profits in the same stage with its problem being

\[
\max_{q_s} \pi_s(x) = [A - (q_n + q_s)]q_s - c q_s.
\]

\(^{13}\) Exporting gives the Northern firm a monopoly position as the Southern firm is assumed to be incapable of acquiring the production technology unless the Northern firm moves production to the South (see section 3.1).
The optimal quantities produced by each firm in a duopoly outcome are

\[
q_{nf}^* (x) = \frac{A - \alpha + (2 - \beta)(gx)^{1/2}}{3} \quad \text{and} \quad q_{sf}^* (x) = \frac{A - \alpha - (1 - 2\beta)(gx)^{1/2}}{3}
\]

(7)

for the Northern and the Southern firm respectively where subscript \(f\) stands for FDI. The optimal R&D investment and profits are found for exports and FDI in the next section. The Northern firm then compares the profits under each scenario to decide which strategy to use to serve the Southern market.

3. Northern firm’s Multinationalization Problem

3.1 Export

If the Northern firm has high concerns about the infringement of its technology, it could decide to keep production in the North and export the final goods to the South. Exporting serves as an indirect punitive act by the Northern firm to avoid the imitation of its technology. Such responses, i.e. exporting rather than moving production to the South, are reconfirmed by Smarzynska (1999) who provides empirical evidence indicating that weak IPR protection deters foreign investors from undertaking local production and shifts them towards distribution of imported products.

It is assumed that if goods rather than the technology are imported, it is too costly and therefore impossible for the South, which is in possession of no R&D resources, to invent around the patent \((\beta = 0)\). Additionally, access to basic production technology can itself only be gained once production has been moved to the South \((q_s = 0)\). Hence, the Northern firm monopolizes the market by this option. \(^{14}\)

\(^{14}\) As the paper focuses on process innovation (patent of technology) rather than product imitation, I do not consider cases in which no R&D is required to produce the good \((g = 0)\) where goods can be imitated (reproduced) even when they are imported. The CD industry could for example reflect such cases of zero R&D efficiency where pirating could result from the lack of IPR protection in the South even when goods are imported from the North.
While saving its technology from being imitated, exporting brings about extra trade costs for the Northern firm. The only other IPR-related strategic literature to my knowledge that relates tariffs to IPR is Zigic (2000). The paper introduces strategic trade policy into the IPR context; however, it only focuses on Northern welfare and leaves out the implications for the South. A punitive tariff is imposed on goods exported back to the North to deal with the violation of property rights in the South. Alternatively, I use tariffs as an extra cost for the Northern firm if it chooses to serve the Southern market through exports. Its problem could be thought of as a trade-off between trade costs and losses caused by imitation.

If exporting is the non-cooperative outcome, \(x \) can be found from the first order condition of (4) using \(q_{nm}^* \) as the quantity produced. In order to simplify the comparison between the upcoming equations, I normalize the unit tariff rate \(t \) by the size of the market and refer to it as \(0 \leq \tau \leq 1 \) to get \(t = \pi (A-\alpha) \). Using this in (4) and (5), the optimal level of R&D investment turns out to be

\[
x_m^*(\tau) = \frac{g(1-\tau)^2}{(4-g)^2}.
\]

(8)

It can be seen in (8) that, given \(g \), R&D expenditure \(x_m \) is always falling in \(\tau \). Substituting (5) and (8) into (4), optimal Northern profits can be derived for the case of exports:

\[
\pi_{nm}^*(\tau) = \frac{(1-\tau)^2}{4-g}.
\]

(9)

Notice that Northern profits are independent of the IPR regime in the South \(\beta \) as there is no exposure to imitation. Profits obviously fall with higher tariff rates \(\tau \).

In the third stage, which is only relevant if the Northern firm decides to export, the Southern government chooses an optimal tariff that maximizes Southern welfare under exports \(W_m \).

\[\text{To further simplify the notation } (A-\alpha) \text{ which represents the market size at the point where no R&D takes place can be normalized to unity as } (A-\alpha)^2 \text{ appears in all relevant equations.}\]
Assuming that the tariff is set at this stage is attractive because otherwise the Southern
government could use it to enjoy simultaneously low IPR protection and a high amount of FDI.\footnote{Having tariffs set in an earlier stage would also shift the focus of the game to the question "What trade policy compels the Northern firm to carry out FDI?" rather than “What is the optimal Southern IPR policy?".}
Welfare consists of Southern consumer surplus under exports, S_m, and tariff revenue, which comes from the unit tax levied on all imported good tq_n. The problem for the South is

