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Abstract 
Genetic Programming is a form of Natural Computing which adopts principles from neo-Darwinian 
evolution to automatically solve problems. It is a model induction method in that both the structure 
and parameters of the solution are explored simultaneously. Genetic Programming is a particularly 
interesting method as it is claimed to be an invention machine, producing solutions to problems that 
are competitive and in some cases superior to those produced by human experts. Its best solutions 
have become patentable inventions in their own right. In this article we overview some of the recent 
patents relating to Genetic Programming over the past three years. In light of the number and 
diversity of patent applications during this period it is clear that Genetic Programming is a vibrant 
field of research, which is having a significant impact on real-world applications, and is 
demonstrating clear commercial potential. 
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1 Introduction 

Genetic Programming (GP) is a machine learning method that can be used to automatically solve 
problems producing solutions with a complex structure, including executable code. This ability 
allows GP to be applied to a broad range of problems for example ranging from automatic program 
induction, trading rule design, creation of art (including music and graphics) to animations and 
circuit design. GP is one of the most successful forms of machine learning to date as it is now 
capable of routinely producing solutions to problems that are competitive and in some cases 
superior to those created by human experts [1, 2]. It has also been claimed that GP is itself an 
invention machine [2, 3, 4], a claim which is partly founded upon the fact that the outputs of GP 
have been patentable in their own right [5].  In this article we provide some background on patents 
in Section 2 followed by a brief introduction to Genetic Programming (Section 3). We then provide 
an overview of some recent patents relating to Genetic Programming in Section 4 before 
summarizing our findings (Section 5). 

2 Background on Patents 

Patents can be defined as ‘the grant of a property right’ which creates a ‘right to exclude others from 
making, using, offering for sale, or selling or importing the invention’ in the territory covered by the 
patent legislation [6]. The right to exclude covers both the case of deliberate imitation and the 
subsequent independent discovery of the patented object by others [7].  Patents also provide a legal 
mechanism which allows the decoupling of invention from the subsequent manufacture of a 
product, permitting risk-sharing. One party can bear the risk of invention, while another by 
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obtaining a license to manufacture the patented product can bear the risk of commercialization.  
Heald [8] in a development of this point suggests that patents can be considered as lowering the 
transactions cost of sharing intellectual property, compared to the alternative system of trade 
secrecy.  
 The basic rationale underlying patent systems is that decentralization of R&D decisions to 
individual inventors and organizations leads to a more economically efficient outcome, as inventors 
have private information on the expected costs and benefits of R&D [9, 10]. From a policy-maker’s 
perspective two conflicting goals underlie the patent system [11], a desire to promote the creation 
and diffusion of inventions. Creation is encouraged by offering property right incentives to 
successful inventive efforts and diffusion is encouraged by requiring public disclosure of the nature 
of the invention in public patent documentation. The creation of property rights has the affect of 
raising barriers of entry to a portion of product space covered by the patent grant. The creation of 
this barrier results in two potential social costs arising from a patent system, the creation of market 
power, and by encouraging a patent race - the wasteful duplication of R&D costs [12]. Offsetting 
this, requiring disclosure of a patented invention confers a positive externality on a firm’s 
competitors possibly reducing R&D duplication [13]. 

3 Evolutionary Computation and Genetic Programming 

Evolutionary Computation (EC) is based upon neo-Darwinian principles of evolution. It is a 
population-based approach to search where multiple candidate solutions are maintained in parallel. 
Genetic search operators are applied to breed high-quality solutions as subsequent generations are 
created using fitness-based selection. The fitness of a candidate solution is a measure of its quality 
at solving the problem at hand. Evolutionary algorithms are diverse in the types of problems they 
can solve. In particular, the Genetic Programming representation is especially flexible in that it can 
be used to evolve models, algorithms (even alternative Evolutionary algorithms in a meta-heuristic 
fashion), and all manner of structures ranging from binary strings, digital and analogue circuits to 
chemical structures and art (including paintings and music). 
 Since Charles Darwin popularized the theory of Natural Selection, the driving force behind 
evolution, molecular biology has unraveled some of the mysteries of the components that underpin 
these earlier theories (e.g., most notably the existence and structure of DNA). Neo-Darwinism, 
which represents the accumulation of knowledge about the process of evolution at a molecular level 
in conjunction with Darwin’s evolutionary theory, has given rise to a powerful family of problem 
solving algorithms known collectively as Evolutionary Computation (EC). 
 The origin of EC can be traced back at least to the beginning of Computer Science [1] with 
the writings of Turing [14] where he discusses the possibility of “genetical or evolutionary search” 
as one of the methods that might underpin the “the intelligence of machinery”. Implementations of 
EC existed in the 1950’s with the Pioneers of EC popularizing their ideas in subsequent decades 
including Holland [15], Fogel, Owens and Walsh [16], Rechenberg [17], Schwefel [18], Goldberg 
[19] and Koza [20]. Fogel [21] presents an interesting collection of some of the pioneering papers in 
the field. 
 The natural process of evolution sees species being positively or negatively selected 
depending on their relative success in surviving and reproducing in their current environment. 
Differential survival and variety generation during reproduction provide the engine for evolution 
[22, 23]. EC implements this process in a crude fashion as outlined in Fig. 1.  A population of 
candidate solutions are initialized to some starting state (often this is achieved randomly) and the 
fitness/quality of each solution is determined.  Parents are then selected from this population in a 
biased manner, such that the better quality individuals are more likely to become parents.  A series 



