
Provided by the author(s) and University College Dublin Library in accordance with publisher 

policies., Please cite the published version when available.

Title Autonomous management and control of sensor network-based applications

Authors(s) Ruzzelli, Antonio G.; Muldoon, Conor; Schoofs, Anthony; Campana, Tiziana; O'Hare, G. M. 

P. (Greg M. P.); Tynan, Richard

Publication date 2009-08

Publication information CSE 2009 : 12th IEEE International Conference on Computational Science and 

þÿ�E�n�g�i�n�e�e�r�i�n�g�,� �2�9 ��3�1� �A�u�g�u�s�t� �2�0�0�9� �V�a�n�c�o�u�v�e�r�,� �C�a�n�a�d�a� �:� �V�o�l�u�m�e� �2

Conference details Paper presented at the 2nd International Workshop on Adaptation in Wireless Sensor 

Networks (AWSN-09), in conjunction with

The 7th IEEE/IFIP International Conference on 

Embedded and Ubiquitous Computing (EUC 2009), August 29 - 31, 2009, Vancouver, 

Canada

Publisher IEEE Computer Society

Link to online version http://dx.doi.org/10.1109/CSE.2009.480

Item record/more information http://hdl.handle.net/10197/1809

Publisher's version (DOI) 10.1109/CSE.2009.480

Downloaded 2019-03-20T13:54:03Z

The UCD community has made this article openly available. Please share how this access 

benefits you. Your story matters! (@ucd_oa)

Some rights reserved. For more information, please see the item record link above.

https://twitter.com/intent/tweet?via=ucd_oa&text=DOI%3A10.1109%2FCSE.2009.480&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F1809


1

Autonomous Management and Control of Sensor
Network-based Applications

A.G. Ruzzelli, C. Muldoon, A. Schoofs, G.M.P. O’Hare and R. Tynan
CLARITY centre for SensorWEB technologies,

University College Dublin
fruzzelli, conor.muldoon, anthony.schoofs, gregory.ohare, richard.tynang@ucd.ie

Abstract�A central challenge facing sensor network research
and development is the dif�culty in providing effective au-
tonomous management capability. This is due to a large number
of parameters to control, unexpected changes of the network
topology and dynamic application requirements. Network man-
agement is also a challenging task for the remote user due to the
large-scale of the network and scarce visibility of live network
happenings. Preferably the network should have autonomous
decision-making capabilities as network conditions and applica-
tion requirements changes. To cope with such uncertainties, �rstly
we consider Octopus, a powerful software tool that provides live
information about the network topology and sensor data. At
present, the tool can provide monitoring and require a user to
control the network state manually. This paper describes how
Octopus is reengineered to accommodate a multi-agent system
to provide autonomic managing capabilities. In particular, we
detail two distinct architectures, the static and mobile agent
architectures, which can be effectively applied to deliver au-
tonomous system management. This paper sets the basis for a
full autonomous network management via a multi agent system
to work with Octopus.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) can be effectively used
for delivering both new context-aware applications and en-
hancing existing applications. However, recent developments
such as in [16] have demonstrated the need for adaptive
tools which can cope with unexpected variations within the
network operating environment while ensuring maintanence of
an adequate quality of service. This is currently achieved by
an exchange of information among nodes within the network
and allowing a remote user who receives such data from the
network to monitor and alter the network condition from the
base station. The goal is to provide is to successfully deliver
a certain application as well as to be able to detect when a
network anomaly or an unwanted behaviour occur. In order to
simplify these tasks, recent advances have permitted the devel-
opment of a dashboard, namely Octopus [13], which assists de-
velopers with visual network debugging, network assessment,
and the gaining of an understanding of network topology and
routing patterns. Octopus provides a user-friendly tool with
which to localize nodes, formulate application queries and
tune parameters according to a given application requirements
as well as interacting with the network by monitoring and
recon�guring a number of parameters of application and
radio. Currently however, Octopus requires a user to manu-
ally monitor the network and take action accordingly. This

paper investigates how Octopus can be signi�cantly enhanced
through a Multi-Agent System (MAS) to deliver autonomous
network monitoring and management.