$$\max_{\tau} W_m = S_m + T, \tag{10}$$

where S_m is found by replacing the anticipated monopoly quantity produced by the North\footnote{In order to avoid redundancy, only the final forms of S_m, T, and τ are shown. Instead of first writing these terms in terms of x, they are directly expressed in terms of g by using the optimal R&D investment x^* from equation (8) for x in the Northern firm’s optimal export quantity q_{nm} (see section 3.1).} in (1) giving

$$S_m = \frac{2(1-\tau)^2}{(4-g)^\tau}. \tag{11}$$

Consumers always lose when the tariff rate τ increases as both the quantity produced and the R&D expenditure fall with increasing τ. Yet, the South has tariff revenue T as another source of income which is solved for using q_{nm}^* as the quantity imported:

$$T = tq_{nm}^* = \frac{2\tau(1-\tau)}{(4-g)}. \tag{12}$$

Tariff revenue increases directly with increasing τ and falls indirectly due to the reduction in production caused by higher τ. T reaches its maximum level at $\tau = 0.5$. The first order condition of W_m with respect to τ gives the optimal tariff τ^* in terms of g:
Using the optimal tariff in (9) we can now determine the optimal profits of the Northern firm in case of exports:

\[\pi_{nm}^* = \frac{4-g}{4(3-g)^2}. \]

(14)

Notice that the Northern firm chooses between exporting and FDI by anticipating \(\tau^* \).\(^\text{18}\) Optimal tariff is set to maximize national welfare in the South and tariffs above this level are never chosen as they only reduce Southern welfare.

As \(g \) approaches 0, the optimal tariff is at its highest value of \(1/3 \) as the tariff revenue portion of welfare dominates consumer surplus when R&D is inefficient. The optimal tariff decreases as \(g \) increases until it reaches zero at \(g=2 \). Free trade is the optimal trade policy for high R&D efficiency levels of \(g \geq 2 \).

As the Northern firm must compare export profits in (14) with profits under FDI, I now turn to the latter alternative to calculate its profits under FDI.

3.2 FDI

The Northern firm can serve the South by building a subsidiary to avoid trade and transport costs, to work with the market locally to gain familiarity with the foreign market, or to take advantage of low labor costs. With this option however, it risks the imitation of its R&D technology. I only examine trade-cost-savings as a motive for FDI as considering all the beneficial factors simultaneously is beyond the scope of this paper. Fixed FDI costs are left out while solving the model. Adding fixed costs only linearly affect the profits by decreasing the maximum \(\beta \) at which the Northern firm would undertake FDI.

\(^{18}\) Northern firm is fully aware of the optimal tariff rate and tariff rates other than \(\tau^* \) are not credible.
In developing countries, FDI and other forms of technology transfer such as licensing and JVs are sometimes the only means of gaining access to the know-how invented in industrialized countries. Once production is moved to the South, know-how can be shared willingly in a JV or involuntarily by imitation. The latter is the case for FDI; however, when patents are binding, the cost-reducing part of technology caused by Northern R&D will not be fully exposed to the South. Looser levels of IPR protection allow more know-how to be disclosed to the Southern firm and lower the costs of production for the latter. By assumption, production technology on the other hand is imitated unless IPR protection is complete in the South (\(\beta=0\)).\(^{19}\) The Southern firm can then compete to serve the market if profitable. This however never happens, as the whole motive behind the Southern interest in FDI is to learn the technology and compete with the Northern firm. Analytically, this option is always dominated by imports as the latter additionally earns tariff revenues for the South.

If production is profitable for both firms, the situation is an asymmetric duopoly (except when \(\beta=1\)). This is due to cost asymmetries resulting from the enforcement of IPR, which prevents the Southern firm from fully utilizing the cost reducing R&D. The optimal \(x\) is again found using the first order conditions of the firm’s profit function using (7) for optimal quantities:\(^{20}\)

\[
x^*_j = \frac{g(2 - \beta)^2}{9 - g(2 - \beta)^2}.
\] (15)

\(^{19}\) Full IPR protection would then create a Northern monopolist facing no trade costs. It however never happens, as the whole motive behind Southern interest in FDI is in learning the production technology to compete and the innovative technology to increase its competitiveness against the Northern firm. Analytically, this option is always dominated by imports as the latter additionally earns tariff revenues for the South.

