<table>
<thead>
<tr>
<th>Title</th>
<th>Influences on mobility and employment in Irish family farming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors(s)</td>
<td>Walsh, Brendan M.</td>
</tr>
<tr>
<td>Publication date</td>
<td>1969</td>
</tr>
<tr>
<td>Publication information</td>
<td>Irish Journal of Agricultural Economics and Rural Sociology, 2 (1): 13-24</td>
</tr>
<tr>
<td>Publisher</td>
<td>An Foras Talúntais; 1968, An Foras Talúntais</td>
</tr>
<tr>
<td>Item record/more information</td>
<td>http://hdl.handle.net/10197/1495</td>
</tr>
</tbody>
</table>
INFLUENCES ON MOBILITY AND EMPLOYMENT IN
IRISH FAMILY FARMING

B. M. Walsh

Department of Economics, Tufts University, Medford, Mass. 02155, U.S.A.

ABSTRACT

This is a study of some of the economic and demographic determinants of the decline in employment among farmers and farmers' relatives between 1951 and 1961 in the Republic of Ireland. Net migration and employment decline have been studied separately for each of these employment categories, and multiple regression techniques applied to test a model of the dynamics of the family-farm labour force. The principal findings reported are: (i) there is some responsiveness to expected family-farm income in the migration decisions of both employment categories, but this factor does not account for much of the inter-county variation in migration in either category; (ii) a major source of variation in employment decline among farmers is the number of farmers' deaths expected over the period, and (iii) the increase in the number of farmers' relatives expected in the absence of migration does not contribute significantly to the explanation of employment decline, but does account for much of the variation in the level of net migration, among this employment category. These findings are, in general, confirmed when the model is tested on age-specific data. In addition to illuminating the reasons for the changes that have occurred in the family-farm labour force between 1951-61, it is believed that the model presented here can be readily applied to help forecast the future behaviour of this labour force.

INTRODUCTION

The Irish Land Question was settled in the last decades of the 19th century by a series of Acts that provided for eventual transfer of ownership to the tenant farmers. As a result of these Acts, the landlord had ceased to be an important figure in Irish farming by the early 20th century. During the second half of the 19th and the first half of the 20th century, the percentage of the agricultural labour force consisting of hired agricultural workers contracted steadily. Because of these two tendencies, by 1951, 80.2 per cent of those occupied in agriculture in the Republic of Ireland were family-farm workers. Of these family-farm workers, 57.8 per cent were farmers (i.e. the owners of the land) and 42.2 per cent were farmers' relatives, mostly farmers' brothers, sons, daughters and sons-in-law (1). The average holding was 32.8 acres. Thus, small-scale family farming predominated.

In retrospect, the transformation of the land-tenure basis of Irish agriculture seems to have had little impact on either the structure of agricultural production or the rate of decline of the farm labour force. It has recently been argued that the major impact of the Land Acts was, from an economic viewpoint, unfavourable: by abolishing the
system of competitive rents that existed up to then, the implementation of the Acts made it possible for old and inefficient farmers to preempt land which, under the landlord regime, would have been farmed efficiently in order to meet rents established in the free market (2, 3). As evidence of this consequence of the Land Acts it is possible to cite the rising percentage of farmers after 1881 consisting of old men and widows.

It is certainly true that today the demographic structure of the Irish farm labour force is not ideal from the point of view of promoting efficient land-use. Table I shows the median age of the farm population by category in 1951 and 1961, along with the median age of the total Irish labour force. By comparison with other farm workers or with non-agricultural workers, farmers are on the average very old. More than a quarter of farmers were over 65 years old in 1961. Table II facilitates comparison with other farm populations, and shows that Ireland's farmers are much older than those of England and Wales or Scotland. It may also be seen, however, that the highest concentration of old farmers in Ireland occurs on small farms. In addition, it is probably true that a considerable percentage of the old farmers have relinquished control over their land, retaining only their title to it and allowing their

