EU MERGER CONTROL IN DIFFERENTIATED PRODUCT INDUSTRIES

FRANCO MARIUZZO
PATRICK PAUL WALSH
CIARA WHELAN

CESifo Working Paper No. 1312
Category 9: Industrial Organisation
October 2004

Presented at CESifo Venice Summer Institute, Workshop on Recent Developments in Antitrust Analysis, July 2004

An electronic version of the paper may be downloaded
• from the SSRN website: www.SSRN.com
• from the CESifo website: www.CESifo.de
EU MERGER CONTROL IN DIFFERENTIATED PRODUCT INDUSTRIES

Abstract

EU Merger Control Regulation No 4064/89 tended to rely on a dominance test, based on the market share of undertakings, to indicate the level and potential changes in market power. The use of such in differentiated product industries is questionable. New EC Merger Regulation No 139/2004 introduces a substantive test to ensure that all post-merger scenarios posing a threat to competition, even amongst small undertakings, are detected. We propose the use of a simple structural approach to undertake a substantive test. We illustrate our point over 28 periods, 178 products (13 companies), for Retail Carbonated Soft Drinks. We estimate company (product) mark-ups using a “simple” Nested Logit model, Berry (1994) and a more “sophisticated” model, Berry, Levinsohn and Pakes (1995). While the dominance test may fail to identify damaging mergers in differentiated products industries, this technique will not.

Keywords: market shares, market power, differentiated products industries, mergers.

Franco Mariuzzo
Department of Economics
Trinity College
University of Dublin
Dublin 2
Ireland
mariuzzo@tcd.ie

Patrick Paul Walsh
Department of Economics
Trinity College
University of Dublin
Dublin 2
Ireland
ppwalsh@tcd.ie

Ciara Whelan
Department of Economics
University College of Dublin
Dublin 4
Ireland
ciara.whelan@ucd.ie

This paper was written for CESifo’s Venice Summer Institute 2004, “Recent Developments in Antitrust Analysis”, 21-22 July 2004. We thank our discussant Vivek Ghosal for useful comments. We also thank Peter Davis, Gautam Gowrisankaran, Julie Mortimer, Ariel Pakes and John Sutton for comments on work that this policy paper is based on.
1 Introduction

EU Merger Control Regulation No 4064/89, covering the period 1990-2003, tended to rely on a dominance test, based on the market share of undertakings, to indicate the level and potential changes in market power in the market. After defining the relevant product and geographic market, defined in terms of demand side substitutability, high concentration (measured by the Herfindal-Hirschmann Index (HHI) on company output (sales)) was taken to indicate a lack of competitive pressure in the market. The HHI was considered a good indicator of market power in homogeneous goods industries. Thresholds based on the level and changes in the HHI due to a merger provided the Commission with screening rules on whether the merger justifies investigation. Thresholds are outlined in Table I.

<table>
<thead>
<tr>
<th>HHI (post-merger)</th>
<th>Change in HHI as a result of merger</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: Not likely to have adverse competitive effects*</td>
<td></td>
</tr>
<tr>
<td>Less than 1000</td>
<td>Any</td>
</tr>
<tr>
<td>Between 1000 and 2000</td>
<td>Less than 250</td>
</tr>
<tr>
<td>Above 2000</td>
<td>Less than 150</td>
</tr>
<tr>
<td>B: Significant competitive concerns</td>
<td></td>
</tr>
<tr>
<td>Between 1000 and 2000</td>
<td>Greater than 250</td>
</tr>
<tr>
<td>Above 2000</td>
<td>Greater than 150</td>
</tr>
</tbody>
</table>

Table I: EC Screening Thresholds

A post-merger HHI of less than 1000 are unlikely to be investigated. Mergers leading to a HHI of between 1000 and 2000 and an increase in HHI greater

1 The HHI is the sum of the squares of firm percentage market share, which gives proportionately greater weight to larger players in the market. It ranges from close to zero (in an atomistic market) to 10000 (in the case of monopoly).

2 The post-merger HHI assumes the current market shares of the merging parties remains the same. This does not allow for strategic reaction in terms of quantity, price and non-price competition, entry or exit. The change in the HHI can be calculated simply by doubling the product of the market shares of the merging firms. This just assesses a problematic merger in terms of two companies coming together with ex-ante market power (market shares).

3 There are exceptions to these A rules.
 (i) If a merger involves a potential entrant or a recent entrant with a small market share.
 (ii) If one or more parties are important innovators that is not reflected in market share.
 (iii) If there are significant cross-shareholdings among the market participants.
 (iv) If one of the merging firms is a maverick firm with a high likelihood of disrupting coordinated conduct.
 (v) If indications of past or ongoing coordination, or facilitating practices, are present.
 (vi) If one of the merging parties has a pre-merger market share of 50% or more.
than 250, or a HHI of greater than 2000 and an increase in HHI greater than 150, are likely to raise competitive concerns and be investigated. In differentiated goods the Commission, in addition to the HHI would also encourage the estimation of cross price elasticities or diversion ratios (sales lost due to one product due to a price change in another). Yet, even though it was recognised that the HHI would give an imperfect indication of the intensity of competition in differentiated product market, they still felt that concentrations leading to a limited combined market share would be unlikely to result in a level of economic power that could impede competition significantly. This use of the dominance test as a necessary condition is debatable. We provide an example in this paper that shows that a potential merger in undertakings with limited combined market share can result in a substantial increase in market power. New EC Merger Regulation No 139/2004 addresses this point by introducing a substantive test to make it clear that all post-merger scenarios posing a threat to competition would be captured by the screening process. We propose the use of a simple structural approach in differentiated products industries to undertake a substantive test of changes in market power that arise from mergers of undertakings. We estimate company (product) mark-ups using a “simple” Nested Logit model based on Berry (1994) and a more “sophisticated” model pioneered by Berry, Levinsohn and Pakes (1995). Using an industry study as an example, we argue that the use of Herfindal-Hirschmann Index in merger screening, using company output (sales), will fail to identify some damaging mergers. We propose one should use simple (or advanced) structural models to back-out estimates of company (by product) market power in differentiated products industries. The use of Herfindal-Hirschmann Index using estimates of company profit shares (rather than market shares), would help to identify damaging mergers, particularly amongst smaller companies. While the dominance test may fail to identify damaging mergers in differentiated products industries our “simple” structural methodology technique will not. We propose it should be used a part of a substantive test to identify all anti-competitive mergers, even among small in market share undertakings.

4Turnover thresholds, or other criteria, may result in a merger been assessed in an individual EU country. Most individual EU countries still rely strongly on the dominance test. The European Commission has exclusive jurisdiction for mergers between firms with a combined worldwide turnover of at least 5 billion euros and a turnover within the European Economic Area of more than 250 million euros for each of them. If the companies concerned have more than two-thirds of their European turnover in one and same EU country, the merger is examined by the competition authority of that country because the latter is better placed than the Commission to examine its potential effects.
We base our example on the Industry and data outlined in section 2. In section 3 we outline a “simple” structural methodology to estimate mark-ups based on Mariuzzo, Walsh and Whelan (2003), a nested logit model of demand, with an estimation procedure based on Berry (1994). We also outline a comparable but more “sophisticated” model of demand (and supply) based on Mariuzzo, Walsh and Whelan (2004), using the estimation procedure in Berry, Levinsohn and Pakes (1995) (BLP). Section 4 we compare our results and estimates of mark-ups from both these procedures. We illustrate the benefits of using a structural approach (substantive test) over and above a simple market share analysis (dominance test) in the screening stage of a merger by undertaking a hypothetical merger in our data. Finally, we summarize our main conclusions in section 5.