\(^{20}\) This is the same optimal R&D investment obtained in Zigic (1998) in the duopoly case.
It is easy to see that \(x_f^* \) is decreasing in \(\beta \). The optimal profits for the Northern firm in an FDI duopoly situation are obtained by replacing (7) and (15) into the Northern firm’s profits in (4):

\[
\pi_{nf}^* = \frac{1}{9 - g(2 - \beta)^2}.
\]

(16)

The Southern firm’s profits on the other hand turn out to be:

\[
\pi_{sf}^* = \frac{3 - g(\beta - 1)(\beta - 2)}{9 - g(2 - \beta)^2}.
\]

(17)

Equation (16) shows that that except for zero R&D efficiency where no R&D takes place, Northern profits always decrease in \(\beta \). Expression (17) on the other hand helps us find the critical value of \(\beta \) for each \(g \) under which the Southern firm’s profits are negative and duopoly could no longer be an equilibrium:

\[
\hat{\beta} = \frac{3 - \sqrt{1 + 12/g}}{2} \quad \text{for } g \geq 1.5.
\]

(18)

For \(\beta < \hat{\beta} \), competition takes a constrained monopoly form\(^{21} \) as it is optimal for the Northern firm to deter entry by choosing a predatory level of R&D expenditure that sets \(q_{sf} \) in (7) equal to zero:

\[
x_p^* = \frac{1}{g(1 - 2\beta)^2},
\]

(19)

where \(p \) stands for strategic predation. In contrast to the duopoly case, here R&D investment increases with increasing imitation, i.e. lower IPR protection levels. Zigic (1998) interpreted this perverse result as a need for higher R&D efforts to force the Southern firm out of the market when there are higher spillovers since the gap between the Northern and Southern unit costs is smaller. Northern profits under strategic predation are

\(^{21} \) This is the same optimal R&D investment obtained in Zigic (1998) in the case of strategic predation.
\[\pi_{np}^* = \frac{g(1-\beta)^2 - 1}{g(1-2\beta)^2}. \]

(20)

As a reminder from previous literature, strategic predation is only a possible outcome at \(g \geq 1.5 \) and \(\beta < 0.5 \). Hence the problem of the firm for \(g < 1.5 \) is to simply decide between securing a monopoly position by exporting or engaging in \textit{duopoly} competition by undertaking FDI. For \(g \geq 1.5 \) however strategic predation also becomes a possible equilibrium market structure and the level of \(\beta \) determines the mode of competition under FDI.\(^{22}\)

It is useful for the following sections to calculate the value of \(\beta \) which maximizes Northern profits under strategic predation. This level of IPR protection is referred to as \(\bar{\beta} \) and is derived using the first order conditions of (20):

\[\bar{\beta} = 1 - 2/g \text{ where } g \geq 1.5 \text{ and } \bar{\beta} \geq 0. \]

(21)

The value of \(\bar{\beta} \) is zero for \(1.5 \leq g \leq 2 \) (as \(\bar{\beta} \) must be non-negative similar to \(\beta \)) and increases with \(g \) for \(g > 2 \).\(^{23}\) The intuition for this is that \(x \) bears costs for the Northern firm as it invests more in R&D to keep the Southern firm out of the market. However, when R&D efficiency is higher, the cost-reducing side of investing in R&D acquires more weight and dominates the costs up to a certain value of \(\beta \). This critical level of IPR protection decreases (\(\bar{\beta} \) increases) with R&D efficiency as it becomes preferable to have a certain level of imitation to cause a higher \(x \).

\(^{22}\) \(\beta = 0 \) for \(g = 1.5 \) and increases with \(g \) until it approaches 0.5 as \(g \) gets close to 4 (see figure 3). This threshold value is represented as curve \(g_4 \) in figure 1 of Zigic (1998).

\(^{23}\) For lower values of \(g \) profits fall with \(\beta \). As \(g \) gets larger the profits first increase with \(\beta \) and then fall after \(\beta \) exceeds \(\bar{\beta} \). This peak value of \(\beta \) increases with \(g \). Eventually, at very high R&D efficiency \(\bar{\beta} \) reaches its maximum value at the upper limit of \(\beta \) where strategic predation is still a possible outcome; in other words, profits will always be increasing with \(\beta \).
\(\beta \) reaches its maximum value at very high levels of \(g \) as the benefits from R&D are so high that profits always increase with \(x \) which in turn increases with \(\beta \).

Northern firm’s decision is made in the second stage by comparing (14) and (16) which are now given in terms of two variables: the R&D efficiency parameter which is exogenous and the IPR policy set by the Southern government in the first stage. Section 4 shows how the Southern government can act strategically to bias the decision of the Northern firm in its favor.

4. IPR Policy in the South

In the first stage of the game, the Southern government chooses an optimal level of IPR protection strategically. The policy chosen is endogenous unlike previous literature in the sense that the government takes the reaction of the Northern firm to the level of IPR protection into consideration when choosing the welfare maximizing \(\beta \). Unlike Chin and Grossman (1990) and Zigic (1998), the Northern firm is not the sole force that determines the market structure as the Southern government is here able to influence the latter. This results in interesting new equilibrium outcomes.

