<table>
<thead>
<tr>
<th>Title</th>
<th>Photoinduced rearrangements in transition metal compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors(s)</td>
<td>Vos, Johannes G.; Pryce, Mary T.</td>
</tr>
<tr>
<td>Publication date</td>
<td>2010-11</td>
</tr>
<tr>
<td>Publication information</td>
<td>Coordination Chemistry Reviews, 254 (21-22): 2519-2532</td>
</tr>
<tr>
<td>Publisher</td>
<td>Elsevier</td>
</tr>
<tr>
<td>Link to online version</td>
<td>http://dx.doi.org/10.1016/j.ccr.2010.04.010</td>
</tr>
<tr>
<td>Item record/more information</td>
<td>http://hdl.handle.net/10197/2791</td>
</tr>
<tr>
<td>Publisher's statement</td>
<td>All rights reserved.</td>
</tr>
<tr>
<td>Publisher's version (DOI)</td>
<td>10.1016/j.ccr.2010.04.010</td>
</tr>
</tbody>
</table>

The UCD community has made this article openly available. Please share how this access benefits you. Your story matters! (@ucd_oa)

Some rights reserved. For more information, please see the item record link above.
Photoinduced rearrangements in transition metal compounds

Johannes G. Vos and Mary T. Pryce

Solar Energy Conversion SRC, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland.

*Contact email: han.vos@dcu.ie

Abstract

In this contribution a range of photo induced ligand rearrangements observed for first and second row transition metal and organometallic compounds are discussed. The processes discussed include photoinduced ligand exchange, linkage isomerisation and changes occurring within the coordination sphere of the compounds such as cis-trans and fac-mer isomerisations. The relevance of these processes for photocatalytic cycles or their application as synthetic tools is discussed where appropriate.

Keywords; photochemistry, transition metal, organometallic, isomerisation rearrangements, photocatalytic

Contents

1. Introduction
2. Photinduced ligand exchange
3. Photoinduced isomerisation within the coordination sphere
4. Photoinduced linkage isomerisation/chelate formation
5. Photoinduced cis-trans rearrangements
6. Concluding remarks and future developments

1. Introduction

From the early work of Adamson and others [1,2] the investigation of the photoinduced properties of transition metal and organometallic compounds has developed strongly over the last 50 years. While early studies were mainly concerned with 1st row transition metals, the last 30 years has targeted complexes of 2nd and 3rd row transition metals. Investigations centred on 2nd and 3rd row elements were to a large extend driven by the realisation that based on their photophysical properties ruthenium
polypyridyl complexes are potential photocatalysts for the splitting of water by sunlight [3]. As a result extensive studies on the photostability of these compounds were carried out and since the late seventies the number of studies of the photophysical properties of second and third row transition metal complexes has expanded significantly [4]. Research in this area was further intensified when the application of ruthenium polypyridyl as dyes for dye sensitised solar cells was reported [5]. A wide range of mononuclear and multinuclear metal ruthenium complexes have been prepared and their photophysical and electrochemical properties, which are essential to their potential applications, have been investigated in great detail. Investigations of the electrochemical and excited state properties of ruthenium complexes has also indirectly lead to a widening of the research on complexes based on metals such as Ir and Re [6]. In addition, a wide range of applications have been realised; with metal complexes being applied as electrochemically driven sensors for analytes such as, glucose, nitrite, nitrate and ascorbic acid [7] and in molecular electronics [8]. Photonically driven developments include applications as oxygen sensors, [9] OLEDs, [10] molecular wires, [11] bioprobes for biomolecules [12,13] and molecular machines such as motors and switches [11]. The work of Gust and co-workers [14] on a biomemetic model for ATP synthase has been inspirational and has lead to the study of photoinduced molecular motion and the development of molecular machines. The work of the Feringa group [15] on mono-directional molecular motors driven based on a biphenanthrylidine compound constituted a prime example of how the combination of light driven and thermal stimuli can be harnessed to develop molecular machines. In the transition metal area the elegant studies of a number of groups on the photoinduced and electrochemically driven mobility of catenanes and rotaxanes had a considerable influence on the study of photoinduced mobility [16]. Finally, with the increasing importance of energy issues, the development of sustainable and environmentally friendly energy sources is rapidly growing with issues such as photocatalytic hydrogen [17] or oxygen [18] generation and CO₂ reduction [19] attracting much attention.

Metal carbonyl compounds have found widespread use in organic syntheses and catalytic industrial processes [20]. The advantage of metal carbonyls is the efficiency with which the carbonyl ligands may dissociate under either thermal or photo-excitation. In recent years the use of metal carbonyls in photochromic materials has been investigated. Photochromic molecules have potential use as memory devices or optical switches. Systems incorporating metals to photo-switchable dithienylethenes are seen as the next generation of photoresponsive materials [21]. Photoisomerisation of alkenes is one of the most thoroughly studied photochemical reactions, and photoisomerisable molecules have been demonstrated to be exceptionally versatile systems in molecular devices, such as molecular switches,
unidirectional molecular motors and in optical information storage [22]. Coordination of stilbene type ligands to transition metals makes it possible to trigger isomerisation with low energy photons via excitation of the MLCT transition.

For many of the light driven device processes a fundamental understanding of the photochemical behaviour of all components is of prime importance. Properties such as the stability of metal complexes under irradiation, the nature of photoinduced intermediates and the mechanisms leading to photoinitiated ligand loss, ligand isomerisation and rearrangements, are photochemical processes that are central to the design of molecular devices and photocatalysts. In this contribution an overview of photoinduced changes within the coordination sphere of transition metal and organometallic compounds is presented. Particular attention will be paid to photoisomerisations and photoinduced ligand rearrangements that can be reversed photonically or thermally. The importance of these processes for photo-driven applications will be discussed as well as the application of photoinduced ligand rearrangements as a synthetic tool. The catenane and rotaxane areas have recently been reviewed extensively [16] and are not discussed in any detail in this overview. A number of other reviews relevant to photoinduced processes have been published in the last number of years [23].