2 Industry and Data

AC Nielsen, an international marketing research company, has collated a panel database of all brands in Carbonated Soft Drinks distributed throughout all 12,000 Irish retail stores for use in our empirical analysis. The database provides bi-monthly population data spanning October 1992 to March 1997 for 178 brands, identified for 13 firms and 40 product characteristics within the particular “business” of Carbonated Soft Drinks. The data record the retail activities of both Irish and Foreign owned brands/firms selling throughout the stores of the Irish retail sector. The evolution of the Irish grocery market from the early 1970s to its present day structure is described in Walsh and Whelan (1999).

We have brand level information on the per litre brand price (weighted average of brand unit prices across all stores selling the brand, weighted by brand sales share within the store), quantity (thousand litres), sales value (thousand pounds), store coverage (based on pure counts of stores, and size weighted by store size in terms of carbonated drinks in which the brand retails to measure effective coverage), inventories (number of days to stock out on day of audit given the current rate of purchases), firm attachment and product (flavor, packaging, diet) characteristics.

An interesting feature of the AC Nielsen data is their identification of various product characteristics within the market for Carbonated Soft Drinks, which group clusters of brands by 40 characteristics: 4 flavors (Cola, Orange, Lemonade and Mixed Fruit), 5 different packaging types (Cans, Standard Bottle, 1.5 Litre, 2 Litre and Multi-Pack of Cans) and 2 different sweeteners, Diet and Regular. The number and size of the product characteristics was very stable.
throughout the period of this study. To allow for flavor segments (Cola, Orange, Lemonade and Mixed Fruit) is standard in the analysis of Carbonated Soft Drinks [see Sutton (1991)]. To see why packaging format is recognized as a crucial feature of this market, in Figure I we graph the seasonal cycles of carbonated drink sales by packaging type.

![Sales Index Graphs](image)

Figure I: Bi-Monthly sales of Carbonated Soft Drinks by Packaging Type

Cans peak in the summer months of June and July and 2 Litre bottles sales peak over the winter months of December and January. One must realize that 90 per cent of cans and standard bottles are distributed through small stores rather than chain stores. In contrast, the majority of 2 litre and multi-pack
cans are distributed through chain stores. Firms may, or may not, place brands across various product characteristics of the market. Details of the product characteristics and associated number of firms and brands they host are set out in Table II.

<table>
<thead>
<tr>
<th>Segments</th>
<th>Mean Size (IR£000)</th>
<th>Mean % Share of Total Carbonated Drinks</th>
<th>Total No. Firms over period</th>
<th>Total No. Brands over period</th>
<th>Average Price Per Litre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regular Cola</td>
<td>2040</td>
<td>8.7</td>
<td>4</td>
<td>7</td>
<td>1.20</td>
</tr>
<tr>
<td>Diet Cola</td>
<td>519</td>
<td>2.0</td>
<td>2</td>
<td>4</td>
<td>1.26</td>
</tr>
<tr>
<td>Regular Orange</td>
<td>548</td>
<td>3.7</td>
<td>3</td>
<td>4</td>
<td>1.24</td>
</tr>
<tr>
<td>Diet Orange</td>
<td>100</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>1.25</td>
</tr>
<tr>
<td>Regular Lemonade</td>
<td>655</td>
<td>3.0</td>
<td>2</td>
<td>4</td>
<td>1.16</td>
</tr>
<tr>
<td>Diet Lemonade</td>
<td>456</td>
<td>1.1</td>
<td>2</td>
<td>2</td>
<td>1.40</td>
</tr>
<tr>
<td>Regular Mixed Fruit</td>
<td>988</td>
<td>4.3</td>
<td>6</td>
<td>8</td>
<td>1.39</td>
</tr>
<tr>
<td>Diet Mixed Fruit</td>
<td>17</td>
<td>0.1</td>
<td>1</td>
<td>2</td>
<td>1.24</td>
</tr>
<tr>
<td>Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regular Cola</td>
<td>1833</td>
<td>8.3</td>
<td>8</td>
<td>11</td>
<td>1.47</td>
</tr>
<tr>
<td>Diet Cola</td>
<td>417</td>
<td>1.8</td>
<td>2</td>
<td>3</td>
<td>1.27</td>
</tr>
<tr>
<td>Regular Orange</td>
<td>911</td>
<td>3.5</td>
<td>5</td>
<td>13</td>
<td>1.44</td>
</tr>
<tr>
<td>Diet Orange</td>
<td>19</td>
<td>0.1</td>
<td>3</td>
<td>1</td>
<td>1.29</td>
</tr>
<tr>
<td>Regular Lemonade</td>
<td>556</td>
<td>2.2</td>
<td>3</td>
<td>7</td>
<td>1.32</td>
</tr>
<tr>
<td>Diet Lemonade</td>
<td>96</td>
<td>0.3</td>
<td>1</td>
<td>1</td>
<td>1.29</td>
</tr>
<tr>
<td>Regular Mixed Fruit</td>
<td>3137</td>
<td>11.6</td>
<td>7</td>
<td>21</td>
<td>1.26</td>
</tr>
<tr>
<td>Diet Mixed Fruit</td>
<td>19</td>
<td>0.7</td>
<td>1</td>
<td>1</td>
<td>1.15</td>
</tr>
<tr>
<td>1.5 Ltr.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regular Cola</td>
<td>648</td>
<td>2.8</td>
<td>2</td>
<td>3</td>
<td>0.67</td>
</tr>
<tr>
<td>Diet Cola</td>
<td>212</td>
<td>0.9</td>
<td>2</td>
<td>4</td>
<td>0.75</td>
</tr>
<tr>
<td>Regular Orange</td>
<td>512</td>
<td>2.2</td>
<td>4</td>
<td>6</td>
<td>0.70</td>
</tr>
<tr>
<td>Diet Orange</td>
<td>51</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
<td>0.71</td>
</tr>
<tr>
<td>Regular Lemonade</td>
<td>892</td>
<td>4.0</td>
<td>2</td>
<td>4</td>
<td>0.60</td>
</tr>
<tr>
<td>Diet Lemonade</td>
<td>598</td>
<td>1.3</td>
<td>2</td>
<td>2</td>
<td>0.71</td>
</tr>
<tr>
<td>Regular Mixed Fruit</td>
<td>447</td>
<td>1.9</td>
<td>6</td>
<td>7</td>
<td>0.75</td>
</tr>
<tr>
<td>Diet Mixed Fruit</td>
<td>1</td>
<td>0.02</td>
<td>1</td>
<td>1</td>
<td>0.72</td>
</tr>
<tr>
<td>2 Ltr.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regular Cola</td>
<td>1833</td>
<td>7.6</td>
<td>4</td>
<td>5</td>
<td>0.49</td>
</tr>
<tr>
<td>Diet Cola</td>
<td>518</td>
<td>2.3</td>
<td>3</td>
<td>5</td>
<td>0.54</td>
</tr>
<tr>
<td>Regular Orange</td>
<td>1220</td>
<td>5.6</td>
<td>4</td>
<td>5</td>
<td>0.52</td>
</tr>
<tr>
<td>Diet Orange</td>
<td>136</td>
<td>3.6</td>
<td>2</td>
<td>3</td>
<td>0.56</td>
</tr>
<tr>
<td>Regular Lemonade</td>
<td>1851</td>
<td>8.1</td>
<td>2</td>
<td>4</td>
<td>0.46</td>
</tr>
<tr>
<td>Diet Lemonade</td>
<td>671</td>
<td>2.8</td>
<td>1</td>
<td>2</td>
<td>0.57</td>
</tr>
<tr>
<td>Regular Mixed Fruit</td>
<td>2339</td>
<td>10.9</td>
<td>5</td>
<td>9</td>
<td>0.48</td>
</tr>
<tr>
<td>Diet Mixed Fruit</td>
<td>22</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>0.53</td>
</tr>
<tr>
<td>Multipack Cans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regular Cola</td>
<td>658</td>
<td>2.5</td>
<td>2</td>
<td>6</td>
<td>0.98</td>
</tr>
<tr>
<td>Diet Cola</td>
<td>306</td>
<td>0.8</td>
<td>2</td>
<td>3</td>
<td>1.00</td>
</tr>
<tr>
<td>Regular Orange</td>
<td>165</td>
<td>0.7</td>
<td>3</td>
<td>5</td>
<td>1.03</td>
</tr>
<tr>
<td>Diet Lemonade</td>
<td>117</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>0.97</td>
</tr>
<tr>
<td>Regular Mixed Fruit</td>
<td>6</td>
<td>0.05</td>
<td>1</td>
<td>1</td>
<td>0.83</td>
</tr>
<tr>
<td>Multipack Cans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24305</td>
<td>100</td>
<td>100</td>
<td>178</td>
<td></td>
</tr>
</tbody>
</table>