When the Northern firm undertakes FDI, Southern welfare consists of consumer surplus and profits of the Southern firm with the latter being zero under strategic predation (\(W_f \) equals \(S_f + \pi_{sf} \) or \(S_p \)). Consumer surplus can be calculated for each scenario under FDI by substituting the corresponding quantities produced into (1)24. This is shown in equations (22) and (23) for duopoly and strategic predation respectively:

\[
S_f = \frac{[6 - g(2 - \beta)(1 - \beta)]^2}{2[9 - g(2 - \beta)^2]^2},
\]

\[
S_p = \frac{(1 - \beta)^2}{2(1 - 2\beta)^2},
\]
As duopoly was shown to be the only possible form of competition under FDI for \(g < 1.5 \), (17) and (22) are the relevant equations for this range of \(g \). It is clear from (17) that \(d\pi_f/d\beta > 0 \) as stricter IPR protection means less imitation, which in turn indicates higher production costs for the Southern firm. On the other hand, \(dS_f/d\beta < 0 \) suggests that consumer surplus in the South falls with looser IPR protection in the case of FDI duopoly. This is directly related to the Northern firm investing less in R&D as \(\beta \) increases. The magnitude of the loss in consumer surplus caused by higher \(\beta \) increases as R&D efficiency increases.

Things are different for \(g > 1.5 \) as strategic predation is a feasible solution for the Northern firm. Since \(dS_p/d\beta > 0 \) consumer surplus always increases with looser IPR protection as the latter raises R&D expenditure \(x \). Total welfare also increases with \(\beta \) as in a strategic predation FDI situation its only component is consumer surplus. The threshold value of \(\beta \) where the Southern consumers are indifferent between duopoly and strategic predation is exactly the point where the R&D investment and consumer surplus are at their maximum level. It is the highest possible \(\beta \) that gives strategic predation (highest consumer surplus under strategic predation) and at the same time the lowest possible \(\beta \), which gives duopoly (highest consumer surplus under duopoly); this value, which just drives Southern firm’s profits to zero, was found as \(\hat{\beta} \) in section 3.2. It can be seen here that the same \(\hat{\beta} \) makes \(S_f \) and \(S_p \) and therefore \(W_f \) and \(W_p \) equal.

We are now in a position to solve the model for different values of R&D efficiency. Following Chin and Grossman (1990), I categorize R&D efficiency into the three regions of \(0 < g < 2 \), \(1.5 \leq g < 2 \), and \(g \geq 2 \).24

24 Note again that once the decision is made to serve the South through exports, the IPR protection level in the South is irrelevant as the production technology remains safe in the North.

25 At \(g = 0 \) FDI profits are always identical to export profits with \(\tau^* = 1/3 \). As no R&D takes place at this initial level of \(g \), the value of \(\beta \) plays no role in the decisions and the outcome of the game.
Low R&D Efficiency

Looking at (17) and (22), it can be seen that the highest Southern welfare for \(g \leq 1.5 \) is attained at zero IPR protection. This is because the Southern firm’s profits dominate the consumer surplus component of welfare at low \(g \)’s causing total Southern welfare to rise with increasing \(\beta \). The Southern government is however forced to play strategically to bring FDI into the country. As the Northern firm makes a credible threat of exporting rather than undertaking FDI depending on the IPR protection level in the South, the Southern government foregoes its first-best welfare maximizing IPR protection level under FDI (zero protection) to motivate technology transfer. It chooses the lowest possible level of protection in which the North is still persuaded to engage in FDI instead of exporting to the South (hereafter \(\beta^* \))\(^{26}\). So in this range, the optimal \(\beta \) is derived from equalizing Northern export profits in (14) and FDI profits in (16) giving

\[
\beta^* = 2 - \sqrt{\frac{15 - 4g}{4 - g}} \quad \text{for } g < 1.5. \tag{24}
\]

Any higher \(\beta \) brings FDI profits below export profits and hence provokes the Northern firm to keep production in the North. In addition, comparing \(W_m \) and \(W_f \) given \(\beta^* \) and \(\tau^* \) reveals that welfare is strictly higher under FDI. As the South always prefers FDI, it gains from this strategic move even if the IPR protection level required to achieve it is very high. This can be seen in figure 2 where Southern welfare is illustrated for both cases. The results for low R&D efficiencies are the opposite to those in previous strategic IPR models in which the lack of legitimate means of technology transfer causes the South to always lose from IPR protection. It can be seen in