The paper is organised as follows: Section II reviews the
state of the art in terms of architectures utilised for managing
sensor networks. Section III focuses on the main features of
the Octopus Dashboard for visual sensor network control.
Section IV describes how this dashboard is utilized as a
basis to deliver autonomous network management. Finally,
Section V details a practical case study of the architecture
before concluding the paper.

II. RELATED WORK

Octopus [13] currently represents the most advanced tool for
sensor network control and monitoring. Prior tools addressed
network state monitoring and network control separately. For
example Mviz [14] is the only visualization tool in TinyOS
v.2 that provides a basic visualization with no features for
remote network control. The closest related work to Octopus
is probably Surge [15] which was developed for TinyOS v.1
and is unsupported for TinyOS v.2. Surge enables the user
to visualize nodes, put them to sleep and to set node sam-
pling period individually through the Focused Mode. However,
Surge merely represents early work toward sensor network
interaction and it depends heavily upon a set of speci�c
protocols de�ned by TinyOS v.1. Surge offers no support for
sensing thresholds, network queries and alerts, node local-
ization and no energy consumption estimation. Furthermore,
Surge lacks important setting requests such as duty-cycle,
sampling period, and energy consumption estimation. The
Octopus dashboard addresses all these drawbacks providing
both developers and users with an instrument that combines
an accurate insight into the network state and online node
recon�guration. However, the dashboard still requires manual
intervention from a remote user who observes the live network
operations and recon�gures a number of network parameters
during normal network activity.

Further related works address a human-managed dynamic
network control but offer no visualization service through
over the air reprogramming. This approach is typi�ed by
such systems as Deluge [4] and Mate [7]. These tools are
useful for injecting new code images or new modules into the
networks involving a signi�cant data overhead and network
restart. This is only required for less frequent reload of large

UCD Library
Text Box
©2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising
or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any 
copyrighted component of this work in other works must be obtained from the IEEE.  



2

code components or an entire application but is unsuitable for
frequent tuning of application and network parameters.

The need for Autonomic Wireless Sensor Networks (AW-
SN) together with the potential for agents as a candidate
technology for realizing such has been recognized in the
literature [9]. Historically strong agent approaches have been
viewed as computationally demanding and as such inappro-
priate for computationally challenged devices such as sensor
platforms. While a number of agent frameworks have been
developed for mobile devices [1] [6] [5] [8] [3] [11] [12] [17],
such as mobile phones and PDAs,as yet there are no intelligent
agent frameworks for sensor nodes. To deploy such frame-
works in a WSN setting, signi�cant changes would have to
be made to their networking platform services. Indeed, some
of these frameworks do not include a networking capability.
Agilla [2] is an agent platform for embedded devices, but it
does not contain reasoning capabilities and therefore does not
conform to the strong notion of agency.

There have been several frameworks developed to facilitate
agent migration. At present, however, most of these frame-
works are based on protocols that are not supported by WSN
motes. For such frameworks to be deployed in a WSN setting,
signi�cant modi�cations would be required.

III. THE OCTOPUS DASHBOARD

As shown in Figure 1, Octopus consists of a front-end
Graphical User Interface (GUI) developed in Java and an em-
bedded nesC-based application uploaded onto the sensor nodes
(motes). The GUI is organized in 4 main components: (1)
The SCOUT component listens to the serial port for incoming
packets from the network and is responsible for transmitting
requests into the network; (2) The MOTE DATABASE and
(3) The LOGGER are collectively responsible for storing the
sensed data for future analysis; (4) The PANEL BOARD
which includes the visualization options and panels for in-
terfacing with the network.

The standard con�guration of the Octopus embedded ap-
plication utilizes the interfaces of CC2420 radio, LowPow-
erListening access control and Collection Tree Protocol (C-
TP) routing provided in TinyOS 2. However, the dashboard
is independent from underlying protocols that may be de�ned
in the Octopus con�guration �le for example to debug and
evaluate new algorithms.