Table II: Bi-Monthly Segment Characteristics, Averaged over Oct.92-May 97
In Figure II we document company coverage of our forty product characteristics: product coverage of stores based on pure counts of stores, and effective product coverage where the store is weighted by its share of Retail Carbonated Soft Drinks turnover.

We undertake our analysis by comparing the top two companies, Coca-Cola Bottlers (Coca-Cola Co. franchise) and C&C (Pepsico franchise), with the group of smaller companies (mainly Irish/British owned). The top two companies
have broad coverage of the product segments. We see that store coverage is not company but product specific. For example, Coca-Cola Bottlers clearly has wide distribution with Regular Cola Cans (segment 1). As we move up regular Cola segments by package size, to segments 4 and 5, the number of stores covered declines dramatically, but effective store coverage declines by much less: distribution is targeted at big shops. While these trends are true across other flavors owned by Coca-Cola, both regular and diet, we see that distribution is less aggressive in regular Orange and Mixed Fruit characteristics (segments 6-10 and 15-20). This is where competition from the small companies is greater (see product distribution of all other companies in Figure II). The important point for our econometric analysis is that (effective) store coverage is product (brand) and not company specific.

3 Estimating Market Power

There is a long history of mapping market share structure into market power.5 In the case of a non-cooperative Cournot oligopoly homogeneous good industry one can show with N firms that the average price-cost margin in the industry is written as,

\[
\sum_j s_j \left(\frac{p - c_j}{p} \right) = \frac{\sum_j s_j^2}{\eta} = \frac{HHI}{\eta}
\]

where \(s_j \) is the firm \(j \) market share, \(\eta \) denotes the industry demand elasticity, \(p \) is the industry price and \(c_j \) is the marginal cost firm \(j \) faces. Market power in an industry with homogenous goods is directly and positively linearly related to the HHI. While the HHI may be a good rule of thumb to use in deciding whether or not to investigate mergers in homogenous industries, once one introduces differentiated goods, mapping HHI to market power becomes more problematic.

In differentiated products industries, market share is no longer a good approximation of the ability to mark-up price over cost. The market is now made up of a number of products that are differentiated, either by location or some product attributes. Some products are more similar than others in terms of these attributes. The competitive constraint on a firm’s pricing is now determined by the degree of substitutability between the various goods in the market. Things become even more complex in the case that firms produce multiple products.

5This idea is evident with the structure-conduct-performance paradigm of Bain in the 1950s, positing a one-way mapping from structure (concentration of market share) to conduct (treated as a ‘black box’) to performance (average price-cost mark-up across companies in an industry).
in the market. Firms may specialize in producing goods with very similar attributes, or have a portfolio of goods with very different attributes, and may or may not locate alongside other multi-product firms producing similar or different goods. The HHI for the market tells us little about the underlying structure of such markets or the market power of firms. Firms with small market share may well be able to extract high price-cost mark-ups by being specialised in their product characteristics and location. The question now arises as to how we may map this complexity of multi-product firms operating over product characteristics and locations into market power?

In order to evaluate market power where products are differentiated, it is necessary to estimate the degree of substitutability between the various goods in the market. However, estimating demand for differentiated products has a dimensionality problem. A linear demand system for J brands has J^2 price parameters to estimate. One must therefore place some structure on the estimation. A number of alternative demand specifications have been developed to deal with this dimensionality problem by reducing the dimensionality space into a product space. We focus our attention in this paper on the discrete choice models in product characteristics used in estimating demand for differentiated products, which allow for consumer heterogeneity (including consumer taste for location).6

\section*{3.1 Nested Logit Model of Demand}

Berry (1994) uses a nested logit model to estimate differentiated demand systems. His main contribution is to correct for possible price endogeneity, due to the fact that researchers never observe all product characteristics. This was the approach undertaken in Mariuzzo, Walsh and Whelan (2003), where they estimated the brand price-cost mark-ups for Irish retail carbonated soft drinks (and subsequently firm market power by aggregating over firms’ brands) on product characteristics, prices, and the log of within group share. They enriched the model by allowing for the location convenience dimension. In what follows we outline their model.

The nested logit model has a demand equation that is based on a random-utility model in which an individual consumes one unit of the product that yields the highest utility, where products include the outside good. As opposed to the ordinary logit model, the j brands or products are partitioned into $G + 1$

6As an alternative one could use representative consumer choice. These models include the Distance Metric model (Pinkse, Slade and Brett, 2002; Pinkse and Slade 2002), or the Multi-Stage Budgeting model (Hausman, Leonard and Zona, 1994).
groups, $g = 0, 1, \ldots, G$, with the outside good j the only one present in group 0. We use the 40 segments outlined in Table II. We define the utility of consumer i for product j that faces no transportation costs and for consumer l that faces a transportation cost t, respectively as,

$$
\begin{align*}
 u_{ij} &= x_j\beta - \alpha p_j + \xi_j + \zeta_{ig} + (1 - \sigma)\varepsilon_{ij} \\
 u_{lj} &= x_j\beta - \alpha_1 (p_j + t) + \xi_j + \zeta_{lg} + (1 - \sigma)\varepsilon_{lj}
\end{align*}
$$

(2)

where x_j is a vector of observed characteristics of product j; p_j is the price of product j (we allow for a different response from the two consumer groups) and t is a per unit disutility; and ξ_j is a vector of unobserved, to the econometrician, product characteristics. The variation in consumer tastes enters only through the terms $\zeta_{ig} = \zeta_{lg}$, ε_{ij} and ε_{lj}. ε_{ij} and ε_{lj} are specific to product j, which is assumed to be an identically and independently distributed extreme value. For consumers, ζ_{ig} is utility common to all products within a group g and has a distribution function that depends on σ, with $0 \leq \sigma < 1$. As the parameter σ approaches one, the within group correlation of utility levels across products goes to one (products within groups are perfect substitutes). As σ tends to zero, so too does the within group correlation.\(^7\) We aggregate over fraction $(1 - D_j)$ of consumers i, and aggregate over the fraction D_j of consumers k to define the unknown parameter vector δ (describing the mean utility level of a product),\(^8\)

$$
\delta_j = x_j\beta - \alpha p_j + (\alpha - \alpha_1)p_j*\ln(D_j) - \beta_1\ln(D_j) + \xi_j
$$

(3)

As shown in Berry (1994), from equation (3) we can derive the product market shares which depend upon the mean utility level of a product, and we can treat these mean utility levels as known non-linear transformations of market.