TABLE I: Median age of farm and total labour force, 1951 and 1961

<table>
<thead>
<tr>
<th>Year</th>
<th>Farmers</th>
<th>Relatives</th>
<th>Labourers</th>
<th>Total gainfully occupied</th>
</tr>
</thead>
<tbody>
<tr>
<td>1951</td>
<td>56.6</td>
<td>28.4</td>
<td>35.2</td>
<td>35.8</td>
</tr>
<tr>
<td>1961</td>
<td>56.5</td>
<td>29.3</td>
<td>38.9</td>
<td>38.7</td>
</tr>
</tbody>
</table>

Source: Table 2 in (1) and Table 2 in (4).

TABLE II: Percentages aged 65 and over in selected populations of farmers

<table>
<thead>
<tr>
<th>Population</th>
<th>Percentage aged 65 and over</th>
</tr>
</thead>
<tbody>
<tr>
<td>All farmers, Ireland 1951</td>
<td>31.8</td>
</tr>
<tr>
<td>All farmers, England and Wales 1951</td>
<td>12.9</td>
</tr>
<tr>
<td>All farmers, Ireland 1961</td>
<td>28.75</td>
</tr>
<tr>
<td>All farmers, England and Wales, 1961</td>
<td>10.5</td>
</tr>
<tr>
<td>All farmers, Scotland 1961</td>
<td>12.2</td>
</tr>
<tr>
<td>Farmers, Ireland 1961, on holdings of less than 30 acres</td>
<td>33.3</td>
</tr>
<tr>
<td>Farmers, Ireland 1961, on holdings of less than 15 acres</td>
<td>36.8</td>
</tr>
</tbody>
</table>

Source: (2) Table 12, (4) Table 2, (5 and 6).
sons or other young relatives to make the production decisions. Nonetheless, it is likely that an unusually high proportion of Irish farm land is controlled by people who are too old to be efficient farmers.

The high average age of the rural population and the high incidence of celibacy among farmers have acted as equilibrating forces between the supply and demand for agricultural labour in the sense that the natural increase of the rural population has fallen to a very low level. In the absence of net migration, and assuming an unchanged rate of labour-force participation among the rural population, the family-farm labour force would have grown by only 6,325 persons (or 1.6 per cent) between 1951 and 1961. In fact the number at work actually declined by 88,085 persons (or 21.7 per cent) over the decade: thus, mobility to non-farm jobs (in Ireland and overseas) was responsible for the transfer of 94,410 persons from the family-farm population over the period.¹ On the basis of limited evidence, it seems that most of those leaving family farming eventually emigrated from Ireland (7).

It is the purpose of this paper to explore a possible explanation of the manner in which these changes in the Irish farm labour force have come about, and in particular to focus on some important differences in the way in which farmers and farmers' relatives respond to their economic and demographic environment. In addition to affording some insight into the dynamics of the farm labour force, it is hoped that the model presented here also contributes to an understanding of the forces which have led to the present abnormal age structure of this labour force.

METHODOLOGY

Mobility has come to be regarded by economists as an adjustment designed to maximize the expected flow of labour income over a worker's life. Many variables are therefore relevant to the decision to move, in as much as there are many determinants of the net improvement in lifetime income that results from a move. Among these determinants are commonly listed the educational attainment of the potential migrant, his age, his current income and the costs associated with reaching his proposed destination (8). Since migration from farm work in Ireland appears to be mostly to destinations outside the country, the relatively minor differences in the distances between Irish counties and the points of embarkation for overseas are not likely to be major influences on the inter-county variation in migration rates. Educational differences between the county farm populations are probably considerable, but data on education by-county-by-occupation are unobtainable (9). The influence of age on the migration decision is probably best studied by comparing the responses of different age groups to a given set of economic variables, and some information on the age-specific findings of this study are reported below. The main emphasis in this paper, however, has been placed on the differences between farmers and farmers'¹

¹ The data on which these statements are based is provided in Table III. A complete table of the data used in this study is provided in the Appendix.
relatives in their reaction to a specified set of economic and demographic conditions. With these considerations in mind, the following simple model has been specified and tested on the occupational data provided in the 1951 and 1961 Censuses of Population.