Facilitating future extensions and code reuse through con-
formance to certain standards is an important objective of
the dashboard. Octopus presents a JavaBeans component-
based architecture that distinguishes between a component-
based infrastructure framework and a set of functional com-
ponents. In particular, the architecture is based on the features
associated to the BeanContext class. The framework eases
much of the component composition while the abstract API
enables different possible implementations of these features.
The Octopus architecture enables new or existing components
to be plugged-in without altering the remainder of the system.
This permits a high degree of con�gurability and also the
creation of different versions of Octopus in order to satisfy
speci�c deployment scenarios and application requirements.

The dashboard provides 3 main views namely: (1) Network
Map NP for visualizing the topology of the network; (2)
Network Chart NC for plotting live nodes sensed data; (3)
Floor Plan FP for displaying a map of the physical location
where the network is placed. NM, NC and FP are selected by
the tabs a, b, and c in Figure 1 and can either be displayed
separately or in overlapping modalities. Figure 1 shows the
NM/FP view. Initially nodes are located randomly on the
board, however, the combined view permits the execution of an
interactive localisation algorithm as explained in [13]. Finally,
a Legend panel allows the setting and the visualisation of
further network parameters.

On the right-hand side of the dashboard, a side menu con-
tains panels for the user to formulate application requests, tune
radio parameters, set email alerts, and support interactive node
localization. The dashboard visualizes incoming packets live
by the Consol panel at the bottom of the board that provides
also some checkboxes to �lter the messages displayed, as
shown in Figure 1 tab i. A Legend panel allows selecting
more visualization options on the main board and logging the
data into a �le.

IV. SELF-MANAGEMENT FOR OCTOPUS

Imbuing Octopus with autonomic capabilities such as net-
work control and network recon�guration is a non trivial
task. It necessitates the development of an autonomous dash-
board by which to enable network self-governance through
interacting with the nodes and adjusting its parameters. This
is a challenging task due to possible unexpected network
behaviour, node failures and potential temporary disconnection
of some part of the network. For example, a lack of data
from a certain node may be linked to network congestion.
On the other hand it can represent a node failure. Reducing
the transmission rate of the neighbourhood can therefore be
helpful in understanding whether the node should be replaced
or the user should be alerted that a particular event has been
detected and as a result part of the network is experiencing an
increase of node activity. Furthermore, sensor nodes often offer
inexpensive hardware and consequently the system should be
tolerant to imprecise data emanating from the network and
should be able to effect decisions with a partial information.
Longitudinal examination of the history of data can ensure that
the information received can be trusted before alerting the user
of a particular event. The interplay between these network
parameters, the potential for collaborative reasoning based
upon potentially con�icting, incomplete information suggests
the appropriateness of an agent based approach.

The component-based architecture of Octopus facilitates
the easy integration of a multi-agent system. As described
in Section III, the dashboard presents the Scout component
which is responsible for managing the data streaming from
and to the network. As shown in Figure 2, the AGENT
SCOUT component implements an intelligent agent entity that
communicate with the PANEL BOARD, the MOTEDB and
the LOGGER. The PANEL BOARD component allows the
agent to obtaining speci�c initial application requirements set
by the user. The agent utilises the MOTEDB and LOGGER



3

Fig. 1. A screenshot of the Octopus dashboard

components to autonomously monitor the parameters of the
network, to examine the history of data received before taking
an action and log data into a �le respectively. The agent is
empowered with all information available to interface with
the sensor network and set parameters in order to match the
user desires. In the case of an event that would require a closer
look, the SCOUT AGENT component is connected with the
AGENT FACTORY component to enable the creation of a
migrating agent to be injected into the network. A practical
example is that of an asset tracking within a warehouse
where a migrating agent is able to jump from one node to
another in order to trace the location of a given entity and to
provide the user with information about its state. In the next
section we describe a typical case study where the architecture
can be effectively deployed to deliver autonomous network
management.

V. A CASE STUDY: IGALLERY

We now consider how the Octopus agent framework in-
troduced in Section IV can be applied in the intelligent
management of an art gallery media service.