\(^7\)When $\sigma = 0$ this reduces to the ordinary logit model, where substitution possibilities are completely symmetric, for example as when all products belong to the same group.

\(^8\)Our empirical proxy for D_j, or distance to a product, is one minus the effective product coverage of stores. That is to say, rather than just taking the percentage of the 12,000 stores that carry brand j, we take a weighted sum where each store is weighted by its share of Carbonated Soft Drink sales in the market to get a measure of effective coverage. The greater the effective product coverage of stores, the higher the fraction of consumers that face no transportation costs in buying the product (which, at a product level, can be interpreted as lower distance to the product). The property of the nested logit model that leads to independence of irrelevant nested alternatives will thus be partly relaxed. We use $\ln(D_j)$ in our econometric work. The fraction of the consumer populations with transportation costs will thus be $\ln(D_j)/[\ln(D_j) + (1 - \ln(D_j))]$ and without transportation costs will be $(1 - \ln(D_j))/(\ln(D_j) + (1 - \ln(D_j)))$. \(10\)
shares such that δ_j can be written as the following linear demand equation,

$$\ln(s_j) - \ln(s_0) = x_j\beta - \alpha p_j + (\alpha - \alpha_1)p_j \ast \ln(D_j) - \beta_1\ln(D_j) + \sigma \ln(s_{jg}) + \xi_j$$

(4)

where s_j is product j’s (the brand) share of the entire market (inside plus outside goods total). We define the entire market as the sum of carbonated sales over all brands (inside goods) and total sales of the outside good, as 330ml carbonates per day for the population of Ireland.\footnote{This is a reasonable approximation. It should be noted that the largest bi-monthly carbonated sales in our data is equivalent to each person in Ireland consuming 220ml per day.} The outside goods’ share of the entire market is s_0. The variable D_j can also be interpreted as the distance to a product j. $\ln(D_j) \ast p_j$ augments the price effect by our distance measure per product. s_{jg} is j’s segment share of the group g to which it belongs. We need estimates of $\alpha_j = (\alpha + (\alpha - \alpha_1) \ast \ln(D_j))$ and σ to get our corresponding nested logit own-price and cross-price elasticities,

$$\varepsilon_{jj} = \alpha_j p_j \left[s_j - \frac{1}{1 - \sigma} + \frac{\sigma}{1 - \sigma} s_{jg} \right] \text{ if } k = j$$

$$\varepsilon_{jk} = \alpha_k p_k \left[s_k + \frac{\sigma}{1 - \sigma} s_{jg} \right] \text{ if } k \neq j \text{ and } j, k \in g$$

$$\varepsilon_{jk} = \alpha_k p_k s_k \text{ if } k \neq j \text{ and } k \notin g$$

(5)

It is important to note that the elasticities here refer to the percentage change in market share in response to a change in p_k. Estimates of α_j and σ from equation (4) are obtained using instrumental variables since the product price and the within group share are endogenous variables and must be instrumented.

We estimate the demand side primitives and, via an equilibrium pricing system of equations, to be defined, we can back out the price cost mark-up (Lerner Index) for each brand. Firms maximize the sum of profits accruing from firm brands, f_j. In brand price setting, p_j, a firm takes the price of all other firms’ brands as given. The firm internalizes the cross-price effect on market share of the brands it owns in the price setting of an individual brand. The first order condition for each brand will have the general form,

$$s_j + \sum_{b \in f_j} (p_b - c_b) \frac{\partial s_b}{\partial p_j} = 0 \quad b, j \in f_j$$

(6)

Given marginal costs c_j, a multi-product Nash equilibrium is given by the system of J first order conditions.\footnote{We assume that a Nash equilibrium exists. Caplin and Nalebuff (1991) prove existence for a general discrete choice model, assuming single product firms. Anderson and de Palma (1992) prove existence for the nested logit model with multiproduct firms, assuming symmetry.} Given the primitives of the demand system
we will be able to calculate a mark-up for each brand. Even though we impose no structure on marginal cost, the primitives are likely to be estimated with error so in this approach we will back out a mark-up with error.

For simplicity, one can assume single product price settings and symmetry in the market. Given the marginal costs \(c_j \), the first order condition (6) can be rewritten as:

\[
\frac{p_j - c_j}{p_j} = \frac{1}{p_j} \left[\frac{1 - \sigma}{\alpha_j} / (1 - \sigma s_{jg} - (1 - \sigma) s_j) \right]
\]

The markup depends in this particular case upon the substitution parameter \(\sigma \) and within group share. The bigger the within group product share the higher will the product price-cost markup. If \(\sigma = 0 \) (no segmentation) we have the ordinary logit result, such that the mark-up depends on product market share, \(s_j \), and not within group market shares. The effect of the location convenience enters into the \(\alpha_j \) parameter and forces us to adopt a matrix notation to solve for the markup. We refer to relations (13-14) in the next subsection for a more general computation of mark-ups (which is the one we use in our estimates).

3.2 BLP Approach

Going a step further, one may extend the analysis to adopt a fully structural approach to estimating market power by specifying a cost function to be estimated,

\[
\ln (c_j) = w_j \beta + \omega_j
\]

where \(w_j \) is a vector of observed product characteristics, and \(\omega_j \) is a vector of product characteristics that are unobservable to the econometrician. BLP propose the simultaneous estimation of a demand equation with a specified supply equation.\(^\text{11}\)

BLP has a demand equation based on a random utility model in which individuals consume the product that give them the highest utility (including the utility for the outside option). We write individual \(i \) indirect utility for product \(j \) as

\[
u_{ij} = -\alpha_1 p_j + x_j^1 \beta + \xi_i + \sigma_A x_j^2 \boldsymbol{\nu}_i^A + \sigma_C x_j^2 \boldsymbol{\nu}_i^C + \sigma_N x_j^2 \boldsymbol{\nu}_i^N + \epsilon_{ij}
\]

\(^\text{11}\)Employing a fully structural approach has the advantage that one can, other than gaining efficiency, undertake various counterfactuals.
where x^1 are observed product characteristics that enter linearly in our estimates, whereas x^2 those that enter non-linearly, in our model the constant and prices. The subscripts A, C, N stand for, Age, Closeness, and Normal distribution, respectively, which individualise our consumers (observed and unobserved) characteristics. This three - upla defines each consumer taste for quality and sensitivity to prices (product characteristics that enter x^2). The assumption that individuals react to a price change differently when product j is present in their nearest store compared to the case when it is not underlies the sensitivity to price. Some of the product characteristics (ξ_j) are unobserved to us but are observed by our consumers in their choices. We use proper instruments to control for their correlation with prices and store coverage, two endogenous variables.\footnote{In the table of results we outline the set of instruments that we use to jointly estimate demand and supply.} Equation (9) shows that the indirect utility function can be decomposed in a mean utility δ_j and a deviation from the mean μ_{ij}. This latter term represents the main difference from the previous model.