Net migration from family farming is hypothesized to be a response to low expected returns to farm work. Expected returns to family farming have been measured approximately by family-farm income per worker in 1951. To test the effect of demographic conditions in determining the level of migration, the natural increase of the labour force has been introduced as an explanatory variable. The net influence of this natural-increase variable is a measure of the inertia or absence of inertia of the population in its present occupations: if the main influence of natural increase is on the level of migration, then there would seem to be little tendency for inertia to determine the size of the labour force; but if the natural-increase variable is solely an influence on the change in the labour force, then inertia is an important determinant of the rate of employment change. As a test of the effect of farm ownership on mobility, the same model has been tested separately on the data for employment change and migration for farmers and farmers' relatives.

The concept of the natural increase of the farm labour force needs to be clarified. For farmers, natural increase was measured by subtracting from the number of farmers in a county in 1951 the number of expected survivors to 1961. This difference is the expected number of farmers' deaths over the period 1951-61; it represents the decline in number of farmers that would have occurred in the absence of any mobility into or out of this occupational category. For farmers' relatives, the natural-increase variable has been calculated by subtracting from the actual number of relatives in 1951 the number expected in 1961 in the absence of net migration. This expected number has been estimated as the sum of the survivors from the 1951 population and the survivors from the 1951 rural population aged 4-14 multiplied by the 1951 participation rates of the rural population aged 14-24 in the farmers' relatives category of employment.

It is appropriate that the measure of natural increase for farmers relates to a decline in numbers and for farmers' relatives to an increase in numbers. The assumption behind the definition of natural increase is that all of the population growth of the family-farm population is initially absorbed into the farmers' relatives category if it remains on the farm. Thus, in the absence of migration, this employment category would grow appreciably over time. Farmers, on the other hand, must constantly be replaced by an inflow of heirs and land purchasers due to the attrition of their numbers through death and retirement. The ingredients of the calculation of natural increases and employment change for farmers and their relatives are recorded in

* As far as possible, total agricultural income in 1951 has been distributed by using county distributors calculated for 1951 on the basis employed for 1960 in (10)

* Survivors were calculated by applying 10-year survival ratios, from Irish Life Table Number 6 (11) to the 1951 population of farmers by age group.
TABLE III: Components of labour force change, family farming, Ireland, 1951-61

<table>
<thead>
<tr>
<th>Employment category</th>
<th>Number in 1951</th>
<th>Projected survivors to 1961</th>
<th>Natural increase<sup>a</sup></th>
<th>Number in 1961</th>
<th>Decline 1951-61</th>
<th>Estimated net migration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farmers</td>
<td>235,331</td>
<td>165,619</td>
<td>-69,712</td>
<td>210,331</td>
<td>25,000</td>
<td>44,712</td>
</tr>
<tr>
<td>Farmers' relatives</td>
<td>171,085</td>
<td>247,122</td>
<td>76,037</td>
<td>108,000</td>
<td>63,085</td>
<td>-139,122</td>
</tr>
<tr>
<td>Total family farming</td>
<td>406,416</td>
<td>412,741</td>
<td>6,325</td>
<td>318,331</td>
<td>88,085</td>
<td>-94,410</td>
</tr>
</tbody>
</table>

Source: As for Table I

^a For the meaning of "natural increase" and method of calculation in column 2 see page 16
Table III. It may be seen that the projected number of farmers' deaths was 69,712, while the actual decrease in the number of farmers was 25,000, so that 44,712 persons must have moved into this occupational category over the decade. Similarly with farmers' relatives, the projected increase was 76,037, while a decline of 63,085 was actually recorded, so that the net outflow from this category was 139,122. Combining the estimates of net migration for farmers and relatives, it may be estimated that the total net migration from family farming over the period was 94,410 (=44,712 — 139,122).