Many existing art galleries are introducing a media ser-
vice such as handheld devices and headphones that guides
the customer through the gallery and provides him/her with
information about exhibits. However, current systems lack
�exibility when the collection is reorganized or if some
individual exhibits are removed/added, each handheld device
must be reprogrammed with a new information guide. This is
a tiresome task that involves entire or partial re-registering of
the guiding voice possibly in different languages and then a
manually uploading on each device.

This issue can be addressed by the agent-based framework
within Octopus through a self-discovery algorithm that locates
each exhibit and thereafter delivers the appropriate context
over the air according to the user. The agent framework

Fig. 2. The Octopus architecture with support for a Multi Agent System
(MAS)

within Octopus can even enable tracking of customers so as
to identify a particular pattern of user interest and deliver
personal recommendations of a particular exhibit in the gallery
from a certain author.



4

VI. AGENT ARCHITECTURE

Octopus has been designed as a modular system that enables
plugins to be used that augment the system functionality with
capabilities speci�c to a particular application. In this section,
we discuss two such plugins that have been developed for
the intelligent art gallery( igallery), namely the static agent
infrastructure and the mobile agent infrastructure. There are
several differences in the manner in which these two plugins
operate. With the static agent approach, an agent resides
on the Octopus host machine. That is, the agent executes
within an Octopus plugin. The agent monitors the applications
sampling rate and duty cycle, altering values in accordance
with certain quality of service needs. With the mobile agent
approach, again there is an agent operating in an Octopus
plugin, but in this case as users enter the gallery, it creates
user agents that migrate on to the users’ mobile phones.
In addition to the network management functionality of the
static agent approach, the mobile agent infrastructure enables
the application to modify its behaviour in accordance with
perceived user needs. It monitors the user’s location and path
through the gallery and updates a statistics database as the
user leaves the gallery. These statistics are subsequently used
to identify optimal positions for exhibit locations. Key to the
development of both systems is Agent Factory Micro Edition
(AFME), which shall be discussed next. Following on from
this, we shall describe the static and mobile agent applications
in greater detail.

VII. AGENT FACTORY MICRO EDITION

AFME is a minimized footprint deliberative agent plat-
form designed speci�cally for use with resource constrained
devices. AFME [10] was originally intended for use with
cellular digital mobile phones, but has since been ported to
the leaf nodes of a WSN and speci�cally Sun SPOT motes.
AFME is based on Agent Factory, a preexisting framework
for the development and deployment of multi-agent systems
for desktop and server computers. It comprises a four-layer
architecture, which includes a development methodology, an
integrated development environment, an agent-oriented pro-
gramming language, and a runtime environment. This is
supplemented with debugging, visualization, and development
tools, such as the VIPER tool for Agent UML.

The agent programming language is based on a logical
formalism of belief and commitment. Each agent comprises
a set of roles, which are adopted at various points throughout
execution. Each role consists of a trigger condition and a set of
commitment rules. Once an agent adopts a belief that matches
the trigger, the role is adopted and the set of commitment
rules within the role are added to the agent’s mental state.
Subsequently, the commitment rules are evaluated on each
iteration of the agent’s control process until either the role
is retracted or the agent is terminated. This improves the
ef�ciency of the system in that the commitment rules of
the role are only evaluated at appropriate times throughout
execution. If an agent is no longer performing a role, it no
longer has the reasoning overhead for the role.

The set of rules adopted when a role is triggered specify the
conditions under which the agent adopts commitments. Orig-
inally, these conditions only included the agent’s beliefs, but
more recently, in AFME, support has been added for equalities,
inequalities, and rudimentary mathematic operations. This is
useful because it allows developers to specify, at a declarative
level, relationships among beliefs. For instance, if an agent
had beliefs about the cost of bread and butter, the developer
could encode conditions such as if bread costs more than
butter or if bread costs less than butter minus 10. With the
original approach, this would not be possible without writing
imperative code to compare the beliefs or belief arguments.
Once commitments have been adopted, the agent commences
the commitment management process. Various arguments are
passed to the commitment when it is adopted, such as the
time at which it should commence, to whom the commitment
is made, and the maintenance condition of the commitment.
An identi�er is speci�ed, which acts as a trigger for the plan
or primitive action to be performed. In subsequent iterations
of the control algorithm, the commitment is invoked subject
to the arguments speci�ed. The following is an example of an
AFME commitment rule:

message(request; ?sender; removeData(?user))
>

deleteRecord(?user);