Our utility for the outside good is written as,

$$u_{i0t} = \xi_{0t} + \sigma_0 \nu_{i0} + \epsilon_{i0t}$$

We normalize $\xi_{0i} = \sigma_0 = 0$. Finally, $\{\alpha, \beta, \sigma\}$ are the parameters of the demand that are going to be estimated.

The BLP specification of demand allows different individuals to have different tastes for different product characteristics. In addition, the model can allow for consumer heterogeneity in terms of their response to prices. The random coefficients are designed to capture variations in the substitution patterns.

Aggregating over the error component one recovers a logistic form that defines the probability that individual i buys product j ($\phi_{ij}(\cdot)$). The next step is to aggregate over individuals and calculate each product’s estimated market shares. The non-closed solution of this integral requires the use of a simulation procedure. In addition, the computation of the optimal parameters requires the use of a contracting mapping technique together with a non linear two-step GMM estimator. Although more realistic than the logit or nested logit model, the estimation procedure is not so straightforward. Estimation requires simulation and numerical methods. We refer to BLP for details regarding the computational method.
Given the number of consumers in the economy \(I \) and integrating over the distributions of individual characteristics we derive each brand demand function as,

\[
q_j (\cdot) = Is_j (p, x, \xi; \theta), \text{ for } j \in J
\]

(11)

Given the demand system in (11), the profits of multiproduct firm \(f \) are,

\[
\Pi_f = \sum_{j \in J_f} (p_j - c_j) q_j
\]

(12)

the maximization of which leads to the first order conditions in (6), from which we get our price equilibria.

In order to derive the markup relation, we define,

\[
\Delta_{j_b} = \begin{cases}
-\frac{\partial s_b(\cdot)}{\partial p_j}, & \text{if brands } b, j \in J_f \text{ are produced by the same firm} \\
0, & \text{otherwise}
\end{cases}
\]

(13)

which allows us to write the following price-cost mark-up explicitly as,

\[
p = c + \Delta_{\text{markup}}^{-1} s
\]

(14)

Our interest in substitution effects is captured by the own and cross-price elasticities which can be derived from

\[
\frac{\partial s_j (\cdot)}{\partial p_j} \frac{p_j}{s_j} = \left(\frac{1}{ns} \sum_{i=1}^{ns} \phi_{ij} (1 - \phi_{ij}) \left(-\alpha_1 + \alpha_2 n_i + \alpha_3 a_i + \alpha_4 c_{ij} \right) \right) \left(\frac{\partial n_i}{\partial p_j} \right) \frac{p_j}{s_j}
\]

\[
\frac{\partial s_j (\cdot)}{\partial p_b} \frac{p_j}{s_b} = \left(-\frac{1}{ns} \sum_{i=1}^{ns} \phi_{ij} \phi_{ib} (-\alpha_1 + \alpha_2 n_i + \alpha_3 a_i + \alpha_4 c_{ib}) \right) \left(\frac{\partial n_i}{\partial p_b} \right) \frac{p_j}{s_b}
\]

(15)

where \(n_i, a_i, c_i \) are, respectively, simulated values from Normal, Age and Closeness (to shops) distributions.\(^{13}\)

\(^{13}\)See Mariuzzo, Walsh and Whelan (2004) for details on these simulations.
Unfortunately, as noticed by Berry Levinsohn and Pakes (2003) and Petrin (2002), a reliance on the market-level distributions of consumer characteristics, do not give us the degrees of freedom associated with micro-level data on individual choices. Moreover, the distribution of consumer characteristics relevant to products inside the market may well be different to those purchasing the outside option (see Mariuzzo, 2004). Likewise the distribution of relevant consumer characteristics may also vary dramatically across products inside the market.

In our example we improve our estimates of demand primitives by randomizing over data on store coverage to create a distribution of consumer disutility reflecting distance to each brand (product). We have a distribution of consumer preferences that reflects the likely convenience of the location of retail stores that carry the product in question. The interaction of this product \((j)\) specific distribution with prices can be estimated with far greater degrees of freedom when compared to interactions using market level distributions of consumer characteristics. This will result in a very rich set of demand primitives. The more traditional form of product differentiation, consumer taste for location, turns out to be important. Within a structural model of equilibrium we allow for product differentiation on two dimensions, distribution of consumer tastes for product characteristics and location convenience.

4 Comparing Results of Nested Logit and BLP Models

We estimate the Nested Logit demand system in equation (4). Estimates of the vector \(\beta, \beta_1, \alpha, \alpha_1,\) and \(\sigma\) can be obtained from a GMM estimation procedure. The variables \(p_j, \ln(D_j) \ast p_j\) and \(\ln(s_{j/g})\) are endogenous variables and must be instrumented. Our results are presented in Table III.
Table III: GMM Estimation of the Nested Logit Demand System

In column I we present a nested logit model using no data on distance (location convenience) in the regression or in the instrument set. In column II we estimate the full model in equation (4). In both specifications, the Chi-squared test rejects the null that the moments (instruments) are invalid. We estimate $\alpha_j = (-2.9 + .63 \times \ln(D_j))$. This implies from equation (5) that corresponding nested logit own-price and cross-price elasticities will be augmented by product specific share of consumers that have distance to the product\(^{14}\). In addition,\(^{14}\)

<table>
<thead>
<tr>
<th>Dependent Variable: $\ln(S_j) - \ln(S_0)$</th>
<th>I</th>
<th>II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficient</td>
<td>(t-stat)</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.8</td>
<td>(1.0)</td>
</tr>
<tr>
<td>Default Cola</td>
<td>Orange</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>Lemonade</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>Mixed Fruit</td>
<td>0.45</td>
</tr>
<tr>
<td>Default Cans</td>
<td>Standard</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>1.5 Litre</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>2 Litre</td>
<td>-0.3</td>
</tr>
<tr>
<td>Multi-Pack Cans</td>
<td>Default Diet</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Diet</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>$-\beta_1 \ln(D_{jt})$</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>$\sigma \ln(s_{jt})$</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>$(\alpha_1 - \alpha_2) \ln(D_{jt}) p_{jt}$</td>
<td>5.9</td>
</tr>
<tr>
<td>Company Dummies</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Packaging × Month Dummies</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>R^2</td>
<td>0.61</td>
<td>0.81</td>
</tr>
<tr>
<td>Over-identification IV Test</td>
<td>$\chi^2(5) = 0.99$</td>
<td>$\chi^2(5) = 0.99$</td>
</tr>
</tbody>
</table>

* Instruments for Regression I include all the regressors, with the exception of p_{jt} and $\ln(s_{jt})$. Inventories; Hausman-Taylor instrumental variables (brands of the same firm in other segments) with respect to p_{jt} and Inventories; and BLP instruments (brands of the other firms in the same segment) with respect to mean and standard deviation of Inventories.