\(^{26}\) For high levels of \(g \) on the low R&D efficiency range, *full protection* would be chosen voluntarily by the South as welfare at \(\beta=0 \) may surpass that with \(\tilde{\beta} \). These results occur at \(1.36 < g < 1.5 \). However, as the production technology of the Northern firm is protected from the South and the North will be the sole producer when \(\beta=0 \), this result is ruled out even though it only strengthens the results.
figure 3 that this optimal IPR protection level β^* starts at approximately 0.06 for g just above zero and increases very slowly to around 0.1 as g gets close to 1.5.\footnote{The magnitude of the effect of higher efficiency in the R&D in Northern profits is much higher in lower βs. This is due to the Northern firm taking full advantage of its own R&D when IPR protection is being strictly enforced in the South. This accounts for the small increment in β^* as higher g’s give extra space to the South to play with. Yet, the rise in β^* is limited to minimal amounts as export profits become more attractive at higher g due to the decreasing optimal tariff rate.}

Result 1: At low levels of R&D efficiency ($0 < g < 1.5$) the South always chooses a stringent IPR protection regime to motivate technology transfer. This level of optimal protection is derived from a strategy $\pi_{nm}^* = \pi_{nf}^*$ at each g.

Moderate R&D Efficiency

For moderate R&D efficiency levels of $1.5 \leq g < 2$ it is optimal for the Northern firm to deter entry if $\beta \leq \hat{\beta}$. As the Southern welfare is at its maximum at $\hat{\beta}$, the Southern government would never set a high enough level of protection ($\beta > \hat{\beta}$) for duopoly to be viable. Strategic predation is therefore the equilibrium market structure for this range of g. This also alters the level of β which induces FDI at this range of g. Predatory profits in (20) rather than (16) must now be used to set FDI profits equal to exports profits (14). This yields the FDI inducing level of β: \[\beta^{**} = \frac{2(3-g)^2 - (4-g) - (4-g)(3-g)^2 \sqrt{4[(3-g)^2 - (4-g)] + g(4-g)}}{2[(3-g)^2 - (4-g)]}. \] (25)

The Southern government can however enforce its first-best IPR protection level $\hat{\beta}$ as long as Northern FDI profits at $\hat{\beta}$ are in excess of its profits under the export option. This necessary condition is only satisfied for g up to 1.81. After this point, FDI profits at $\hat{\beta}$ fall short and the South can only motivate FDI by lowering β to the point where Northern FDI profits under $\hat{\beta}$ fall short and the South can only motivate FDI by lowering β to the point where Northern FDI profits under $\hat{\beta}$ fall short and the
strategic predation and its profits under exports are equal (β^{**}). Comparing W_m and W_p given the optimal tariff and the optimal IPR protection level shows that Southern welfare under FDI well exceeds that under exports also when strategic predation is the FDI outcome. This can clearly be seen on the right-hand segment of figure 2 which shows Southern welfare for both cases at moderate R&D efficiency levels under an optimal IPR protection and tariff regime. Exactly this is the source of the motivation for the South to choose a level of β that triggers FDI.

As shown in figure 3 the optimal IPR protection is $\hat{\beta}$ and starts at 0 with $g=1.5$ and rises to about 0.11 where it reaches its peak at $g=1.81$ (see section 3.2). At this point the optimal policy switches to β^{**} and falls as g further increases to match export profits which get more attractive as τ^* gets closer to zero. Ultimately β^{**} reaches zero at $g=2$ where full protection is the only alternative to make the Northern firm content with FDI.

Result 2: At a moderate range of R&D efficiency ($1.5 < g < 2$) if $\pi_{mp}^{\hat{\beta}} > \pi_{wp}^{\hat{\beta}}$, $\hat{\beta}$ is the optimal IPR protection policy. After this critical g where choosing $\hat{\beta}$ makes π_{np} drop under π_{nm}, a lower level of β than desired is required to induce technology transfer through the next best strategy $\pi_{nm}^* = \pi_{np}^*$.

High R&D Efficiency

For high R&D efficiency levels of $g > 2$, the optimal IPR protection level is somewhat similar to Zigic (1998). Even though the outcome can still be strategic predation, Northern profits with FDI strategic predation never exceed exporting profits at the now optimal free trade policy. The optimal IPR protection policy is $\bar{\beta}$ (see section 3.2) as this is the only point where profits under FDI strategic predation match export profits. The South cannot enforce the slightly larger $\hat{\beta}$ illustrated by the thinner curve in figure 3, where Southern consumer surplus and welfare are
higher. The South itself is indifferent between FDI strategic predation and imports at $\tilde{\beta}$ as welfare is equal under both market structures.\footnote{If the South prefers strategic predation over imports for technology transfer reasons not discussed in the model, they have to first choose β^{**} as their protection regime for a given g to make the North indifferent and take subsequent actions to convince the North to engage in FDI. It is important to note that at this range of g, the smallest amount of tie-breaking tariff imposed would make strategic predation a preferable option for the North. As a result of such tariffs β^{**} increases as export profits are lower and both sides the strictly prefer a situation of FDI strategic predation. On the other hand, smallest fixed costs of establishing a subsidiary in the South makes exporting the optimal solution. Therefore, these factors can be measured against each other at outcomes with multiple solutions to determine the tie-breaking single solution.}

\textbf{Result 3:} At high R&D efficiency ($g>2$), the South can only make the North indifferent between FDI and export through a moderate IPR protection regime $\tilde{\beta}$, which makes $\pi_{nm}^* = \pi_{np}^*$. Nevertheless, the North and the South are both indifferent between exports and FDI at $\hat{\beta}$.