of genetic operators can be used in the creation of the children, and this is followed by some 
replacement strategy which determines which children (if any) are allowed to enter into the next 
generation.  In EC, the equivalent of DNA is the representation or encoding that is adopted by each 
member of the population (often referred to as an individual or candidate solution) to solve a 
specific problem type. This individual representation can range from simple fixed-length binary or 
real-valued strings to more complex data structures such as graphs and even variable-length 
computer code that can be executed. For example, a simple binary string could be used to encode 
decisions as to whether or not to include an input variable in a solution. The selected inputs might 
then be passed into a multi-layer perceptron ANN (MLP) to produce a signal such as to buy or sell a 
position in a market. 

3.1 Genetic Programming 

A particularly powerful form of EC, in terms of the flexibility of its representation, and its prowess 
as a model induction method is Genetic Programming. As a specific example of EC in action we 
present a brief overview of the mechanics of GP in the following section. There are many useful 
resources which can be used to discover more about Genetic Programming for the interested reader, 
including [20, 24, 1, 2, 25, 26, 27]. 

Figure1: The process cycle of Evolutionary Computation. 

 Genetic Programming (GP) traditionally distinguishes itself from other EAs in two 
fundamental ways. Instead of evolving fixed-length (e.g., binary) strings a variable-length 
representation is adopted by GP. As GP is a model induction method it is not always known a-priori 
what the structure or size of a desired solution might be, and to this end the number of components 
that makeup a candidate solution must itself be open to the process of evolutionary search. 
Secondly, unlike other EAs which represent an indirect encoding of a potential solution, 
evolutionary search can be directly applied to the solution (e.g. computer code in the form of a Lisp 
S-expression). 
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Figure2: Individuals of a Genetic Programming Population are typically represented as Syntax 
Trees of Lisp S-expressions. The figure illustrate show sub-trees of each individual might be 
exchanged during the process of crossover. 

 An example of a GP individual in the form of a Lisp S-expression is given in Fig. 2. Here we 
can also observe how individuals of this form might be manipulated using a form of the genetic 
search operator of sub-tree crossover.  In the example, two sub-trees are selected randomly from a 
copy of each parent, and those sub-trees are then exchanged between the two parent copies to create 
two children.  Sub-tree mutation operates by randomly deleting a sub-tree and then randomly 
generating a brand new sub-tree of a random size to replace the original. Using this representation it 
is possible to incorporate various programming constructs such as conditions, iterations, recursion 
and modules/functions. It is also common to allow the inclusion and context of use of these 
constructs to be evolved over time using what are referred to as Architecture Altering Operators [1].  
Standard tree-based GP itself has been subject of patents [28, 29, 30, 31, 32, 33, 34, 35, 36, 5, 37, 
38], also some linear forms of GP have been patented [39, 40, 41]. 

4 Recent Patents with Genetic Programming 

 The past few years have seen an increase in the number of patent applications that adopt 
Genetic Programming, encompassing areas such as claims of new classification, prediction and 
design processes to a proposal for its use in the patent application process itself. The following 
review covers a sample of these applications since 2006 largely drawing upon the search engines 
provided by the US Patent and Trademarks Office, European Patent Office and Google Patent 
Search [42, 43, 44]. 