Instruments for Regression II include all the regressors, with the exception of p_{jt}, $\ln(s_{jt})$ and $\ln(D_{jt})$; Inventories; Hausman-Taylor instrumental variables (brands of the same firm in other segments) with respect to p_{jt}, $\ln(D_{jt})$, and Inventories; and BLP instruments (brands of the other firms in the same segment) with respect to mean and standard deviation of $\ln(D_{jt})$ and Inventories; *Significantly different from zero at the five percent level in a two-tailed test.

\(^{14}\)These estimates are slightly different compared to Mariuzzo, Walsh and Whelan (2003) as we use packaging X month dummies instead of packaging X season dummies. In addition we
we estimate $\sigma = 0.65$, for our corresponding nested logit own-price and cross-price elasticities, this will imply that within segment market shares will get a higher weight than the overall market share. These estimates provide a matrix of nested logit own-price and cross-price elasticities, of which there are J^2 in each bi-monthly period.

The results of the BLP procedure, jointly estimating the demand and cost equations are presented in Tables IV.

<table>
<thead>
<tr>
<th>Demand</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
<td>Coefficient (t-stat)</td>
</tr>
<tr>
<td>Means</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-6.2 (6.1)*</td>
</tr>
<tr>
<td>Inventories</td>
<td>-20 (2.7)*</td>
</tr>
<tr>
<td>Store Coverage</td>
<td></td>
</tr>
<tr>
<td>α_1 Price</td>
<td>-7.3 (6.8)*</td>
</tr>
<tr>
<td>Default Cola</td>
<td></td>
</tr>
<tr>
<td>Orange</td>
<td>1.3 (15.6)*</td>
</tr>
<tr>
<td>Lemonade</td>
<td>.69 (6.4)*</td>
</tr>
<tr>
<td>Mixed Fruit</td>
<td>1.7 (6.3)*</td>
</tr>
<tr>
<td>Default Cans</td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>4.8 (3.6)*</td>
</tr>
<tr>
<td>1.5 Litre</td>
<td>4.8 (3.5)*</td>
</tr>
<tr>
<td>2 Litre</td>
<td>.78 (3.4)*</td>
</tr>
<tr>
<td>Multi-Pack Cans</td>
<td>-3.4 (12.2)*</td>
</tr>
<tr>
<td>Default Diet</td>
<td></td>
</tr>
<tr>
<td>Regular</td>
<td>.71 (11.8)*</td>
</tr>
<tr>
<td>Interactions</td>
<td></td>
</tr>
<tr>
<td>Parametric Distribution</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>3.4 (3.4)*</td>
</tr>
<tr>
<td>α_1 Price</td>
<td>-0.65 (.61)</td>
</tr>
<tr>
<td>Age Distribution</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-11.6 (2.8)*</td>
</tr>
<tr>
<td>α_1 Price</td>
<td>-2.1 (0.32)</td>
</tr>
<tr>
<td>“Closeness to Stores” Distribution</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>29.1 (18.6)*</td>
</tr>
<tr>
<td>α_1 Price</td>
<td>-11.2 (7.8)*</td>
</tr>
</tbody>
</table>

R^2 = .82

$\#$ Negative Predicted Mark-Ups = 0

of Simulations = 100

Demand and Cost Side include Firm and Packaging X Month Dummies. Observations 4,645. Instruments for Demand: Flavour, Packaging and Diet characteristics and Inventories; Hausman-Taylor instrumental variables (brands of the same firm in other segments) with respect to price, store coverage and inventories; and BLP instruments (brands of the other firms in the same segment) with respect the Mean and Standard Deviation of store coverage and inventories. Instruments for Supply: Same as demand expect the Hausman-Taylor instrumental variables.

Table IV: Estimation of Demand and MC Equation: BLP Specification

The standard errors have been corrected for potential correlation between demand and supply unobservables. With reference to utility, we estimate the mean effect of our product characteristics, the coefficient on price, the parameters that define individual variability in taste for a benchmark quality and price, the interaction terms. Our specification of the utility and cost function, choices of demand and supply side instruments and our structural model of equilibrium use a different set of instruments. This makes our nested logit model including the interaction term for distance to a product comparable to the Demand model of BLP.
produce good results, we predict 80 per cent of the variation in the actual market share of each product in each time period. It is important that we get good estimates of the demand primitives. The coefficient on price and interaction of price with consumer taste distributions will be the focal point. Yet, it will be the quality of the other controls and the instrument set that will give us efficient estimates of our coefficients on price and consumer taste distributions interactions with price. These determine our estimates of the own-price and cross-price elasticities (15). The coefficient on price and the interaction of price with our consumer taste distributions that reflect consumer taste for closeness are highly significant. The market level consumer taste distributions interactions with price are not significant. This will imply that own and cross-price elasticities will be more responsive when the distribution of consumers distance to stores that carry the product reflects closeness to consumers. We see clearly a trade off between covering the market and the nature of price competition that a brand faces. Less coverage is not a good attribute in terms of market share but can potentially lead to higher price cost mark-ups by making own- and- cross price elasticities less responsive to the prices of other brands. Even though the market level interactions do not come in, we see that our product level consumer taste distribution for geography induces rich demand primitives.

In Table V we compare the demand primitives that come out of the Nested Logit demand system and the BLP demand model, estimated jointly with supply.15

15*Nested Logit Demand Model; **BLP Demand and Supply Model
Table V: Segment (Weighted Averages over Brands) 1992-1997

We average over the brands within each of our flavor, packaging and diet segments. This in turn is averaged over our 28 bi-monthly periods. The elasticity of market share with respect to the own-price elasticities are similar in trends for both models. The BLP estimates tend to be more elastic. In addition, both models estimate that the own price elasticity is more elastic for Cans relative to other packaging types, while 2-litre packing is the most inelastic. We also report the sum of the cross-price elasticities for each brand, averaged by segment. The BLP model clearly estimates these to be larger.
Given these primitives, assuming multi-product price setting firms without symmetry in the market, a multi-product Nash equilibrium is given by the system of \(J \) first order conditions. Using the first order conditions in equation (6), one can get estimates of a Lerner Index per brand/product \(j \). Aggregating these estimates over different sets of brands gives an indicator of firm or segment market power. In Table VI we compare estimates of bi-monthly mark-ups and profits, averaged over the period, by segment. The key characteristic is packaging type. Packaging with 1.5 and 2-litre bottles earns greater markups than cans and the standard bottle. Diet drinks seem to also get a premium and the mark-ups are very similar when one compares the simple and more sophisticated frameworks.

*Nested Logit Demand Model

**BLP Demand and Supply Model

Table VI: Segment (Weighted Averages over Brands).
In Table VII we compare estimates of bi-monthly mark-ups and profits, averaged over the period, by company. Again the mark-ups are very similar when one compares the simple and more sophisticated frameworks.