2. Photoinduced ligand exchange

Photoinduced ligand exchange is one of the most basic photochemical reactions and is essential to most of the processes discussed in this overview. For transition metals complexes ligand exchange is associated with the breaking of metal-ligand bonds. Therefore, the photolability of compounds is generally associated with the presence of antibonding metal centred orbitals. An energy diagram typical for ruthenium polypyridyl complexes is shown in Figure 1, outlining the energy levels involved in photochemical processes. In this type of compound excitation from the metal based ground state to a singlet metal-to-ligand charge-transfer state (1MLCT) and fast picosecond intersystem crossing leads to population of a relatively long lived 3MLCT state (triplet metal-to-ligand charge-transfer). The detailed work of Meyer and co-workers on ruthenium polypyridyl complexes has identified the 3MC (metal centered) orbital as being responsible for the photocomposition observed [24]. For photoactive compounds population of the antibonding 3MC state from the 3MLCT state takes place at room temperature and the photolability of the complexes is generally related to the energy difference between the deactivating 3MC state and the emitting 3MLCT level, (See Figure 1).
Meyer and co-workers observed that such photoprocesses may also be strongly dependent on the solvent used. Strong ligands such as acetonitrile and also coordinating counter ions can increase the quantum yield for ligand loss. So while [Ru(bpy)3](PF6)2 shows little or no decomposition in CH2Cl2, in the presence of Cl− or NCS− ions, formation of species such as [Ru(bpy)2Cl2] is observed. The photolability of [Ru(bpy)3](PF6)2 is much increased in coordinating solvents such as acetonitrile and bpy loss maybe observed [24]. The formation of intermediates containing monodentate coordinated bpy ligands has been observed using 1H NMR [25] coupled with electronic spectroscopy.

The photophysical and photochemical behaviour of many other polypyridyl compounds has been studied in great detail. As expected, complexes with monodentate ligands will be more photolabile but this lability depends on the type of ligands and the solvent used. The compound [Ru(bpy)2(CO)Cl]+ is considered here as an example. This compound is obtained as a side product in the synthesis of [Ru(bpy)2Cl2].2H2O, the main starting material for ruthenium polypyridyl complexes [26]. The amount of this species formed may be considerable, especially with long reaction times, where decomposition of DMF which is used as a solvent becomes important. However, the compound can itself be used as an excellent starting material especially when compounds of the type [Ru(bpy)2LCl]+ or [Ru(bpy)2(CO)L]2+ are required [27]. Different types of ligand L can be introduced by using either thermal or photochemical methods. For example the Cl− anion can be removed thermally and replaced by ligands such as NCS−, H−, H2O, CH3CN and pyridine. Importantly the CO group is not exchanged in the thermal process. However, when the compound is photolysed with UV light in organic solvents the CO ligand is effectively replaced and [Ru(bpy)2LCl]+ type complexes, where L is H2O, CH3CN or pyridine can be obtained. Interestingly the related complex [Ru(bpy)2(CO)H]+ is considerably more photostable [28]. Importantly, compounds of this type have been proposed as catalysts in the light driven [29] and electrochemical [30] reduction of CO2 and as intermediates in the water gas shift.

Figure 1. Electronic levels in [Ru(bpy)3]2+.
reaction [31]. Consequently their photochemical and thermal properties with respect to ligand loss are of interest. The results discussed above show that for the monocarbonyl compounds, CO loss is not observed under thermal conditions and this is an important observation for the water gas shift reaction which is thermally driven. In addition the stability of the compounds under visible irradiation allows for their application, in combination with photosensitisers such as \([\text{Ru(bpy)}_3]^{2+}\), as photocatalysts for the reduction of CO$_2$ [29].

Other examples of ligand loss have been observed for compounds such as \([\text{Ru(bpy)}_2(4\text{-vinylimidazole})\text{Cl}]^+\) [32]. Upon photolysis in acetonitrile the imidazole ligand is exchanged, forming \([\text{Ru((bpy)}_2(\text{CH}_3\text{CN})\text{Cl}]^+\) while in methanol the chloride ion is replaced. For terpyridine (trpy) complexes similar photoinduced ligand exchange reactions involving monodentate ligands have been observed including a report by McMillin and coworkers [33] for the compound \([\text{Ru(tpy)(bpy)}\text{CH}_3\text{CN})]^2+\).

Photoinduced ligand loss has been used to design molecular motors driven by thermal and photochemical stimuli as shown by Sauvage and co-workers. [34] A typical example of such a system is shown below in Figure 2 where replacement of a catenane ligand by chloride anions is observed when photolysis is carried out in CH$_2$Cl$_2$ in the presence of Et$_4$NCl. This process leads to a free but still connected catenane ring and the photoinduced arrangement can be reversed by thermal means.

![Figure 2](image-url)

Figure 2 Photochemical and thermal rearrangement for a ruthenium catenane complex. Reproduced with permission by the Royal Society of Chemistry from reference [34].

Rhenium carbonyl complexes are of interest as photocatalytic centres for the reduction of CO$_2$ and a detailed understanding of the photochemical properties of such compounds is of prime importance in determining the reaction mechanism in these catalytic processes. As a result the photocatalytic properties of rhenium complexes of the type fac-[Re(bpy)(CO)$_3$L]$^{n+}$ (for $L = \text{Cl}^-, \text{CN}^-, \text{NCS}^-$, $n = 0$ and
when \(L = PR_3 \) \(n = 1 \) have been investigated in detail.\[19\] For rhenium complexes of the type \(\text{fac-}[\text{Re}(X_2\text{bpy})(\text{CO})_3(PR_3)]^+ \), where \(X \) is H, CH\(_3\) or CF\(_3\) and \(R = \text{Ph, Et, N-Bu, O-i-Pr, OPh or OMe} \), CO loss is observed upon irradiation of the compounds in acetonitrile with 365 nm light. Isotopic experiments have shown that the CO ligand \(\text{trans} \) to the PR\(_3\) group is selectively substituted (Figure 3) \[35\].