4.1 GP for Classification 

A process to generate classifiers is described by Crnojevic et al. [45] (Method of developing a 
classifier using adaboost-over-genetic programming) which combines GP with adaptive boosting 
(AdaBoost) an ensemble learning technique. In ensemble learning a set of classifiers are trained and 
their outputs combined. AdaBoost modifies the training set that the classifiers are exposed to by 
increasing the probability of presenting examples that are incorrectly classified. In this case GP is 
embedded within an AdaBoost loop, where a GP population of N individuals is combined to 
generate the classifier. Within the main loop a GP population is evolved and the classifier with the 
lowest error is selected. This current best individual is combined with earlier GP classifiers to 
produce a Strong Classifier. If the performance of the Strong Classifier is less than 100% (or some 
other threshold) the loop is repeated and another GP population is evolved. During each iteration of 
the loop the training example weights are updated to ensure that the examples classified incorrectly 
have a greater influence on the error measure. The applicants stress the use of small GP tree depth 
(3-5) and typically recommend a Population Size and number of Generations both of 300. It is 
claimed that this process generates classifiers that exhibit a high classification accuracy and low 
computational complexity. Consequently it is claimed that the resulting classifiers are cheap to 
implement in hardware and often intuitive to understand. 
 In a subsequent patent Kisacanin and Yoder [46] describe how the method of developing a 
classifier using adaboost-over-genetic programming is used to process real-time video image data in 
order to determine the open versus closed eye state of a human. They specifically mention how this 
process can be embedded in a microprocessor and used as part of a driver monitoring system. The 
classifiers are trained as before in an off-line process, and the outputs of this process are used to 
generate individual classification scores which are combined and compared to a threshold to 
determine eye state.  
 Hughes [47] claims a method for intelligent monitoring of network threats in which a network 
threat response engine is described. GP is used to classify whether or not a particular access to the 
network is a threat. 

4.2 GP for Signal Processing 

Xiao et al. [48] describe how a Gene Expression Programming (GEP) form of GP can be combined 
with numerical optimization (e.g. a genetic algorithm or differential evolution) to evolve digital 
signal processing circuits. A process is described where a main GP loop exists to generate valid 
circuits. The parameters of each valid circuit is then optimized for performance with an inner loop 
of another EA such as a Genetic Algorithm or Differential Evolution. Each circuit is then presented 
to a second fitness calculation to determine its parsimony. The next generation is then created in the 
standard GP manner. Two variants of GEP (depth and breadth first encodings) are described as 
possible methods to adopt as the main GP loop. Both of these forms of GEP have been subject to 
earlier patents in each case [49, 50], and an additional GEP patent exists [41]. A related patent [51] 
extends Xiao et al.’s process to evolve digital signal processing circuits that can include a 
configurable infinite logic aggregator. Infinite valued logic is a generalization of boolean logic 
where the values can vary between 0 and 1 for example. 
 A method to extract information from a musical signal that adopts GP is presented in [52, 53]. 

4.3 GP for Prediction 
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A patent describing a process to predict future production forecasts for petroleum reservoirs is 
described by Wilkinson, Yu and Castellini [54]. In order to forecast production rates of oil and/or 
gas from the wells of a petroleum reservoir it is necessary to generate a computer model. These 
models are necessary due to the unique conditions that are found at each reservoir, which result in 
productions rates varying drastically from reservoir to reservoir [54]. As water, oil and gas are 
extracted from a reservoir the characteristics of the reservoir can change, and as such a history 
matching process takes place that updates reservoir descriptor parameters to reflect the evolving 
conditions. Typically this process is performed manually one variable at a time. The patent 
describes an approach to automate the history matching process using GP. After the computer model 
generation a second predictive phase takes place to forecast and manipulate the production that 
takes place at the reservoir. GP is also used in this phase to automatically generate accurate 
production forecasts more efficiently than current methods. 
 Fox [55] describes a process to identify functional biomolecules, and suggests GP as a method 
to generate models to predict sequence-activity relationships. 

4.4 GP for Control 

Lefebvre and Kohn [56] describe a method to implement an indirect controller as part of a control 
system for an industrial plant, where the behaviour of the indirect controller can be modeled using 
GP. Rosenof et al. [57] continue along these lines with a claim for a method to calculate marginal 
cost curves using these plant control models for electricity generation. Marginal cost curves show 
the variable cost (cost of fuel and for emissions credits) versus the electrical output of a plant. 
Lefebvre and Kohn [58] earlier described a method using GP that can be used to increase the 
efficiency of fossil fuel boilers, specifically in terms of optimizing the Flue Gas Desulfurization 
(FGD) controller. The FGD is used to scrub highly toxic sulphur-based chemicals from the emitted 
gases, which could produce sulphuric acid in human lungs. 
 GP is described as one method which can be used in control of switching power supplies [59, 
60]. These switching converters are used to convert input DC at one voltage to output DC at another 
voltage. The operation of the proposed switching converters are optimized using GP. 