<table>
<thead>
<tr>
<th>Companies</th>
<th>Brands</th>
<th>Market Share of Output</th>
<th>Market Share of Profit*</th>
<th>Mark-Up*</th>
<th>Market Share of Profit**</th>
<th>Mark-Up**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank 1</td>
<td>51</td>
<td>0.4792</td>
<td>0.15</td>
<td>0.3693</td>
<td>0.14</td>
<td>0.46927</td>
</tr>
<tr>
<td>Rank 2</td>
<td>36</td>
<td>0.2337</td>
<td>0.22</td>
<td>0.2655</td>
<td>0.13</td>
<td>0.20297</td>
</tr>
<tr>
<td>Rank 3</td>
<td>20</td>
<td>0.0928</td>
<td>0.28</td>
<td>0.1326</td>
<td>0.18</td>
<td>0.10642</td>
</tr>
<tr>
<td>Rank 4</td>
<td>4</td>
<td>0.0589</td>
<td>0.30</td>
<td>0.0911</td>
<td>0.25</td>
<td>0.17699</td>
</tr>
<tr>
<td>Rank 5</td>
<td>3</td>
<td>0.0553</td>
<td>0.32</td>
<td>0.0907</td>
<td>0.29</td>
<td>0.02206</td>
</tr>
<tr>
<td>Rank 6</td>
<td>7</td>
<td>0.0343</td>
<td>0.16</td>
<td>0.0285</td>
<td>0.10</td>
<td>0.00947</td>
</tr>
<tr>
<td>Rank 7</td>
<td>3</td>
<td>0.0229</td>
<td>0.05</td>
<td>0.0054</td>
<td>0.05</td>
<td>0.01142</td>
</tr>
<tr>
<td>Rank 8</td>
<td>5</td>
<td>0.0196</td>
<td>0.14</td>
<td>0.0144</td>
<td>0.10</td>
<td>0.00077</td>
</tr>
<tr>
<td>Rank 9</td>
<td>6</td>
<td>0.0028</td>
<td>0.15</td>
<td>0.0022</td>
<td>0.13</td>
<td>0.00018</td>
</tr>
<tr>
<td>Rank 10</td>
<td>1</td>
<td>0.0001</td>
<td>0.10</td>
<td>0.0001</td>
<td>0.10</td>
<td>0.00024</td>
</tr>
<tr>
<td>Rank 11</td>
<td>2</td>
<td>0.0002</td>
<td>0.10</td>
<td>0.0001</td>
<td>0.25</td>
<td>0.00004</td>
</tr>
<tr>
<td>Rank 12</td>
<td>1</td>
<td>0.0002</td>
<td>0.09</td>
<td>0.0001</td>
<td>0.06</td>
<td>0.00014</td>
</tr>
<tr>
<td>Rank 13</td>
<td>1</td>
<td>0.0001</td>
<td>0.07</td>
<td>0.0000</td>
<td>0.29</td>
<td>0.46927</td>
</tr>
<tr>
<td>HHI</td>
<td>3014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merge 4 &5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New HHI</td>
<td>3079</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change HHI</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Nested Logit Demand Model. ** BLP Demand and Supply Model.

Table VII: Estimated Company Bi-Monthly Mark-ups.

In Table VII we document the price cost mark-ups and market shares by company for the retail carbonated soft drinks market using estimates of demand primitives from our simple nested logit and more sophisticated BLP frameworks. Clearly a monotonic relationship between market power and market share does not exist in this industry. Companies with a smaller share of the carbonated soft drinks market extract rents, within the product segments and stores of the market they operate in, comparable to that of multinationals who operate across most stores and product segments. Its seems that inferring market power from the distribution of market shares is ill advised in multi-product firms.
differentiated goods industries.

4.1 Implications for EU Merger Control

In Table VII we document the HHI measures of concentration in terms of the normal output based market share and in terms of a profit based market share for each company. This is done for the simple nested logit and BLP model. We take a hypothetical merger in our data, companies ranked 4 and 5, to illustrate that merger screening based on a dominance test may fail to identify a damaging merger without any market power considerations. Using the rules outlined in Table I we observe that both models suggest that the proposed merger between the companies ranked 4 and 5 should be investigated on the basis of the HHI on profit shares. This is not the case if one only used information on the market share of companies output. Using the profit share estimated from the simple logit framework the post merger HHI is 2585 and the change is 165. The proposed merger between the companies ranked 4 and 5 should be investigated. In contrast, the HHI for output post-merger is 3079 and the change due to the merger is only 65, no merger investigation is recommended. Results from the BLP framework similarly recommends investigation.

New EC Merger Regulation No 139/2004 calls for a substantive test to ensure that all post-merger scenarios posing a threat to competition would be investigated. We argue that one should use at least a simple structural model to estimate company mark-ups (aggregated over products) as part of a substantive test. This framework incorporates multi-product firm behaviour and product differentiation in terms of product characteristics and consumer taste for location convenience. Any anti-trust authority with good data should be capable of estimating mark-ups using the simple nested logit model of demand. Merger screening may fail to identify damaging mergers using the market share of companies output without any market power considerations. In most industries we see waves of mergers among small companies that go unchecked. In differentiated goods industries such mergers may have competitive implications and should be checked on the basis of market power, and not market share, considerations.

5 Conclusions and Recommendations

This paper illustrates that the HHI measures of output concentration is not a good indicator of market power in differentiated product industries. The complex operation of multi-product firms over different segments and stores in
these industries means that there is no theoretical foundation for the mapping of market concentration into market power. This clearly has implications for the use of the HHI on output as a screening device for proposed mergers. We show a proposed merger between two firms that has little impact on the overall HHI measure of output concentration for an industry, and thus would not be likely to undergo an investigation by anti-trust authorities using dominance tests. Yet, we show a big increase in market power as the companies, small in output, are specialized into geographic and/or product segments. In the event that a merger results from the aggregation over companies with high mark-ups, irrespective of their overall share in the market, our profit share indicator of market power using the HHI is clearly desirable in the screening stage of mergers in differentiated products industries.

This paper compares a simple to an advanced structural approach in the estimating market power. Our simple model is straightforward to implement, not requiring cumbersome estimation procedures or a heavy data burden. More importantly the results are similar to that estimated in the BLP model. Using estimates of market power to construct HHI in profit shares allows more accurate and informed decisions in the screening stage as to which mergers should undergo investigation. The wording of the new EC Merger Regulation No 139/2004 would allow such an approach to be part of a substantive test to ensure that all post-merger scenarios posing a threat to competition are covered even if the traditional dominance test fails to identify such a scenario.

\[16\] For the use of the structural models using a model of supply and demand (nested logit) in the investigation stage of a merger, see Ivaldi and Verboven (2000) on the Volvo/Scania case.
References

Taste for Location Convenience into a Structural Model of Equilibrium”,
Mimeograph, Trinity College, Dublin.

ficients Logit Models of Demand,” Journal of Economics & Management

Price of a Pint”, Department of Economics, University of British Columbia.

mimeo, Department of Economics, University of British Columbia.