![Figure 3](image)

Figure 3 Photoinduced CO loss upon irradiation at 365 nm of \(\text{fac-}[\text{Re}(X_2\text{bpy})(\text{CO})_3(PR_3)]^+ \)

The photolability observed for these compounds is explained by electronic properties similar to those shown above for ruthenium polypyridyl complexes. Also for these compounds the \(^3\)MC state is implicated in the photoinduced ligand exchange. Population of this level at room temperature can occur thermally from the LUMO \(^3\)MLCT state. The energy difference between the \(^3\)MLCT and the \(^3\)MC state in these rhenium compounds is between 3200 and 4800 cm\(^{-1}\). These values are similar to those observed for compounds such as \([\text{Ru(bpy)}_3]^2^+ \) \[36\]. This photochemical lability of \(\text{fac-}[\text{Re}(X_2\text{bpy})(\text{CO})_3(PR_3)]^+ \) gives a novel and efficient synthetic pathway to complexes of the type \(\text{cis,trans-}[\text{Re}(X_2\text{bpy})(\text{CO})_3(PR_3)]^{n^+} \). On the other hand \(\text{fac-}[\text{Re(bpy})(\text{CO})_3(\text{Cl})] \) is photostable at 365 nm. For this compound and for the corresponding pyridine derivative \(\text{fac-}[\text{Re(bpy})(\text{CO})_3(\text{pyridine})]^+ \), the temperature dependence of the emission lifetime is small with an activation energy around 250 cm\(^{-1}\). This is considerably lower than observed for \(\text{fac-}[\text{Re}(X_2\text{bpy})(\text{CO})_3(PR_3)]^+ \). The reasons for the different behaviour observed for these compounds, is not yet fully understood. The authors postulate that population of the \(^3\)MC state also occurs for the chloride and pyridine complexes. However, it is worth pointing out that small activation energies such as those observed for the rhenium phosphine complexes have in the case of ruthenium polypyridyl compounds been associated with population of \(^3\)MCLT states rather than \(^3\)MC levels \[36a\].

Against the background of these results it is interesting to consider the mechanism for CO\(_2\) reduction recently proposed by Ishitani and coworkers \[19\] as shown in Figure 4, in particular the nature of the one-electron reduced species (OER).
Figure 4 Reaction mechanism for photocatalytic reduction of CO₂ to CO using \(\text{fac-[Re(bpy)(CO)₃NCS]}\) as photocatalyst. Reproduced from ref [19a] with permission of the American Chemical Society.

Since the NCS⁻ complex like the related \(\text{fac-[Re(bpy)(CO)₃Cl]}\) is photostable at 365 nm, the anion is only lost after the excited state is reduced by the sacrificial agent. However, for the compound \(\text{fac-[Re(bpy)(CO)₃(P(OEt)₃)]}^+\), loss of CO \textit{trans} to the phosphine ligand has been reported. Since the latter compound shows a higher efficiency for CO₂ reduction than the NCS⁻ species the question arises whether this loss of CO is reflected in the OER process and whether this behaviour is the reason for the improved performance of this system, in comparison to other known complexes reported.

While \(\text{fac-[Re(bpy)(CO)₃Cl]}\) is photostable at 365 nm the compound does show loss of CO to form \(\text{fac-[Re(bpy)(CO)₂(CH₃CN)Cl]}\) upon irradiation at 313 nm [37]. Photodissociation occurs on the subpicosecond time scale and is thought to occur \textit{via} the \(^1\text{MLCT}\) state rather than the triplet state. Careful analysis of the reaction mixture, using X-ray analysis and NMR and IR spectroscopies show the presence of two main products, namely compounds 2 and 4 in Figure 5. Compound 4 is a thermal product formed from the initial photoproduct 3. This photochemical process provides a novel synthetic pathway towards rhenium dicarbonyl complexes.
3. Photoinduced isomerisation within the coordination sphere

One of the earliest isomerisation involving ruthenium polypyridyl complexes was reported by Meyer and co-workers. This group reported on the photoinduced cis-trans isomerisation of [Ru(bpy)$_2$(H$_2$O)$_2$]$^{2+}$[38]. Upon irradiation of the cis compound by visible light the trans species is formed as confirmed by X-ray crystallography. The quantum yields for cis-trans and trans-cis isomerisation are independent of wavelength with values of 0.045 and 0.025 respectively. As a result a photostationary state is observed upon extended photolysis. Thermal trans-cis isomerisation is also observed.

Metal complexes containing three asymmetric ligands can in principle form facial (fac) and meridional (mer) isomers. Such isomers are observed for Ir based cyclometalated complexes, with ligands such as 2-phenylpyridine, 1-phenylpyrazole and others. These compounds are very promising as components in OLED devices and hence their photophysical properties have been investigated in great detail with fac-[Ir(CNN)$_3$] isomers having considerably stronger emission then the corresponding mer-isomers [39,40]. The complexes can be prepared by thermal methods and depending on the temperature the fac-(high temperature) or mer-isomers (low temperature) are obtained. However, mer-to fac isomerisation can also be carried out by irradiation with UV light [39] as shown in Figure 6.

Figure 5. Photoinduced and thermal processes observed upon irradiation of fac-[Re(bpy)(CO)$_3$Cl] at 313 nm
The photochemical behaviour of optically pure samples has also been investigated. Starting from the mer-∆ isomer both ∆ and Λ species of the fac-isomers are obtained, however the mer-Λ isomer is not observed [41]. These observations are in agreement with the strong emission observed for the fac isomer and the very weak signal observed for the mer species. For the latter, non-radiative processes are clearly important and limit the efficiency of the emission process.

For the earlier mentioned compound fac-[Re(bpy)(CO)3Cl] fac- to mer- isomerisation is also observed. Upon irradiation at 313 nm under a CO atmosphere in a non-coordinating solvent the mer-isomer is obtained in a 33% yield [42]. (Figure 7).

4. Photoinduced linkage isomerisation/chelate formation

There is considerable interest in linkage isomerisation of dimethylsulfoxide (DMSO) ligands when attached to ruthenium polypyridyl complexes. Compounds such as [Ru(bpy)(tpy)(DMSO)]2+ and [Ru(bpy)2(DMSO)2]2+ are typical examples. A review of the photoinduced isomerisation of such compounds has recently appeared [23b]. The photolability of these ligand has been exploited to gain access to enantiomerically pure ruthenium complexes of the type [Ru(bpy)2(DMSO)Cl]+ [43]. The ground and excited state properties of [Ru(bpy)(tpy) (DMSO)]2+ have been studied together with the isomerisation process using time-dependent DFT [44].