RESULTS AND DISCUSSION

Using the actual change in employment in each category of family farming as dependent variables, the following results were obtained through ordinary least squares regression, using data for the 26 counties:

(i) \[Y_1 = 1056.03 + 1.2652** X_1 - 4.9316** X_2 - 0.2636* X_3 \]

\[(413.19) \quad (0.4169) \quad (1.6631) \quad (0.1229) \]

\[R^2 = 0.865, \quad S_e = 343.65 \]

where

- \(Y_1 \) = decrease in number of farmers in a county,
- \(X_1 \) = natural increase of farmers in county,
- \(X_2 \) = family-farm income per person employed in family farming,
- \(X_3 \) = number of farmers in county, 1951.

(ii) \[Y_2 = 1345.15 + 0.0604 X_4 - 6.0411** X_2 + 0.3424* X_5 \]

\[(429.32) \quad (0.2511) \quad (1.8850) \quad (0.1244) \]

\[R^2 = 0.958, \quad S_e = 412.53 \]

where, in addition to previously defined variables,

- \(Y_2 \) = decrease in number of farmers' relatives by county,
- \(X_2 \) = natural increase of farmers' relatives in county,
- \(X_5 \) = number of farmers' relatives in county in 1951.

** = coefficient significantly different from zero, t-test, 1 per cent significance level,

* = coefficient significantly different from zero, t-test, 5 per cent significance level.

In addition to the income and natural-increase variables, the number employed in each category in 1951 has been included as an independent variable to adjust for county size.\(^4\)

These results support the conclusion that the decline in employment among both farmers and farmers' relatives has been affected by the expected returns to family farming. However, the response has not been dramatic among either category of workers. For farmers' relatives, for instance, an inter-county differential of £100 in

\(^4\) The choice of this specification results in an \(R^2 \) that is somewhat inflated by the highly significant county-size variable, but the coefficients of the other variables are not necessarily affected by this, and are in a more meaningful form than would result from the use of percentage changes or migration rates.
1951 income per worker would have resulted in a difference of 624 persons in the
decline in employment, natural increase and county size held constant. Since the
average recorded decline among farmers' relatives was 2,426 and the range between
the richest and poorest county income was £154, the response of employment to
income differentials is not very impressive. The response of farmers was slightly
weaker than that of relatives, but the difference between the two regression slopes is
not statistically significant.

The impact of natural increase on employment decline is significant for farmers
but not for relatives. Re-estimation of equation (ii) omitting the natural-increase
variable yields the following result:

\[Y_2 = 1370.76 - 6.2386 \times X_6 + 0.3721 \times X_5 \]

\[(407.34) \quad (1.6614) \quad (0.0160) \]

\[R^2 = 0.959, \quad Se = 403.99. \]

Comparing equations (ii) and (iii), in the first place it is reassuring to note that the
high degree of collinearity between the county-size and natural-increase variables in
(ii) appears to affect the estimate of the \(X_6 \) coefficient's standard error without
rendering the estimate of the coefficient itself unstable. In the second place, the
omission of the natural increase variable from (ii) does not result in a reduction in
\(R^2 \). The potential growth of the labour force does not contribute significantly to the
explanation of employment change among farmers' relatives.

For farmers, the natural-increase variable (which measures the expected number
of deaths in the 1951 farmer population) has a significant influence on the recorded
employment decline. Equation (i) suggests that for every 100 farmers' deaths in a
county, the number of farmers in the county declined by 127 over the decade, holding
income and county size constant. When taken in relation to its estimated standard
error, the coefficient of the natural-increase variable in (i) may also be interpreted as
showing that, for every 100 surviving farmers expected from the 1951 population,
the number of farmers in a county in 1960 was 100 higher than it would otherwise
have been. Thus, despite the definite, if undramatic, responsiveness of the decline in
the number of farmers to the expected returns from family farming, there appears
to be a strong tendency for those who own farms to remain immobile in their
occupation. This line of reasoning suggests that the role of the income variable in
equation (i) is not to measure the incentive for those already established in farm-
ownership to remain in farming, but rather to measure the attractiveness of family
farming to those who could inherit or purchase a farm.