Advertising and the Evolution of Concentration, Cambridge, MA: MIT
Press.

as an Outcome of Competition in the Irish Grocery Market’, Journal of
Industrial Economics, 47, 1-19.
1249 Francesco Giavazzi and Guido Tabellini, Economic and Political Liberalizations, July 2004

1250 Yin-Wong Cheung and Jude Yuen, An Output Perspective on a Northeast Asia Currency Union, August 2004

1251 Ralf Elsas, Frank Heinemann, and Marcel Tyrell, Multiple but Asymmetric Bank Financing: The Case of Relationship Lending, August 2004

1252 Steinar Holden, Wage Formation under Low Inflation, August 2004

1254 Klaus Wälde and Pia Weiß, International Competition, Slim Firms and Wage Inequality, August 2004

1256 Guido Tabellini, The Role of the State in Economic Development, August 2004

1257 François Larmande and Jean-Pierre Ponsard, EVA and the Controllability-congruence Trade-off: An Empirical Investigation, August 2004

1258 Vesa Kanniainen and Jenni Pääkkönen, Anonymous Money, Moral Sentiments and Welfare, August 2004

1259 Panu Poutvaara and Andreas Wagener, Why is the Public Sector More Labor-Intensive? A Distortionary Tax Argument, August 2004

1260 Lars P. Feld and Stefan Voigt, Making Judges Independent – Some Proposals Regarding the Judiciary, August 2004

1261 Joop Hartog, Hans van Ophem, and Simona Maria Bajdechi, How Risky is Investment in Human Capital?, August 2004

1262 Thomas Eichner and Rüdiger Pethig, Efficient Nonanthropocentric Nature Protection, August 2004

1263 David-Jan Jansen and Jakob de Haan, Look Who’s Talking: ECB Communication during the First Years of EMU, August 2004

1264 David F. Bradford, The X Tax in the World Economy, August 2004
1265 Hans-Werner Sinn, Migration, Social Standards and Replacement Incomes. How to Protect Low-income Workers in the Industrialized Countries against the Forces of Globalization and Market Integration, August 2004

1266 Wolfgang Leininger, Fending off one Means Fending off all: Evolutionary Stability in Submodular Games, August 2004

1267 Antoine Bommier and Bertrand Villeneuve, Risk Aversion and the Value of Risk to Life, September 2004

1268 Harrie A. A. Verbon and Lex Meijdam, Too Many Migrants, Too Few Services: A Model of Decision-making on Immigration and Integration with Cultural Distance, September 2004

1269 Thomas Eichner and Rüdiger Pethig, Economic Land Use, Ecosystem Services and Microfounded Species Dynamics, September 2004

1270 Federico Revelli, Performance Rating and Yardstick Competition in Social Service Provision, September 2004

1271 Gerhard O. Orosel and Klaus G. Zauner, Vertical Product Differentiation When Quality is Unobservable to Buyers, September 2004

1272 Christoph Böhringer, Stefan Boeters, and Michael Feil, Taxation and Unemployment: An Applied General Equilibrium Approach, September 2004

1274 Tomer Blumkin and Volker Grossmann, Ideological Polarization, Sticky Information, and Policy Reforms, September 2004

1275 Katherine Baicker and Nora Gordon, The Effect of Mandated State Education Spending on Total Local Resources, September 2004

1276 Gabriel J. Felbermayr and Wilhelm Kohler, Exploring the Intensive and Extensive Margins of World Trade, September 2004

1277 John Burbidge, Katherine Cuff and John Leach, Capital Tax Competition with Heterogeneous Firms and Agglomeration Effects, September 2004

1278 Joern-Steffen Pischke, Labor Market Institutions, Wages and Investment, September 2004

1279 Josef Falkinger and Volker Grossmann, Institutions and Development: The Interaction between Trade Regime and Political System, September 2004

1280 Paolo Surico, Inflation Targeting and Nonlinear Policy Rules: The Case of Asymmetric Preferences, September 2004
1281 Ayal Kimhi, Growth, Inequality and Labor Markets in LDCs: A Survey, September 2004

1282 Robert Dur and Amihai Glazer, Optimal Incentive Contracts for a Worker who Envises his Boss, September 2004

1283 Klaus Abberger, Nonparametric Regression and the Detection of Turning Points in the Ifo Business Climate, September 2004

1284 Werner Güth and Rupert Sausgruber, Tax Morale and Optimal Taxation, September 2004

1285 Luis H. R. Alvarez and Erkki Koskela, Does Risk Aversion Accelerate Optimal Forest Rotation under Uncertainty?, September 2004

1286 Giorgio Brunello and Maria De Paola, Market Failures and the Under-Provision of Training, September 2004

1287 Sanjeev Goyal, Marco van der Leij and José Luis Moraga-González, Economics: An Emerging Small World?, September 2004

1288 Sandro Maffèi, Nikolai Raabe and Heinrich W. Ursprung, Political Repression and Child Labor: Theory and Empirical Evidence, September 2004

1289 Georg Götz and Klaus Gugler, Market Concentration and Product Variety under Spatial Competition: Evidence from Retail Gasoline, September 2004

1290 Jonathan Temple and Ludger Wößmann, Dualism and Cross-Country Growth Regressions, September 2004

1291 Ravi Kanbur, Jukka Pirttilä and Matti Tuomala, Non-Welfarist Optimal Taxation and Behavioral Public Economics, October 2004

1292 Maarten C. W. Janssen, José Luis Moraga-González and Matthijs R. Wildenbeest, Consumer Search and Oligopolistic Pricing: An Empirical Investigation, October 2004

1294 Christoph A. Schaltegger and Lars P. Feld, Do Large Cabinets Favor Large Governments? Evidence from Swiss Sub-Federal Jurisdictions, October 2004

1295 Marc-Andreas Mündler, The Existence of Informationally Efficient Markets When Individuals Are Rational, October 2004

1296 Hendrik Jürges, Wolfram F. Richter and Kerstin Schneider, Teacher Quality and Incentives: Theoretical and Empirical Effects of Standards on Teacher Quality, October 2004
1297 David S. Evans and Michael Salinger, An Empirical Analysis of Bundling and Tying: Over-the-Counter Pain Relief and Cold Medicines, October 2004

1298 Gershon Ben-Shakhar, Gary Bornstein, Astrid Hopfensitz and Frans van Winden, Reciprocity and Emotions: Arousal, Self-Reports, and Expectations, October 2004

1300 Piero Gottardi and Roberto Serrano, Market Power and Information Revelation in Dynamic Trading, October 2004

1302 Sheilagh Ogilvie, The Use and Abuse of Trust: Social Capital and its Deployment by Early Modern Guilds, October 2004

1303 Mario Jametti and Thomas von Ungern-Sternberg, Disaster Insurance or a Disastrous Insurance – Natural Disaster Insurance in France, October 2004

1304 Pieter A. Gautier and José Luis Moraga-González, Strategic Wage Setting and Coordination Frictions with Multiple Applications, October 2004

1306 Michael Waldman, Antitrust Perspectives for Durable-Goods Markets, October 2004

1307 Josef Honerkamp, Stefan Moog and Bernd Raffelhüschen, Earlier or Later: A General Equilibrium Analysis of Bringing Forward an Already Announced Tax Reform, October 2004

1308 M. Hashem Pesaran, A Pair-Wise Approach to Testing for Output and Growth Convergence, October 2004

1309 John Bishop and Ferran Mane, Educational Reform and Disadvantaged Students: Are They Better Off or Worse Off?, October 2004

1310 Alfredo Schclarek, Consumption and Keynesian Fiscal Policy, October 2004

1311 Wolfram F. Richter, Efficiency Effects of Tax Deductions for Work-Related Expenses, October 2004

1312 Franco Mariuzzo, Patrick Paul Walsh and Ciara Whelan, EU Merger Control in Differentiated Product Industries, October 2004