Several studies have been carried out on the photophysics and photochemistry of ruthenium polypyridyl complexes containing 1,2,4-triazole moieties such as 3-(pyridine-2-yl)-1,2,4-triazole (Hpytr). These ligands are of interest since they are asymmetric, the nitrogen atoms in the triazole ring has different properties which may lead to the formation of different coordination isomers. In addition, the triazole N-H proton is quite acidic and this allows for the synthesis of complexes containing either protonated or deprotonated triazole rings [45]. For these complexes photoinduced linkage isomerisation processes are observed including photochemical photo/thermal reversible transformations. Importantly, triazolato compounds of the type [Ru(bpy)2(pytr⁻)]⁺ are photostable. This is related to the strong sigma donor
capacity of the deprotonated triazole ring. This leads to a considerable increase in the energy of the deactivating 3MC level (Figure 1) and the 3MC level can not be populated from the LUMO at room temperature [45,46]. However, for complexes containing protonated or methylated triazole ligands the 3MC level is lowered, population at room temperature takes place and as a result photoinduced ligand rearrangements are observed for such compounds. The first example is based on the [Ru(bpy)$_2$(Hpytr)]$^{2+}$ complex. As shown the complex is protonated and is therefore photoactive. For this complex two different isomers can be obtained, the Hpytr ligand is either bound via the N2 or the N4 nitrogen atom of the triazole ring as shown in Figure 8 below. For the unsubstituted triazole ring the ratio between these two isomers is 1:1 and they can be isolated by semi-preparative HPLC. Irradiation of either the N2 or N4 isomer in CH$_2$Cl$_2$ with visible light leads to a photostationary state with a N4:N2 ratio of 4:1. This ratio is in agreement with the activation energies observed for population of the 3MC state of the N4 and N2 species which show values of 2860 and 1710 cm$^{-1}$ respectively [46].

![Figure 8](image)

Reversible photoinduced N2-N4 isomerisation of [Ru(bpy)$_2$(Hpytr)]$^{2+}$

The second example involves a complex of the type [Ru(bpy)$_2$(1Mepytr)]$^{2+}$ (Figure 9) [47]. This compound was obtained by direct methylation of the N2 isomer shown in Figure 8 [48]. Methylation is observed at the N1 nitrogen of the triazole ring, a position not expected when considering steric considerations, but explained by the more electron negative nature of N1 compared to N4. Irradiation in acetonitrile leads to a very fast rearrangement leading to the sterically preferred configuration as shown in Figure 9. This process is not reversible and can be followed conveniently in acetone by 1H NMR by monitoring the position of the methyl group as shown in Figure 10. Upon photolysis in acetone the location of the methyl group changes dramatically from being close to neighbouring bpy ligands to a more free position, this process is reflected in the change of the resonance for this group from about 3.60 to 4.20 ppm.
In the last example photolysis of the 4-methyl analogue \([\text{Ru(bpy)}_2(4\text{Mepytr})]^2+\) (Figure 11) leads to the formation of a monodentate intermediate in high yield [49]. The photochemical process can be reversed by heating as shown in Figure 11 and 12. A kinetic analysis shows that the thermal reaction follows first order kinetics with a rate constant of \((2\pm 0.2) \times 10^{-4} \text{ s}^{-1}\) at 80 °C. An activation energy for the reaction of 110 ± 10 kJ mol\(^{-1}\) was calculated over the temperature range 70-88 °C range, while the entropy change is close to zero. Importantly, however, when the photoproduct obtained in acetonitrile is isolated and photolysed in either acetone or methanol the starting material is obtained. This suggests that in weakly coordinating solvents such as methanol and acetone photoinduced ring closure is observed.
Another example of a photoinduced ligand rearrangement is that shown in Figure 13 [50]. Irradiation of a ruthenium containing macrocycle shown results in ligand rearrangement where the phenanthroline part of the macrocycle is rotated by 90°. As a result the pyridine ligand occupies a different position with respect to the mesityl group. This rearrangement is confirmed by NMR using NOESY which shows interactions between the pyridine group and the phenanthroline ligand in the starting material and pyridine mesityl interaction for the photoproduct. For these compounds, thermal reactions aimed at replacement of the monodentate ligand do, in general, lead to retention of the photoinduced geometry. In this manner complexes can be prepared which can not be obtained by thermal methods. Note therefore that the addition of trifluoroacetic acid is required to change the connectivity observed for the photoprodut to that of the thermally obtained starting material.
Kojima and Fukuzumi reported similar photoinduced rearrangements for complexes based on the ligand tris(2-pyridylmethyl)amine (TPA) as shown in the Figure 14 [51].

![Type 1](image1)

Type 1

![Type 2](image2)

Type 2

Figure 14 TPA based metal complexes

For type I compounds, intermediates containing pendant pyridine groups can be formed by either thermal or photoinduced processes. In a detailed study the formation of the intermediates is investigated and the nature of the products observed and the quantum yields for the photoprocesses for forwards and back reactions are reported. In acetonitrile the thermal process is irreversible and is taking place via an associative process. However, by a combination of thermal and photoinduced processes a 90% reversibility of the structural changes observed can be achieved. For type 2 compounds a photochemically induced isomerisation of the alloxazine ligand is observed. This rearrangement can be reversed by thermal means (Figure 15).

![Type 1](image3)

Type 1

![Type 2](image4)

Type 2

Figure 15 Reversibly photochemical/thermal ligand rearrangements

Linkage isomerisation is also common in organometallic complexes and ultrafast processes relevant to photoinduced linkage isomerisation in organometallic systems was recently reviewed [52]. Burkey and co-workers have shown that first row organometallic complexes of manganese, (η⁵-
C₅H₄CH₃Mn(CO)₂(L) with non-chelatable bifunctional ligands (L) undergo linkage isomerisation, following irradiation as shown in Figure 16. These results demonstrate that linkage isomerisation is an effective photochromatic mechanism for organometallic complexes. A combination of NMR, UV-vis and IR spectroscopy were used to monitor isomerisation, which occurred by both unimolecular and bimolecular processes, depending on the ligand (L) [53].