The truth of a belief sentence (text prior to the > symbol)
is evaluated based upon the current beliefs of the agent.
The result of the query process is either failure, in which
case the belief sentence is evaluated to false or to a set of
bindings that cause the belief sentence to be evaluated to true.
The ? symbol represents a variable. In this example, if the
agent adopts a belief that it has received a message from
another agent to remove user data, it adopts a commitment
to delete the record related to the user. At an imperative level,
a preceptor, which is written in Java, monitors the message
transport service, which contains a server thread that receives
incoming messages. Once a message is received, it is added
to a buffer in the service. Subsequently, the perceptor adds
a belief, which is a �rst order structure Java class, to the
agent’s belief set. The interpreter periodically evaluates the
belief set. If the conditions for a commitment are satis�ed (that
is, all of the beliefs prior to the > symbol in a rule have been
adopted), either a plan is executed to achieve the commitment
or a primitive action or actuator is �red. In this paper, we
shall only consider primitive actions. When an actuator is
created, it is associated with a symbolic trigger. In this case,
a delete record actuator, written in Java, is associated with the
trigger stringdeleteRecord(?user). Once the commitment is
activated, the ?user variable is passed to the actuator and the
imperative code for deleting the �le is executed.

An AFME platform comprises a scheduler, several plat-
form services, and a collection of agents. The scheduler is
responsible for the scheduling of agents to execute at periodic
intervals. Rather than each agent creating a new thread when
they begin operating, agents share a thread pool. A platform
service, such as the meesage transport service, is a shared
information space between agents on a local agent platform



5

that provides functionality that the agents can avail of through
the use of actuators and perceptors.

AFME delivers support for the creation of agents that follow
a sense-deliberate-act cycle. The control algorithm performs
four functions. First, preceptors are �red and beliefs are
updated. Second, the agent’s desired states are identi�ed. A
subset of desires (new intentions) is then chosen, and added
to the agent’s commitment set. It should be noted that if the
agent has older commitments, which are of lower importance,
they will be dropped if there is not enough resources available
to execute all commitments. This is handled through the
knapsack procedure. Fourth, depending on the nature of the
agent’s commitments, various actuators are �red.

A. Static Architecture
In this application, the nodes commission a localization

algorithm in order to identify a painting’s position. Originally
in the Octopus system the user had to monitor and control
the network through the user interface. In the Agent Octopus
system, some of the rudimentary tasks formerly performed by
the user, are automated through the use of an agent.

In the static agent architecture shown in Figure 3, an
agent resides within an Octopus plugin. The agent monitors
the network state and alters its parameters by broadcasting
messages to all nodes. For instance, if there are a large number
of users or paintings within the gallery, the agent will lower
the sampling rate so as to minimize message loss due to
collisions and obstacles. This increases the longevity of the
network in that fewer messages are retransmitted. Such WSN
are inherently energy constrained systems depending typically
upon a battery source. It also has an impact on the quality of
service, however, the agent must ensure that the sampling rate
is lowered as the number of users decreases.

Fig. 3. Static Agent Architecture

In terms of the duty cycle, our framework enables sensor
nodes to sleep for the majority of the time in order to conserve
energy. The radio duty cycle of a node is the portion of time
during which the radio is awake. The choice of radio duty
cycle impacts on correct data delivery, battery lifetime, and
packet latency in the network. At present, the agent sets the
radio duty cycle to ensure correct data delivery, leaving battery
lifetime and packet latency as optimizations for future work.

With the static approach, all information related to painting
is transferred to the user’s device when they enter the gallery.