In order to study the determinants of mobility directly, the foregoing model has
been tested using the level of net migration as the dependent variable for each
category of farm worker. In the case of farmers, net migration refers to the movement
of 44,712 persons into the farmer category. For farmers' relatives, net migration
refers to the movement of 139,122 persons out of this occupational classification or,
in the 14-24 age group, their failure to enter it. As is clear from Table III, net migra-
tion is in each case defined as the difference between the change in the number
employed and natural increase. The following results were obtained:
(iv) \[Y_3 = -1055.93 - 0.2636 X_4 + 4.9312^{**} X_5 + 0.2637^* X_6 \]
\[(413.19) \quad (0.4187) \quad (1.6631) \quad (0.1229) \]
\[R^2 = 0.928, \quad S_e = 343.65 \]
where \(Y_3 \) = net migration of farmers (immigration),

(v) \[Y_4 = 1334.36 + 1.0616^{**} X_4 - 5.9908^{**} X_5 + 0.3420^* X_6 \]
\[(429.91) \quad (0.2514) \quad (1.8875) \quad (0.1246) \]
\[R^2 = 0.9927, \quad S_e = 413.09 \]
where \(Y_4 \) = net migration of farmers' relatives (emigration).

Comparing equations (i) and (iv), and (i) and (v), it is clear that the coefficients of the income and county-size variables are not affected by the choice of dependent variable. It is thus permissible to conclude that these coefficients measure the effect of income and county size on net migration, which in turn affects the level of employment. When the dependent variables are changed from employment decline to net (in-) migration, the coefficients of the natural increase variables are reduced by almost exactly unity, a result that is to be expected on the basis of the definitional relation between these variables.

In equation (v) the natural-increase variable has a highly significant influence on the level of net migration among farmers' relatives, while in (iv) the corresponding variable exerts no significant influence on the net migration of farmers. Re-estimation of (iv) omitting the natural increase variable yields the following result:

(vi) \[Y_3 = -1181.00 + 5.4640^{**} X_5 + 0.1857^{**} X_6 \]
\[(358.81) \quad (1.4187) \quad (0.0109) \]
\[R^2 = 0.920, \quad S_e = 339.18. \]

The omission of the natural-increase variable does not reduce the explained variance: the level of net migration into the occupation of farmer does not seem to respond to the number of farmers' deaths over the period. Since farmers' deaths must be highly correlated with the number of farms that become available for inheritance or purchase, this result lends support to the view that, in the aggregate, availability of farms for inheritance or purchase was not a constraint on the in-migration of relatives to the category of farmer. In fact, over the period 1951-61, the number of farms fell by 25,000, or over one-third the estimated number of farmers' deaths, so that it was quite common for farms to be consolidated or left vacant on the death of their owners. Thus, in equation (i) the significance of the natural-increase variable does not derive from its effect on the level of net migration, but rather from the fact that variations in the number of farmers' deaths lead directly to variations in employment decline among farmers.

Equations (ii), (iii) and (v) show that net migration from the farmers' relatives employment category fully offset the potential growth of the family-farm labour force. Most of this migration was to non-farm occupations: if all of the 139,122

\(^{a}\) The regression results have been presented with the signs adjusted to correspond to positive values for all the variables (viz. employment decline, net migration).
persons that have been estimated as leaving the farmers' relatives category over the period had sought to become farmers, only 50.1 per cent of them could have attained this goal by purchasing or inheriting farms made vacant by the death of their owners. If we assume that all the in-migration to the category farmer over the period occurred from the ranks of farmers' relatives (an assumption which sets the upper limit to the figure) then only 32.1 per cent of the migrating farmers' relatives actually migrated to the farmer category. The significance of the income variable in all six equations is evidence of the influence of economic considerations on whether a relative remains in farming until he becomes a farmer, but the model is unable to shed any further light on the principles by which next generation's farmers are culled from this generation's farmers' relatives.