![Figure 16](image)

Figure 16 Linkage isomerisation in (η⁵-C₅H₄CH₃)(CO)₂L type complexes (where L= 3-cyanomethylpyridine)

Ring formation in CpMn(CO)₃ (cp = cyclopentadienyl) derivatives with pendant sulphides have more recently been investigated as possible systems for ultrafast photoswitches [54]. CpMn(CO)₃ derivatives were chosen because of the high quantum yield (0.65) for photosubstitution of a carbonyl ligand. The pendant sulphides chosen are shown in Figure 17. For the pendant –CH₂SMe (1) ligand, a unit quantum yield for chelation was measured albeit via a secondary pathway involving formation of a solvated intermediate (solvent = heptane) [55]. Chelation competed with solvation of the unsaturated manganese centre on the picosecond timescale, which lead initially to a 1:1 ratio of the chelate to solvated intermediate. The solvated intermediate is unstable and yields the chelate within 100 ns. Unfortunately solvation impedes the response time for chelation. In an attempt to prevent formation of the solvated intermediate pendant bis and tri derivatives were studied. Similarly to the mono methylsulphide, the pendant methylsulphides gave rise to both the chelate and the solvated intermediate (1:1 ratio). The solvated intermediate ring closed with 200 ns. However, in the case of the pendant trimethylsulphide only the chelate was observed within 100 ps. These studies have demonstrated that relatively small conformational changes can exclude ultrafast processes such as solvation (in hexane). And furthermore clearly demonstrate that cage processes such as recombination and solvation can be problematic in designing organometallic photoswitches.
Subsequent picosecond infrared studies were carried out on the sulphide manganese tricarbonyl complexes 1, 2 and 3 (Figure 17), with results clearly demonstrating that the solvent employed influenced the reaction pathway [56]. For instance, in heptane there is competition between chelation (Mn-S) and solvent (S) coordination on the picosecond time scale, with the solvated intermediate forming the chelate on the nanosecond time base. However, when acetonitrile is employed as solvent the chelate forms within 13ps, with no evidence for the solvated species. The presence of a chelating side chain may preclude solvation. Excitation of 1 or 2 at 289 nm in acetonitrile, leads to CO loss, with
formation of the chelate (Mn-S) complex, which differs to that in heptane where only the solvated intermediate was observed.

The influence of solvent and pendant substituent on the chelation dynamics for a series of arene chromium tricarbonyl complexes (4-6, Figure 17) were also studied using TRIR [57]. In heptane all chromium complexes yielded both the Cr-S chelate and Cr-heptane solvated intermediate following excitation at 289 nm, in varying ratios (1:2, 1:2, 2:1 respectively for complexes 4, 5 and 6). Similarly to the manganese systems discussed above, in all cases the Cr-heptane solvated species converted to the chelate within 30 ns. On changing the solvent to THF, again both the Cr-S chelate and Cr-THF species were observed for 2 and 3 following excitation, with the THF adducts converting to the chelate on the second time scale. In contrast to the manganese systems, in acetonitrile all three chromium complexes yielded the Cr-NCH₃ species within 50 ps.

5. Photoinduced cis-trans rearrangements

Photoinduced ligand based isomerisation such as cis-trans and locked/unlocked processes for spiropyans have been studied for a wide range of metals. Rhenium carbonyl polypyridine complexes have attracted attention in recent years because these chromophores can be incorporated into catalytic systems for CO₂ reduction, conducting polymers and molecular wires, in addition to being attached to proteins and a host of others. Such systems, particularly those with stilbene type ligands attached may act as molecular photonic devices due to photonic properties. In some rhenium polypyridine (N-N) complexes of [Re(CO)₃(N-N)(L)] (L = axial ligand) the lowest excited state is localised on the ligand L, and if populated will result in isomerisation. Coordination of stilbene type ligands to metals centres such as rhenium have the advantage of MLCT tunability over their organic counterparts, which opens up the possibility of using visible light for the isomerisation process. Iha and co-workers [58] have investigated the photoisomerisation of the trans-L ligand in the compounds fac-[Re(Me₄phen)(CO)₃(trans-L)]⁺ where trans-L is 1,2-bis(4-pyridyl)ethyne (bpe) or 4-styrene pyridine(stpy). Upon irradiation of fac-[Re(Me₄phen)(CO)₃(trans-L)]⁺ with UV light a trans to cis-isomerisation of the olefin ligand is observed as shown in Figure 18.
Upon irradiation of the trans isomer at 313, 334, 365 and 405 nm the cis compound is reformed. The isomerisation process can reversed for both the stpy and the bpe compound upon irradiation at 254 nm with a quantum yield of 0.15. Interestingly the cis complexes emit at room temperature and the emission spectrum obtained can be explained by a dual emission involving \(^3\text{IL}_{\text{phen}} \) and \(^3\text{MLCT}_{\text{Re} \rightarrow \text{phen}} \) emitting states. An investigation of the electronic spectra of the complexes suggests that the \(^3\text{IL}_{\text{trans-L}} \) state is lowest in energy and therefore the isomerisation process is postulated to occur by population of that energy level. Quantum yields for trans-cis isomerisation are also reported for the bpe containing compound, with values around 0.30 obtained. For the stpy compound the quantum yield at 404 nm is similar at 0.35 but at higher energy irradiation values of about 0.55 are obtained. The authors interpret this observation by proposing that for the bpe complex population of the \(^3\text{IL}_{\text{trans-L}} \) state via internal conversion from the \(^3\text{MLCT} \) level at all wavelengths. However, for the stpy compound at higher energies direct population from the \(^1\text{IL}_{\text{trans-L}} \) states is also occurring, yielding to higher overall quantum yields. The isomerisation of the bpe ligand is furthermore confirmed by time resolved absorption and infrared measurements carried out on complexes containing the non-substituted phen ligand [58c]. These measurements indicate the presence of an intermediate species with a lifetime of 28 ns. The investigation of the \(\nu(C=\text{C}) \) region of the spectrum suggests that this species observed is most likely the olefin localized twisted triplet 3p* excited state.

In a related study the excited state dynamics of \([\text{Re}(Cl)(CO)$_3$(MeDpe$^+$)$_2$]$^{2+} \) and \([\text{Re}(\text{MeDpe})](CO)$_3$(bpy)]^{2+} \) (MeDpe$^+$=N-methyl-4-[trans-2-(4-pyridyl)ethenyl]pyridinium, bpy=2,2'-bipyridine), have recently been reported by Vlček and co-workers [59]. These studies have clearly demonstrated how subtle structural changes can lead to different excited state behaviour and lack of photoisomerisation in the case of \([\text{Re}(Cl)(CO)$_3$(MeDpe$^+$)$_2$]$^{2+} \). Excitation (400 nm) of \([\text{Re}(\text{MeDpe})](CO)$_3$(bpy)]^{2+} \) leads to population of two excited states, Re(CO)$_3 \rightarrow \text{MeDpe}^+$ and

Figure 18. Trans - cis isomerisation of stpy type ligand in fac-[Re(Me$_4$phen)(CO)$_3$(stpy)]$^+$

Re(CO)$_3$ bppy 3MLCT states, from which a MeDpe$^+$ localised intraligand $^3\pi\pi^*$ excited state (3IL) is populated over ~ 0.6 and ~ 10 ns. The cis isomer is produced from the 3IL state. In the case of the [Re(Cl)(CO)$_3$(MeDpe$^+$)$_2$]$^{2+}$ complex the lowest excited state is assigned to a Re(Cl)(CO)$_3$ \rightarrow MeDpe$^+$ 3MLCT. This state decays to the ground state with lifetimes of ~ 42 and 430 ns, thus the system is photostable.