Looking at figures 1 and 2 simultaneously, setting a β above the β^* curve in figure 3 makes the Southern welfare curve in figure 2 jump from the FDI curve to the export curve. Choosing a β below β^* on the other hand slightly shifts the FDI welfare curve downward. Yet, it remains above the export curve. For a direct comparison of the model with Chin and Grossman (1990), the range of policy set by the North can be restricted to the two choices of $\beta=0$ and $\beta=1$. It can easily be seen that as long as β is marginally above zero in case of full protection in order for the Southern firm to enter the market, the South would never strictly prefer no protection to full protection in the presence of technology transfer.

\textbf{5. Joint Ventures}

The joint venture extension can now be added to the second stage as an extra alternative for the Northern firm while it chooses its mode of supply. The cooperation sub-game can be found in the
enlarged circle to the right of the game tree in figure 1. Although previously ignored in the IPR literature, forming a JV with a local firm in the South could be another alternative to serve a foreign market. In this model I adopt an introductory approach by having a JV indicate joint profit maximization with a fixed share of profits for each partner\(^{29}\). This could also be thought of as licensing with the Northern share of profits resembling a royalty cost paid by the Southern firm. Agency problems such as moral hazard and adverse selection have been taken out of the argument as the Northern firm willingly shares all its technology with its partner in a two-firm framework\(^{30}\).

In the case of cooperation, joint profit maximization gives firms a joint problem of

\[\text{Max } \pi_c(x) = (A - Q)Q - cQ - x \quad (26) \]

with subscript \(c\) representing cooperation. An agreed profit share of \(\phi (1-\phi)\) goes to the Northern (Southern) partner where \(0 < \phi < 1\). As this model aims to highlight the technology transfer aspect of JVs, it is assumed that in the case of a JV all production takes place in the South, i.e. \(c\) is the cost of production. This gives an optimal joint output of

\[Q(x) = \frac{A - \alpha + \beta (gx)^{1/2}}{2}. \quad (27) \]

The Northern firm now invests in R&D in the fourth stage of the game according to the outcome of the cooperation game in the second stage (recall figure 1). If the JV offer is accepted and

\(^{29}\) There is however a vast literature on JVs. Much interesting work such as d’Aspremont and Jacquemin (1988), Suzumara (1992), and Neary and O’Sullivan (1999) has particularly been done on research JVs in the presence of spillovers.

\(^{30}\) Vishwasrao (1994) considers a different framework of incomplete information, namely a screening game, where the innovating firm decides on different licensing contracts or exporting. Some outcomes intuitively reflect the results in this paper. For instance, in both models, the benefits to the South from loose IPR protection regimes are offset by the choice of the Northern firm on the mode of technology transfer.
approved, the optimal R&D investment is found using (27) in (4) and differentiating the latter with respect to x to get

$$x_c^* = \frac{\beta^2 g}{(4 - \beta^2 g)^2}. \quad (28)$$

The optimal profits for each JV partner are found by substituting (27) and (28) into the profit function and multiplying the expression by ϕ and $1-\phi$ respectively:

$$\pi_{nc}^* = \frac{\phi^*}{4 - \beta^2 g}, \quad \pi_{sc}^* = \frac{1-\phi^*}{4 - \beta^2 g}. \quad (29)$$

As both $d\pi_{nc}^*/d\beta$ and $d\pi_{sc}^*/d\beta$ are positive, it is in the interest of both firms to have full internal spillovers as any lower level is inefficient for both firms. Thus, full spillovers ($\beta=1$) in a JV make Southern IPR protection irrelevant in a two-firm framework. Equations (28) and (29) reduce to

$$x_c^* = \frac{g}{(4 - g)^2}, \quad (28b)$$

$$\pi_{nc}^* = \frac{\phi^*}{4 - g}, \quad \pi_{sc}^* = \frac{1-\phi^*}{4 - g}. \quad (29b)$$

The profits of the two firms change linearly with ϕ and are negatively related to each other. It can also be seen from (8) and (28b) that R&D investment is similar to that under the exporting option when the optimal trade policy in the South is free trade ($\tau^* = 0$).