The interpretation of the highly significant county-size variables may be treated as similar to that of a trend variable. The performance of this variable in the six estimated equations shows that the decline in farmers over the period exhibited a negative trend, income and natural increase held constant, while the decline in farmers' relatives exhibited a positive trend. This might, perhaps, be expected on the basis of the generally disadvantaged position of the farmer's relative in Irish rural life. In conjunction with the difference in the influence of natural increase on employment in the two categories, this finding documents the lesser mobility of the farmer compared to the farmers' relative.

It is natural to ask whether the reduced mobility of farmers is merely a reflection of the difference in the age structures of the farmers' and relatives' populations. A complete discussion of this question requires an extension of the empirical testing of the model to include consideration of the data for both employment categories by age group. This has been accomplished by applying the specification discussed above to each of the seven age groups for which the Census data are published. The principal findings of these tests may be summarized.

The model performed best (as measured by goodness-of-fit) in explaining changes in employment among middle-aged farmers and migration among young relatives. A sizeable proportion of the variation in employment among very young farmers and in migration among older relatives remained unexplained. These latter groups, however, are not major sources of change in the family-farm labour force. The income variable exerted a significant influence on employment decline among farmers up to age 64, and on employment decline and net migration among relatives to age 54. The magnitude of the income variable's coefficient fell with increasing age, supporting the interpretation that mobility among both farmers and relatives declined with age.

The demographic variable, natural increase, was a significant influence on the net migration of relatives up to age 44, but it was non-significant as an influence on

6 Since the income and county-size variables have no interpretation corresponding to zero values, the intercept term serves only to locate the regression line.

7 For farmers, the first two age groups (14-19, 20-24) were consolidated due to small numbers in some counties. Full details of the regression results by age may be had on request from the author.
farmers' migration in all age groups. With employment decline as the dependent variable, however, the natural-increase variable was significant for farmers from age 25 on, while it did not become significant for relatives until the 45-54 age group. Thus it appears that the difference in behaviour documented in the aggregate between the two employment categories persists, in general, when allowance is made for age: only the rather small percentage of farmers' relatives aged over 45 appears to be as immobile in its occupation as are farmers of all ages over 25.

The much older average age of farmers is, of course, partly responsible for their lower overall mobility, but it also appears that there is a tendency for land-owners to have lower mobility than their relatives in all age groups. This paper has not attempted to provide an answer to the important question why ownership exerts this influence in Irish agriculture. The reasons may lie in the process of selection that decides which of the farmers' relatives remain in family farming until they become farmers. The special characteristics of Irish agriculture which Crotty believes encourage "satisficing" rather than profit maximization may also play a part (2). The main finding of this study has been to confirm the role played by demographic forces in the dynamics of the family-farm labour force and the difference between farmers and farmers' relatives in their reactions to economic conditions.

CONCLUSIONS

In conclusion, it may be claimed that a simple model of employment change has been tested and used to explain much of the inter-county variation in the decline of the Irish family-farm labour force between 1951 and 1961. This in itself is of interest, since attempts to explain changes in the Irish agricultural labour force through a production function approach have not yielded satisfactory results up to now. Migration was found to be responsive to expected returns to family farming, and thus to exert an equalizing influence on farm income over time. However, the responsiveness of farmers and relatives to the income variable was not dramatic, and much of the inter-county variation in migration and employment decline was attributable to other factors.