An overview of the excited state deactivation pathways for both systems is presented in Figure 20. As is clearly evident from these two schemes, the excited state behaviour in the photochemistry is caused by the different order in the excited states. For the [Re(Cl)(CO)$_3$(MeDpe$^+$)$_2$]$^{2+}$ complex, the 3MLCT(MeDpe$^+$) state is unreactive and decays to the ground state via electron transfer (MeDpe$^+$$\rightarrow$ Re$^{}$II). Optical excitation of [Re(MeDpe$^+$)(CO)$_3$(bpy)]$^{2+}$ leads initially to population of 3MLCT states, however these are not the lowest excited states. The 3IL state lies lower in energy and is thus populated by both 3MLCT(MeDpe$^+$) and 3MLCT(bpy) states.
Fig 20. Proposed mechanism for deactivation for both \([\text{Re(Cl)(CO)}_3(\text{MeDpe}^+)_2]^{2+}\) and \([\text{Re(MeDpe}^+)(\text{CO})_3(\text{bpy})]^+\). The subscripts a and b denote two \(3\text{MLCT}\) states of similar origin.

The related azobenzene type systems, \(\text{fac-[Re(Cl)(CO)}_3(\text{papy})_2]\) and \(\text{fac-[Re(papy)(CO)}_3(\text{bpy})]^+\) (papy = \text{trans-4-phenylazopyridine}) were also investigated using ultrafast techniques [60]. UV irradiation results in \text{trans-cis} isomerisation for both complexes. The lowest excited state in both \text{fac-}
[Re(Cl)(CO)₃(papy)₂] and fac-[Re(papy)(CO)₃(bpy)]⁺ is assigned to the ³nπ⁺ IL state of the papy ligand, however in these complexes the pathway for population of this state differs for the two complexes. Excitation at 400 nm leads to population of both ¹ππ⁺(papy) and ¹MLCT(papy) excited states, which subsequently both undergo intersystem crossing to the ³nπ⁺ state. However for fac-[Re(papy)(CO)₃(bpy)]⁺ the ¹ππ⁺(papy), ¹MLCT(papy) and, possibly also the ¹MLCT(bpy) undergo branched intersystem crossing which populates both the ³nπ⁺ and ³MLCT(bpy) states within 0.8 ps. Previously photoisomerisation of azobenzene in metal complexes was attributed to an intraligand ¹nπ* excited state of the azobenzene moiety, as opposed to the ³nπ⁺ state observed by Vlcek et al. Hence these results show that coordination of rhenium to trans-4-phenylazopyridine switched trans-cis isomerisation from the singlet to the triplet excited state. Both rhenium complexes are examples of optically controlled switches as only the cis form is emissive and forms upon photoisomerisation. The latter study compliments a previous study based fac-[Re(Cl)(CO)₃(stpy)₂] and fac-[Re(stpy)(CO)₃(bpy)]⁺ (stpy = t-4-styrylpyridine, bpy = 2,2’-bipyridine)(Figure 22) [61]. Coordination of trans-4-styrylpyridine, to the rhenium centre switches the trans–cis isomerisation mechanism from a singlet to a triplet ππ* excited-state. Thus rhenium acts as an intramolecular triplet sensitiser. The Re → stpy MLCT excited states are not involved in isomerisation. The isomerisation process in the papy complexes described above is approximately 200 faster than that in the corresponding stpy complexes.

![Figure 21](image-url) Structures of fac-[Re(Cl)(CO)₃(papy)₂] and fac-[Re(papy)(CO)₃(bpy)]⁺
Figure 22. Structures of fac-[Re(Cl)(CO)₃(stpy)₂] and fac-[Re(stpy)(CO)₃(bpy)]⁺

A similar photoinduced cis-trans isomerisation has been reported for a Fe(II) complex [62] containing an azobenzene moiety attached to the pyridylbenzimidazole chelating ligand. Upon irradiation in acetone at room temperature the cis analogue can be produced by irradiation of the trans analogue at 365 nm. The process can be reversed by irradiation with 436 nm light as shown in Figure 22. Interestingly while the trans isomer is low spin the cis species is high spin.

Figure 23. Light-driven spin change for by isomerisation of azobenzene containing ligand. Reproduced from Ref 62 with Permission of the Royal Society of Chemistry.

Cis-trans isomerisation in stilbene is known to occur efficiently using 313 nm irradiation. However, attachment of a Cr(CO)₃ moiety to one of the benzene rings in cis-stilbene, has shown that the complex, cis-(η⁶-stilbene)Cr(CO)₃ efficiently undergoes photoisomerisation to the trans
isomer following irradiation with $\lambda_{\text{exc.}} > 400$ [63]. Isomerisation in $\text{cis-}(\eta^6\text{-stilbene})\text{Cr(CO)}_3$ was clearly demonstrated by both matrix isolation studies with UV-vis and NMR experiments. The typical CO-loss photoproduct, $(\eta^6\text{-stilbene})\text{Cr(CO)}_2$ was observed following high-energy photolysis of $\text{cis-}(\eta^6\text{-1,2-stilbene})\text{Cr(CO)}_3$. Whether this CO loss occurs directly from the cis-isomer or by way of secondary photolysis of the initially produced trans-$(\eta^6\text{-stilbene})\text{Cr(CO)}_3$ is uncertain. More recently the photochemistry of both cis- and trans-$(\eta^6\text{-stilbene})\text{Cr(CO)}_3$ was probed using picosecond time resolved infrared and femtosecond transient absorption studies [64]. Three excited states were detected following excitation of $\text{cis-}(\eta^6\text{-stilbene})\text{Cr(CO)}_3$ at 400 nm. A short-lived excited state results in a fast cis to trans isomerisation (over 4 ps) of the coordinated stilbene in cis-$(\eta^6\text{-stilbene})\text{Cr(CO)}_3$, to yield the trans isomer trans-$(\eta^6\text{-stilbene})\text{Cr(CO)}_3$. The corresponding excited state in the trans-$(\eta^6\text{-stilbene})\text{Cr(CO)}_3$ failed to produce a significant yield of the cis-isomer. Of the remaining two excited states, one reacts to release one CO ligand while the second relaxes to the ground state. An overview of the photochemical pathways is depicted in Figure 24.