4.5 GP, Neural Networks and Spectral Data 

Tomkins [61] describe a GP approach to generate neural networks for application to spectral data. 
The process described evolves all aspects of the ANN including the number of layers and nodes, the 
connectivity of the nodes and their bias and weights and also the transfer function. 

4.6 GP for Design 

There are several notable applications in the area of Design with Genetic Programming, covering 
such diverse areas as User Interface, Tyre Thread and analog circuit design. 
 McConaghy [62] describes a process to automatically generate analog circuits using symbolic 
regression and GP, which may also include a restriction on the search that it only explores canonical 
functional forms. This restriction is implemented through the use of a grammar. 
 In [63], Brown describes a process to design tyre threads which have better noise 
characteristics.  In [64], Noubar et al describes a Method and Apparatus for Evolutionary Design 
which can use GP for an interactive form of Evolutionary Computation that can be used by groups 
of people or individuals. 



 A new User Interface (UI) design for the display and selection of video is claimed by Neely et 
al. [65]. GP is recommended as one of the methods which can be used to determine placement of 
the items in the UI. Athale and Tirpak [66] claim a method to alter a Graphical User Interface (GUI) 
to a behaviour model that predicts an expectation of the user. The behaviour model is generated by 
examining the users interactions with the GUI. 
 GP is combined with GAs to design masks for the manufacture of semiconductor devices [67, 
68]. Masks are used during photolithography to transfer a pattern onto the semiconductor substrate. 
 Bonebau et al. [69] describe Interactive Evolutionary Computation where the objective 
function is subjective and that can include the use of any EA including a GP representation. 
Examples of its use include design of a paper airplane, a supersonic jet, and drug discovery. 
 Muller [70] claims a method to optimize the surface geometry design of gears using GP. 
Variables include the form of the tooth flanks, tooth thickness and height, ease-off topography, 
rolling error, contact-pattern position, and contact path profile. 

4.7 GP for Simulation 

Peralta and Kalwij [71] claim a new method for developing computationally optimal designs or 
strategies which adopts GP alongside other methods including Artificial Neural Networks, Tabu 
Search, and Simulated Annealing. The method is claimed to be useful for reducing the 
computational time required to solve complex nonlinear optimization problems by creating 
adaptively evolving surrogate simulators. They also describe another strategy called the Robustness 
Enhancing Optimizer is claimed to compensate for the uncertain knowledge of reality by combining 
optimizers including GP with model parameter sensitivity analysis [72]. 

4.8 GP for Programming 

Addison [73] describes a Whole Cell Computer (WCC) architecture which mimics a biological cell. 
The architecture comprises a network of WCCs which interact with each other. The architecture 
results in execution which is massively parallel, distributed, multi-threaded and contains no central 
processing unit. It is claimed to be a form of membrane computing which operates based on 
stochastic information flow, and that the proposed computational device can be programmed using 
GP. 
 A new way to automatically generate computer programs is claimed by Baum [74, 75, 76]. It 
is claimed that the search space explored by GP is too large to be practical. It is proposed that 
cumulative progress should be made by “discovering a series of powerful modules that solve 
intermediate problems, and building a solution to a deep problem on these modules.” Cumulative 
progress is combined with compact or constrained enough programs to promote generalization. 
Computational scaffolds and modules. Concepts and subconcepts can be individually trained. 
Scaffolds appear to be very similar to GP’s Automatically Defined Functions but with some 
additional constraints. The patent application also describes the use of a Computer Aided Design 
(CAD) Tool. For example, the CAD tool allows the user to enter objective functions, data, 
instructions, and to rearrange modules and scaffolds into bigger programs. Baum also claims a 
method to discover plans such as programs that schedule work in a factory, play games or solve 
puzzles. The approach uses GP to generate cognitive programs.  
 Solomon [77] claims a system that automates the self-organization of collections of 
computational entities. The approach uses GP to automatically program the behaviour of the mobile 
agents. 
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 Rice [78] outlines a number of perceived deficiencies of GP including that, programs must be 
syntactically correct, loops, subroutines and conditional blocks cannot be implemented in a 
customary manner, programs can’t be marked to identify sites for application of genetic operators, 
instructions are not interchangeable, and the environment and instruction set cannot be altered while 
programs are running. A new approach to GP is claimed which seeks to address these limitations. 
Features of a programming language, combinations of features and aspects of other programs are 
objectized and given a unique identifier. The objects are referred to as codons, and codons are 
executed like serial instructions. 
 Huelsbergen [79] describes a method and apparatus which can be used to evaluate one or 
more genetic programs using a just-in-time optimization process. 
 Libraries of reusable software code have the potential to make software construction more 
economical. An approach to generate component libraries using GP is presented by Arthur and 
Polak [80]. 
Zorn [81] describe the use of GP for the design of a flexible gap coherent electron interfermometer 
junction circuit and for developing algorithms to test these devices which can be used in DNA 
sequencing. 