The Northern firm initiates the JV agreement and makes an offer to the Southern partner over the share that goes to the latter from their joint profits. The Northern firm makes the most generous

31 An example of this is the recent agreement by UK’s Pilkington Glass and Iran’s Qazvin Glass Company to form a JV. The agreement involves building a new glass plant in Iran to replace two of the existing sheet glass furnaces, which use older technology (http://www.payvand.com/news/01/mar/1120.html).
offer it can afford that would leave itself at least as well off (or in fact slightly better off) as under the best non-cooperative outcome.\(^{32}\) It can be summarized as choosing a profit share \(\phi^*\) such that

\[
\pi_{nm} (\phi^*) = \begin{cases}
\pi_{nm} \big|_{r=r^*} & \text{for } g < 1.5 \text{ and } g > 1.81, \\
\pi_{np} \big|_{\beta=\hat{\beta}} & \text{for } 1.5 \leq g \leq 1.81
\end{cases}.
\]

(30)

Notice that as \(\beta\) is set to make Northern FDI profits equal to export profits given \(\tau^*\), it makes no difference whether FDI or export profits are set equal to (29b) to find \(\phi^*\) (with the exception of \(1.5 < g < 1.81\) where FDI strategic predation profits under \(\hat{\beta}\) must be used).\(^{33}\) Using \(\pi_{np}\) with the definition of \(\hat{\beta}\) for \(1.5 < g < 1.81\) and \(\pi_{nm}\) from (9) for all other \(g\)’s as means of comparison we get

\[
\phi^* = \begin{cases}
(1-\tau^*)^2 = \left[\frac{4-g}{2(3-g)} \right]^2 & \text{for } g < 1.5 \text{ or } 1.81 > g > 2 \\
g \left(\frac{\sqrt{1+12/g} - 1}{2} \right)^2 - 1 \frac{4-g}{g(\sqrt{1+12/g} - 2)^2} & \text{for } 1.5 \leq g \leq 1.81.
\end{cases}
\]

(31)

The share offered to the Southern partner \((1-\phi^*)\) is 0.55 at \(g\)’s just above 0 and falls as \(g\) increases due to higher profits caused by a lower \(\tau^*\). There is a discontinuous fall in \((1-\phi^*)\) at \(g=1.5\) as the FDI market structure now implies strategic predation and \(\pi_{np}\) is now used to find the FDI inducing \(\beta\). To be more precise, \(\hat{\beta}\) rather than \(\beta^{**}\) represents the optimal IPR protection level at \(1.5 \leq g \leq 1.81\) (see section 3.2). For \(g \geq 2\), only a zero share of profits is offered to the Southern firm.

\(^{32}\) The results are exactly the same when the sides change in the bargaining game. The Southern government would then offer the Northern firm a share which would make the South as well off under cooperation as under the non-cooperative outcome. Then the Northern firm accepts the offer if its profits in a JV with that share exceed that under the non-cooperative outcome.

\(^{33}\) As \(\hat{\beta}\) is smaller than the \(\beta^{**}\) that makes FDI and export profits equivalent, the offer to the South is smaller than it would be under \(\beta^{**}\). This explains the discontinuity of the JV welfare curve and the threshold value curve in figures 1 and 3 at \(g=1.5\) which are both caused by this discontinuity in \(\phi^*\).
as that is the only value which makes Northern profits in a JV similar to the best non-cooperative outcome. This complies with the empirical evidence at Smarzynska (2000), which shows that JVs are always favored by Southern firms, while they present a lower potential for transfer of technology in high R&D sectors as Northern firms would be more likely to engage in wholly owned projects than to share ownership. Using equations (17), (29b) to compare the profits of the Southern firm under FDI and JV, it is obvious that the Southern firm always accepts a JV offer at the equilibrium offer \(1-\phi^*\). A voluntary sharing of the technology causes higher profits than competing with the Northern firm given the optimal IPR protection level. Knowing that the offer is always accepted for \(1-\phi^*>0\), the Southern government only allows the cooperation if it is the optimal policy for the South. It compares welfare under cooperation and non-cooperation to approve or reject the JV agreement. Southern welfare under cooperation consists of consumer surplus and the Southern firm’s share of profits in the JV (\(W_c = S_c + \pi_s\)) where consumer surplus turns out to be

\[
S_c = \frac{2}{(4-g)^2}.
\]

A JV goes through if Southern welfare is higher with the offer than under FDI \(W_c \geq W_f\). It can be seen that JVs are never optimal for the South as \(W_c\) never exceeds \(W_f\). An accepted JV offer symbolizes a case where cooperation can make both the Northern firm and the South better off. The Southern government would therefore never allow a JV with the equilibrium offer made by the Northern firm. The welfare with a JV given \(\phi^*\) can be seen in figure 2.