Figure 24. Various intermediates and photoproducts observed following irradiation of cis and trans $(\eta^6\text{-stilbene})\text{Cr(CO)}_3$.

Another type of photoinduced rearrangement includes haptotropic shifts at the ligand. Haptotropic shifts have been proposed for many organometallic reactions, in particular for thermally induced
rearrangements, [65] and to a lesser extent for photochemical reactions. Photoinduced changes to the coordination mode of \(\pi \)-bound ligands offer the possibility of opening up a number of coordination sites at the metal that may mimic the vacant site available on metal atoms in heterogeneous catalytic systems. Both matrix isolation studies at low temperature (12 K) and time resolved studies have facilitated the detection of intermediates involving hapticity changes, where the electron count at the metal is less than 18. Recent examples that we have studied include organometallic complexes of Cr and Fe. In the case of \((\eta^6\text{-pyridine})\text{Cr(CO)}_3\), irradiation (460 nm) of the compound at 12K, lead to depletion of the parent bands together with the formation of infrared bands at 1957, 1841 and 1833 cm\(^{-1}\) in a methane matrix, which are indicative of a \(\text{fac-Cr(CO)}_3\) moiety [66]. Irradiation at higher energy, (308 nm) yielded additional bands at 1945 and 1888 cm\(^{-1}\). The latter bands were assigned to the CO loss photoproduct, \((\eta^6\text{-pyidine})\text{Cr(CO)}_2\), with the bands at 1957, 1841 and 1833 cm\(^{-1}\) assigned to \((\eta^1\text{-pyridine})\text{Cr(CO)}_3\). The present of two N\(_2\) stretching vibrations (2222 and 2189 cm\(^{-1}\)) in a dinitrogen matrix confirmed two vacant sites at the metal centre, and thus in a dinitrogen matrix \((\eta^1\text{-pyidine})\text{Cr(CO)}_2(\text{N}_2)\) forms. Low energy photolysis gives rise only to the ring-slip species, while higher energy gives rise to two photochemical pathways, thus wavelength dependent photochemistry exists. Time resolved studies using IR, also gave rise to bands assigned to the CO loss species. The lack of evidence for the ring slip intermediate at room temperature is attributed to rapid generation of \((\eta^6\text{-pyridine})\text{Cr(CO)}_3\), from \((\eta^1\text{-pyridine})\text{Cr(CO)}_3\). Further evidence for a thermal hapticity change from \(\eta^1 \rightarrow \eta^6\) comes from UV-vis laser flash photolysis studies, where the trace for the recovery of the \((\eta^6\text{-pyridine})\text{Cr(CO)}_3\) displays a biphasic profile, with the faster process attributed to the \(\eta^1 \rightarrow \eta^6\) transformation.

Similarly, to the pyridine system, irradiation of \((\eta^5\text{-C}_5\text{H}_4\text{N})\text{Fe(\eta^5\text{-C}_3\text{H}_5)}\), with \(\lambda > 495\ \text{nm}\) in a CO doped matrix at 12 K, lead to the formation of product bands assigned to \((\eta^5\text{-C}_5\text{H}_5)(\eta^1\text{-C}_5\text{H}_4\text{N})\text{Fe(CO)}\) and \((\eta^5\text{-C}_3\text{H}_5)(\eta^1\text{-C}_5\text{H}_4\text{N})\text{Fe(CO)}_2\) [67]. Irradiation with monochromatic light (532 nm) produced a further product assigned to \(\text{exo-(\eta^5\text{-C}_3\text{H}_5})(\eta^3\text{-C}_5\text{H}_4\text{N})\text{Fe(CO)}\). An additional monocarbonyl species was also observed which may be either an \(\text{endo-}\) or \(\text{aza-allyl}\) species. In solution studies at room temperature, photolysis of CO purged solutions of \((\eta^5\text{-C}_5\text{H}_4\text{N})\text{Fe(\eta^5\text{-C}_3\text{H}_5)}\) gave rise only to formation of \((\eta^5\text{-C}_3\text{H}_5)(\eta^1\text{-C}_5\text{H}_4\text{N})\text{Fe(CO)}_2\). Surprisingly, the ring slip intermediates observed following irradiation of azaferrocene appear only to interact with CO. Thermally \((\eta^5\text{-C}_5\text{H}_5)(\eta^1\text{-C}_5\text{H}_4\text{N})\text{Fe(CO)}_2\) is converted to \((\eta^5\text{-C}_3\text{H}_5)\text{Fe(\eta^5\text{-C}_5\text{H}_4\text{N})}\).[68] Another iron system studied was \((\eta^3\text{-C}_3\text{H}_5)\text{Fe(CO)(NO)(PPh}_3\)] [69]. Irradiation (\(\lambda > 300\text{nm}\)) of a cyclohexane solution of \((\eta^3\text{-C}_3\text{H}_5)\text{Fe(CO)(NO)(PPh}_3\)]
C₃H₅)Fe(CO)(NO)(PPh₃) in the presence of excess triphenylphosphine lead to the production of infrared bands that were assigned to the haptotropic shift product (η¹-C₃H₅)Fe(CO)(NO)(PPh₃)₂ (Figure 25), where the mode of coordination of the allyl ligand changes from η³ → η¹.