4.9 GP for Medicine, Bioinformatics and Molecular Biology 

A number of machine learning methods including GP are disclosed as being adopted for generating 
a model of colorectal disease using biomarker levels by Liew et al [82]. Another method to identify 
cancer-related or lung-related biomarkers is also described in [83, 84, 85]. 
 GP is used as a statistical data analysis tool [86] in a process used to diagnose and grade 
Gliomas using Proteomics. Gliomas are complex cancers that start in the brain or spine and can 
involve different cell types and different growth characteristics. 
 A method to detect biomolecule targets (in this case proteins) with desired properties is 
presented in [87]. GP is one of many machine learning methods claimed to be capable of being used 
in the prediction of a biomolecules activity.
 Schadt and Lamb [88] use GP to help the discrimination between closely related samples 
when considering gene expression data. This is part of a process to identify genes and biological 
pathways associated with common human diseases. 
 Lanza et al. [89] use GP with a number of other machine learning methods including 
boosting, support vector machines, and decision trees to model the biological effects of molecules. 
 Normalization methods for genotyping are described in [90], which include the use of GP. 
Genotyping identifies a set of genetic markers belonging to an individual. These markers can be 
indicators of an individual’s risk of developing a specific disease. GP can be used to train an ANN 
during a clustering step of the process. 

4.10 GP for Commerce & Finance 

Mueller et al. [91] describe an approach to automatically and dynamically generates sell offers for a 
product using GP based on the prior experience of sell offers and actual sales. It is claimed that the 
approach learns best practice as to how to make sell offers which yield positive results. In another 
patent application [92] they describe how the approach can that take order information and make 
new offers based on this data. 
Parson et al. [93] describe how a number of machine learning methods including inductive logic 
programming and GP can be used in an approach to detect financial fraud. 



 Recent changes in corporate governance have resulted in management becoming increasingly 
accountable for the way their companies are run and their underlying IT systems. [94] uses GP 
along with other machine learning methods such as Artificial Neural Networks as part of an analysis 
engine to detect IT compliance issues. Issues that may affect compliance may then be detected 
automatically and then highlighted to management. 

4.11 GP for Games 

Fish et al. [95] uses GP to generate bingo card decks that appear random but are designed to limit 
liability. GP is used to design games that have lower churn levels (churn refers to the number of 
ways a player can win), evenly distribute payouts to jurisdictions and minimize unexpected large 
payout groups. 

4.12 GP for Patents 

GP is described as one of a number of Artificial Intelligence methods that could be used in an 
improved process to facilitate the preparation, submission and examination of a patent application 
[96]. For example, potential prior art related to the application can be determined automatically and 
a potential relevance score displayed. 

5 Current and Future Developments 

As the field of Genetic Programming matures we are witnessing an increase in its use in real world 
applications. Clear evidence for this is provided in the number and diversity of patent applications 
that have been filed in recent years and the ever increasing number of application papers at 
academic conferences in the field, for example, see recent proceedings of the European Conference 
on Genetic Programming [97, 98] and the other co-located Evo* conferences [99, 100], the IEEE 
Congress on Evolutionary Computation [101] and the Genetic and Evolutionary Computation 
Conference [102]. This paper uncovered 6 patent applications to date in 2008, 29 in 2007, and 17 in 
2006. Prior to 2006 we outlined 15 patents, many of these relating to patenting the method of 
Genetic Programming itself with the three earliest patents in 1992 [28, 29, 30].  
 The generality of the Genetic Programming method is also illustrated by the wide variety of 
applications captured in this study crossing areas such as its use in the Patent Process itself, to 
applications in Games, Medicine, Finance, Design, Programming, Signal Processing, Prediction, 
Simulation and Classification. 
 While we have captured patents relating to the use of Genetic Programming, it is very difficult 
to capture patents that are filed as a result of the output of a Genetic Programming process. We 
expect to see an ever-increasing number of patents applications relating to Genetic Programming, 
and we expect that many of these will be products of Genetic Programming itself. The diversity and 
number of applications demonstrates that the field of Genetic Programming is in an exciting and 
vibrant phase, and we are optimistic for its continued success into the future. 
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