Chief among these other factors was the natural increase of the farm population. For farmers, this was measured as the projected number of deaths over the period, and accounted for much of the variance in employment decline, but not in net migration, in this employment category. The corresponding variable for farmers' relatives, measured as the projected growth of their numbers in the absence of net migration, was not significantly associated with the decline in employment among relatives, but did contribute to the explanation of net migration in this employment category. In addition, there was a strong downward trend in the decline in employment among farmers, and a strong upward trend among relatives. Although the

8 For example see Crotty, Appendix, Note V (2).
picture is more complex when the two employment categories are considered by age group, the main points of difference in their response to economic and demographic variables persist when account is taken of the contrasting age structures of the two populations.

ACKNOWLEDGMENTS

I wish to thank the Editor and a referee for suggesting improvements to an earlier draft of this paper. Responsibility for the analysis and views expressed in the paper remains, of course, solely mine. I am indebted to the Tufts University Computation Center for the use of facilities.

REFERENCES

Received November 5, 1968
APPENDIX

<table>
<thead>
<tr>
<th>County</th>
<th>Y<sub>1</sub></th>
<th>X<sub>1</sub></th>
<th>X<sub>2</sub></th>
<th>Y<sub>3</sub></th>
<th>X<sub>4</sub></th>
<th>X<sub>5</sub></th>
<th>Y<sub>4</sub></th>
<th>X<sub>2</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>CARLOW</td>
<td>150</td>
<td>716</td>
<td>2,340</td>
<td>566</td>
<td>515</td>
<td>804</td>
<td>1,911</td>
<td>1,319</td>
</tr>
<tr>
<td>DUBLIN</td>
<td>102</td>
<td>561</td>
<td>2,059</td>
<td>459</td>
<td>425</td>
<td>324</td>
<td>1,146</td>
<td>749</td>
</tr>
<tr>
<td>KILDARE</td>
<td>238</td>
<td>944</td>
<td>3,221</td>
<td>706</td>
<td>552</td>
<td>615</td>
<td>1,911</td>
<td>1,167</td>
</tr>
<tr>
<td>KILKENNY</td>
<td>417</td>
<td>1,687</td>
<td>5,473</td>
<td>1,270</td>
<td>1,365</td>
<td>1,758</td>
<td>4,690</td>
<td>3,123</td>
</tr>
<tr>
<td>LAOIS</td>
<td>423</td>
<td>1,488</td>
<td>4,673</td>
<td>1,065</td>
<td>953</td>
<td>1,214</td>
<td>3,540</td>
<td>2,167</td>
</tr>
<tr>
<td>LONGFORD</td>
<td>452</td>
<td>1,404</td>
<td>4,702</td>
<td>952</td>
<td>1,279</td>
<td>1,458</td>
<td>3,203</td>
<td>2,737</td>
</tr>
<tr>
<td>LOUTH</td>
<td>302</td>
<td>892</td>
<td>2,786</td>
<td>590</td>
<td>744</td>
<td>618</td>
<td>1,800</td>
<td>1,362</td>
</tr>
<tr>
<td>MEATH</td>
<td>195</td>
<td>1,812</td>
<td>6,139</td>
<td>1,617</td>
<td>1,179</td>
<td>1,587</td>
<td>3,526</td>
<td>2,766</td>