The Northern firm and the South are both indifferent between cooperation and non-cooperation at \(g \geq 2\) as the outcome is a mirror of the monopoly situation under exports. JVs therefore also never occur in R&D intensive industries as the profit share offered to the South is zero, welfare is not improved, and the Northern firm can achieve the same profits at a monopoly position by exporting.
Result 4: Although a JV offer is always accepted by the Southern firm, it is never allowed by the Southern government as Southern welfare would be lower than its level under FDI, given the optimal IPR protection. For \(g \geq 2 \) as the Northern firm is reluctant to share ownership with the Southern firm and wholly owned subsidiaries do not make either side better off than the non-cooperative outcome.

6. Conclusion

This paper uses the welfare implications of protecting IPR in developing countries to show that when technology transfer considerations are accounted for, it is not rational for governments in these countries to oppose IPR protection. As the Southern government gets to choose the IPR protection level first before the Northern firm makes its multinational decision, it can induce technology transfer. The level of IPR protection is chosen such that exporting is never strictly preferred to technology transfer by the North. Even when the South desires a lower level of IPR protection to reach its first-best welfare, the Northern firm’s credible threat of exporting rather than undertaking FDI and the strategic interaction between the firm and the government restrict the latter to lower levels of \(\beta \). Therefore the rational South who moves first would never strictly prefer to violate international IPR protection and sets an optimal level of IPR protection which is in most cases very strict and in extreme cases (very high R&D efficiency) moderate. Endogenizing the decisions of both sides confirms the necessity of IPR protection for FDI in developing countries.

Another purpose of the paper is to attempt a more complete model that includes other factors involved in IPR protection such as tariffs and the possibility of a JV. As exporting could be used as an alternative to avoid imitation of technology, tariffs were shown to play an important role in determining the optimal level of IPR protection and in turn the market structure. It was seen however that tariffs only effect the outcome at low and moderate efficiency levels as the South sees it optimal to have a free trade policy on technology intensive goods. Furthermore, when JVs
are allowed for, a JV is preferred to non-cooperative competition by the Southern firm, but never approved by the Southern government as it reduces welfare. At moderate R&D efficiency levels JVs are less likely to occur, due to the lower share offered to the Southern firm. Firms from industrialized countries do not choose to share ownership in technology intensive industries.

A possible extension of the model could be to follow the argument in Glass and Saggi (2002) and make imitation costly. This requires the Southern firm to engage in imitation R&D to be able to utilize Northern innovation R&D. The Southern firm then undertakes own R&D activity even when there is no IPR protection to be able to take advantage of cost-reducing technology of the competing firm in the case of FDI or a JV. This setting could describe emerging markets with limited R&D capacity as opposed to less developed countries incapable of engaging in any R&D activity. Another interesting line of research would be to extend the model to allow for entry by a second Southern firm into the market once the Northern firm has transferred its know-how. In a three-firm framework, the two firms in the JV may want to conceal their technology from a second outsider Southern firm which enters the market after the Northern firm moves its production to the South.

It is worth mentioning that this paper only considers the indirect trade impact of IPR protection for the South. Direct trade impacts are not considered as in this model the Northern firm always serves the Southern market as long as there is demand and has only to choose the channel of transfer. It also ignores other important criteria that may reinforce or rule out the suitability for inclusion of IPR in the WTO such as international externalities, policy coordination failures, and meaningful dispute resolution. Analyzing these criteria shows that IPR may indeed have a stronger case for standardization than other fields such as competition policy, environmental protection, and labor standards (Maskus, 2000). Though, this paper by no means supports a

34 Maskus and Penubarti (1995) uses empirical evidence to demonstrate that IPR are strongly trade-related and that the net impact on imports depends on a variety of factors in each country and each product.
general harmonization of regulatory standards, including IPR, through the WTO. It rather tries to make obvious the important role that policies in the South play in its welfare when a developing country confronts a profit-maximizing firm from an industrialized nation whose profits and therefore actions are directly based on these policies. It shows that the innovator can avoid global dissemination of technology and that nations that want to gain access to the knowledge or simply enjoy a larger quantity of the goods containing it must pay a cost and forego policies, which truly maximize their welfare.
References

http://www.cptech.org/ip/health/sa/

Figure 1: The Stages of the Game

1 Max W_{β}

2 Max $\{\hat{\pi}_{\text{FDI}}, \hat{\pi}_{\text{EXP}}, \hat{\pi}_{\text{JV}}\}$

3 Max W_{τ}

4 Max π_{x}

5 Max π_{q}

cooperation

Share offer ϕ

allow or ban

accept or reject