As the user walks around, the device communicates with nodes
located on the painting frames to determine the uses location
and the painting identi�cation number. Once the number has
been obtained, the phone plays a short audio clip related to
the painting.

B. Mobile Architecture
Figure 4 illustrates the mobile agent architecture. In the

mobile agent architecture, the agent within the Octopus plugin
creates a user agent when a user enters the gallery. The user
agent subsequently migrates to the user’s mobile device. In
this approach, the painting information is obtained in an ad hoc
manner. Agents reside on Sun SPOT motes, which are attached
to the painting frames. The same localization algorithm, as in
the static approach, is used to determine the painting that the
user is in the vicinity of. Once the user agent is aware of
the painting ID, it initiates a conversation with the painting
agent and requests an audio clip for the painting, which it
subsequently downloads. This reduces the persistent storage
requirements of the user’s device in that only relevant clips
are obtained. That is, if the user does not view a painting,
they do not obtain the clip for that picture. Additionally, if a
painting must be moved, for whatever reason, the system will
dynamically adapt.

Fig. 4. Mobile Agent Architecture

As the user is viewing the painting, the agent monitors the
amount of time spent there. If the agent identi�es that the user
has spent a long period of time at a particular artist’s work, it
will recommend other paintings by the artist and other artists
from the same school. Additionally, it will provide the user
with directions as to how to get to the other exhibits. For
instance, if the user is viewing a painting by Claude Monnet,
works by Pierre-Auguste Renoir will be recommended, as
he was also a French Impressionist. The system is able to
provide such recommendations because it obtains ontology
information from the painting agents, such as the artist’s
school, style etc., which it uses to infer user preferences.

As the user is walking around the gallery, the user agent
records all exhibits visited in addition to the time at which
they were viewed. When the user leaves the gallery, the
agent migrates back to the Octopus host machine; from there
it updates a statistics database with this information. An
additional agent monitors the database. It identi�es congestion



6

problems, such as having a large number of people in a small
room at the same time, and makes suggestions to the Octopus
user as to alternative locations for paintings. So, for instance, if
the Mona Lisa and Starry Night were placed in the same room,
it would recommend that one of them be put somewhere else
or, perhaps, that they be put in a bigger room. The database
agent updates the locations of the paintings if they have been
moved. The user does not have to enter such information
manually. It is received through the use of the localization
algorithm.

The mobile agent architecture has a number of advantages
over the static agent approach. It provides the user with
additional functionality and hence a better quality of service.
The primary drawback is that it requires the execution of an
agent on the user’s phone. This obviously has an overhead in
terms or battery life, memory, and processing cycles. These
drawbacks are offset, however, by the fact that the agent only
downloads information it believes is relevant to the user. This
saves both power resources and storage space.

VIII. CONCLUSIONS

This paper has considered the issue of imbuing wireless
sensor networks with autonomic capabilities. It has advocated
multi-agent systems as an appropriate technological solution.
Speci�cally Octopus a state of the art software tool for
the monitoring, control and visualization of wireless sensor
networks is considered. In particular the paper describes how
this tool was reengineered to accommodate a MAS approach.
Two distinct architectures are described those of the static
and mobile architecture. The paper is novel and pioneering
in that it represents the �rst documented attempt to deploy
MAS techniques in the self management and self regulation
of wireless sensor networks a particularly challenged environ-
ment in terms of its loss, lack of robustness, and being highly
constrained in terms of hardware, memory and energy.

IX. ACKNOWLEDGEMENTS

The authors would like to acknowledge the kind support of
(SFI) under grant 07/CE/I1147

REFERENCES

[1] M. Berger, S. Rusitschka, D. Toropov, M. Watzke, and M. Schlichte,
The Development of the Lightweight Extensible Agent Platform, EXP in
Search of Innovation 3 (2003), no. 3, 32�41.

[2] C.-L. Fok, G.-C. Roman, and C. Lu, Rapid development and �exible de-
ployment of adaptive wireless sensor network applications, Proceedings
of the 24th International Conference on Distributed Computing Systems
(ICDCS’05), IEEE, June 2005, pp. 653�662.