</tr>
<tr>
<td>OFFALY</td>
<td>466</td>
<td>1,494</td>
<td>5,061</td>
<td>1,028</td>
<td>1,257</td>
<td>1,298</td>
<td>3,766</td>
<td>2,555</td>
</tr>
<tr>
<td>WESTMEATH</td>
<td>284</td>
<td>1,526</td>
<td>4,950</td>
<td>1,242</td>
<td>1,016</td>
<td>1,100</td>
<td>3,103</td>
<td>2,116</td>
</tr>
<tr>
<td>WEXFORD</td>
<td>561</td>
<td>1,991</td>
<td>6,518</td>
<td>1,430</td>
<td>1,288</td>
<td>2,117</td>
<td>5,098</td>
<td>3,405</td>
</tr>
<tr>
<td>WICKLOW</td>
<td>265</td>
<td>871</td>
<td>3,097</td>
<td>606</td>
<td>399</td>
<td>793</td>
<td>2,000</td>
<td>1,392</td>
</tr>
<tr>
<td>CLARE</td>
<td>893</td>
<td>3,240</td>
<td>11,215</td>
<td>2,347</td>
<td>3,095</td>
<td>3,884</td>
<td>8,631</td>
<td>6,979</td>
</tr>
<tr>
<td>CORK</td>
<td>1,516</td>
<td>5,940</td>
<td>22,147</td>
<td>4,424</td>
<td>6,147</td>
<td>7,472</td>
<td>18,053</td>
<td>13,619</td>
</tr>
<tr>
<td>KERRY</td>
<td>1,132</td>
<td>3,886</td>
<td>14,088</td>
<td>2,734</td>
<td>4,854</td>
<td>6,013</td>
<td>12,475</td>
<td>10,867</td>
</tr>
<tr>
<td>LIMERICK</td>
<td>367</td>
<td>2,527</td>
<td>9,028</td>
<td>2,160</td>
<td>2,126</td>
<td>3,030</td>
<td>6,680</td>
<td>5,156</td>
</tr>
<tr>
<td>TIPPERARY</td>
<td>809</td>
<td>3,402</td>
<td>11,731</td>
<td>2,593</td>
<td>2,825</td>
<td>3,461</td>
<td>8,801</td>
<td>6,286</td>
</tr>
<tr>
<td>WATERFORD</td>
<td>326</td>
<td>1,115</td>
<td>3,910</td>
<td>789</td>
<td>979</td>
<td>1,042</td>
<td>2,991</td>
<td>2,021</td>
</tr>
<tr>
<td>GALWAY</td>
<td>1,820</td>
<td>6,831</td>
<td>22,246</td>
<td>5,011</td>
<td>5,608</td>
<td>9,347</td>
<td>17,995</td>
<td>14,955</td>
</tr>
<tr>
<td>LEITRIM</td>
<td>1,524</td>
<td>2,475</td>
<td>8,240</td>
<td>951</td>
<td>2,539</td>
<td>2,608</td>
<td>5,291</td>
<td>5,147</td>
</tr>
<tr>
<td>MAYO</td>
<td>3,643</td>
<td>7,586</td>
<td>24,528</td>
<td>3,943</td>
<td>7,957</td>
<td>9,162</td>
<td>17,725</td>
<td>17,119</td>
</tr>
<tr>
<td>ROSCOMMON</td>
<td>1,672</td>
<td>3,897</td>
<td>12,966</td>
<td>2,225</td>
<td>2,091</td>
<td>3,111</td>
<td>7,341</td>
<td>6,012</td>
</tr>
<tr>
<td>SLIGO</td>
<td>1,286</td>
<td>2,642</td>
<td>9,068</td>
<td>1,356</td>
<td>2,346</td>
<td>2,395</td>
<td>5,202</td>
<td>4,741</td>
</tr>
<tr>
<td>CAVAN</td>
<td>1,491</td>
<td>3,168</td>
<td>10,746</td>
<td>1,677</td>
<td>3,005</td>
<td>3,216</td>
<td>7,047</td>
<td>6,221</td>
</tr>
<tr>
<td>DONEGAL</td>
<td>3,507</td>
<td>5,329</td>
<td>16,464</td>
<td>1,822</td>
<td>5,305</td>
<td>5,361</td>
<td>11,891</td>
<td>10,666</td>
</tr>
<tr>
<td>MONAGHAN</td>
<td>1,139</td>
<td>2,288</td>
<td>7,935</td>
<td>1,149</td>
<td>2,226</td>
<td>2,249</td>
<td>5,068</td>
<td>4,475</td>
</tr>
</tbody>
</table>

Total | 25,000 | 69,712 | 235,331 | 44,712 | 63,085 | 76,037 | 171,085 | 139,122 |