[3] P.T. O’Hare G.M.P O’Hare and T.D. Lowen, Far and a way: Con-
text sensitive service delivery through mobile lightweight pda hosted
agents, Proceedings of 15th International Florida Arti�cial Intelligence
(FLAIRS) Conference. AAAI Press. May 14th-16th, Pensacola, Florida
(2002).

[4] Jonathan W. Hui and David Culler, The dynamic behavior of a data
dissemination protocol for network programming at scale, SenSys ’04:
Proceedings of the 2nd international conference on Embedded networked
sensor systems (2004), 81�94.

[5] Sana Khalique, Sana Farooq, Ha�z Farooq Ahmad, Hiroki Suguri,
and Arshad Ali, Sage-lite: An architecture and implementation of light
weight multiagent system, ISADS 0 (2007), 239�244.

[6] Fernando Koch, John-Jules Meyer, Frank Dignum, and Iyad Rahwan,
Programming Deliberative Agents for Mobile Services: the 3APL-M
Platform, AAMAS’05 Workshop on Programming Multi-Agent Systems
(ProMAS05) (2005).

[7] P. Levis and D. Culler., Mate: A tiny virtual machine for sensor networks,
In proceedings of ACM SIGOPS Operating Systems Review (2003).

[8] T.D. Lowen, G.M.P. O’Hare, and P.T. O’Hare, Mobile agents point
the way: Context sensitive service delivery through mobile lightweight
agents, Ed. C. Castelfranchi C. & Johnson W.L., Proceedings of First
International Joint Conference on Autonomous Agents and Multi-Agent
Systems Conference (AAMAS 2002), Bologna, Italy (2005).

[9] D. Marsh, R. Tynan, D. O’Kane, and G.M.P. O’Hare, Autonomic wireless
sensor networks, Engineering Applications of Arti�cial Intelligence
Journal 17 (2004), no. 5, 741�748.

[10] C. Muldoon, G.M.P. O’Hare, R. Collier, and M.J. O’Grady, Agent
factory micro edition: A framework for ambient applications, In Proceed-
ings of Intelligent Agents in Computing Systems (IACS 2) Workshop
held in Conjunction with International Conference on Computational
Science (ICCS) 2006 Reading, UK, May 28th-31st, 2006 Lecture Notes
in Computer Science (LNCS) 3993 (2006), 335�353.

[11] M.J. O’Grady and G.M.P O’Hare, Gullivers’s genie: Agency, mobility,
adaptivity, Computers & Graphics Journal, Special Issue on Pervasive
Computing and Ambient Intelligence, Mobility, Ubiquity and Wearables
Get Together 28 (2005), no. 5, 677�689.

[12] M.J. O’Grady and G.M.P. O’Hare, Mobile devices and intelligent agents-
towards a new generation of applications and services, Special Issue
on Intelligent Embedded Agents, Journal of Information Sciences 171
(2005), no. 4, 335�353.

[13] A.G. Ruzzelli, R. Jurdak, M. Dragone, A. Barbirato, and G.M.P.
O’Hare, Octopus: A dashboard for sensor network visual control, ACM
Mobicom’08, demo paper, Sept 14�19, 2008 San Francisco, CA, USA
(2008).

[14] UBerkeley, Mviz visualization tool., http://www.tinyos.net/tinyos-
2.x/apps/MViz/, 2006.

[15] UCBerkeley, Surge demo for the multihop sensor networks,
http://�rebug.sourceforge.net/surgepics.html.

[16] Megan Wachs, Jung Il Choi, Jung Woo Lee, Kannan Srinivasan, Zhe
Chen, Mayank Jain, and Philip Levis, Visibility: a new metric for proto-
col design, SenSys ’07: Proceedings of the 5th international conference
on Embedded networked sensor systems (2007), 73�86.

[17] William Wright and Dana Moore, Design considerations for multiagent
systems on very small platforms, AAMAS ’03: Proceedings of the sec-
ond international joint conference on Autonomous agents and multiagent
systems (New York, NY, USA), ACM Press, 2003, pp. 1160�1161.