More recently we have studied the photochemical behaviour of (η⁵-C₅H₅Se)Cr(CO)₃, using a combination of spectroscopic techniques at room and low temperature [70]. Low energy excitation (405 nm), in a matrix at 12K induced an opening of the selenophene ring, with insertion of chromium into the Se-C, to form (C₅Se⁻C₅H₅Se)Cr(CO)₃ initially. Further irradiation of this matrix lead to formation of the CO-loss product (C₅Se⁻C₅H₅Se)Cr(CO)₂. Time resolved studies in heptane, with an excitation wavelength of 400 nm, produced the typical solvated CO loss species, (η⁵-C₅H₅Se)Cr(CO)₂(heptane). This species reacted with CO, to regenerate the parent material with a second order rate constant of 5.8 x 10⁶ dm³ mol⁻¹ s⁻¹. In addition to the solvated 16 electron intermediate, new product bands at 2039, 2014, 2000, 1959 and 1954 cm⁻¹, were assigned to both, the ring insertion photoproduct, (C₅Se⁻C₅H₅Se)Cr(CO)₃ and the corresponding CO product, (C₅Se⁻C₅H₅Se)Cr(CO)₂. Insertion of the chromium tricarbonyl fragment into the Se-C bond is complete within 1ns. The insertion product does not appear to react with CO or N₂ in the matrix, and the unreactive nature of this coordinatively unsaturated intermediate is attributed to its triplet character. This study is the first example of photochemical insertion of a Cr(CO)₃ moiety into a carbon-heteroatom bond, to generate a chromaselenabenzenzene species.
Nagashima and co-workers have shown that di-iron complexes bound to either acenaphthylene or aceanthrylene ligands thermally undergo reversible photoisomerisation both in solution and in the solid state [71]. In solution both complexes (μ²,η³:η⁵-acenaphthylene)Fe₂(CO)₅ and (μ²,η³:η⁵-aceanthrylene)Fe₂(CO)₅ following irradiation at 600 nm undergo a induced haptotopic rearrangement to the form the less stable isomer. For both complexes, a wavelength dependency for isomerisation was observed with higher energy irradiation leading to lower ratios for the thermodynamically less stable isomer. The quantum yields for the photochemically generated isomers were determined as Φ = 0.30 and Φ = 0.013 for the (μ²,η³:η⁵-acenaphthylene)Fe₂(CO)₅ and (μ²,η³:η⁵-aceanthrylene)Fe₂(CO)₅ complexes respectively. The isomerisation quantum yield for the acenaphthylene complex is significantly higher than that for the aceanthrylene. Solid state studies were carried out in KBr pellets, with reversible interconversions observed, over 10 repeat cycles. Changes were observed by monitoring the infrared spectra. These results elegantly demonstrate that organometallic photochromism in the solid state is detectable using IR light.
Figure 27 \((\mu^2, \eta^3: \eta^5\text{-acenaphthylene})\text{Fe}_2(\text{CO})_5\) and \((\mu^2, \eta^3: \eta^5\text{-aceanthrylene})\text{Fe}_2(\text{CO})_5\)

Burger [72] reported that the CMe$_2$ bridged dicyclopentadienyl diruthenium complex \([\text{Me}_2\text{C}(\eta^5\text{-C}_5\text{H}_4)_2\text{Ru}_2(\text{CO})_4]\) has been shown to act as a reversible organometallic thermo-optical switch. When toluene or benzene solutions of the ruthenium complex were irradiated with \(\lambda > 400\) nm, the system quantitatively and efficiently rearranged to the metal hydride as shown in Figure 28. This transformation lead to cleavage of a C-H bond on a cyclopentadienyl ring together with rupture of the Ru-Ru bond. Homolysis of the Ru-Ru bond, was suggested as the first step in the rearrangement process. High temperatures of up to 160°C were required to thermally reverse the reaction in the solid state. This clearly indicates a much higher free enthalpy for the reverse reaction, which is thermally induced.

Figure 28. The CMe$_2$ bridged dicyclopentadienyl diruthenium complex \([\text{Me}_2\text{C}(\eta^5\text{-C}_5\text{H}_4)_2\text{Ru}_2(\text{CO})_4]\)

Organic photochromic molecules, particularly diarylethenes have extensively been studied for their use as photochromic materials [73]. Dithienyl ethenes interconvert photochemically between the non-conjugated ‘open’ form and the conjugated ‘closed’ form using specific wavelengths, and as a result are
one of the most intensively studied systems [74]. In recent years redox active centres containing transition metals have been tethered to dithienyl ethenes. These complexes have been reported for their ability to control electron transfer, switching luminescence or metal-metal communication [75]. As this area has grown extensively in recent years only a representative number of recent publications will be discussed here.

The photophysical and electrochemical properties of a series of linear and star shaped molecules composed of transition metal bipyridines and dicyclopentenes have been studied by Abruna and co-workers [76]. Interestingly the photochromic behaviour was found to be dependent on both the metal (FeII, CoII, RuII or OsII) and the arrangement of various components. For instance in the star shaped CoII and FeII tethered dicyclopentenes shown in Figure 29, photoisomerisation occurs following irradiation with 350 nm. In the case of the FeII complex approximately 8 hrs irradiation were required to reach the photostationary state, whereas after only 10 mins irradiation, the CoII complex quickly transformed into the closed form. One possibility for the dramatic difference in photoactivity for these two systems, is that in the case of the FeII analogue, energy transfer from the dithienylethene to the 3MC or 3MLCT states may occur (a band in the UV-vis spectrum at 543nm is assigned to a MLCT transition). In the case of the CoII analogue, no such MLCT transition is obvious in the UV-vis spectrum. The star shaped RuII analogue also differs to FeII or CoII systems, in so far as photoisomerisation can occur by irradiating either the dithienylethene band at 350 nm or by irradiating the MLCT band at 470 nm. Irradiation of the latter most likely results in intramolecular energy transfer from the 3MLCT to the dithienylethene centred triplet state. In the case of the linear molecules shown in Figure 29, the DTE-M-DTE arrangements (only Cl substituted FeII system photoinactive) display superior photochromic behaviour when compared to the M-DTE-M arrangement (FeII, RuII and OsII photoinactive). In addition to a difference in photoactivity with the metal centre, substituents such as Cl or a phenyl group also has a significant effect on photochromic behaviour, with the Cl leading generally to a decrease in photoactivity.
Other organometallic moieties linked to dithienylethenes include σ-bonded redox-active organometallic units such as \(M(\eta^5-C_5H_4R)L_2 \) where \(M = \text{Fe or Ru} \) and \(L = (\text{CO})_2, (\text{CO})(\text{PPh}_3) \) or dppe, or where the organometallic moiety is attached via \(\text{C≡C} \) linkers for instance \(\text{[Fe}(\eta^5-C_5\text{Me}_5)(\text{dppe})_2] \) [77]. In this example, the Ru systems underwent photocyclisation more efficiently than the corresponding Fe analogues, while attaching a phosphine ligand impedes cyclisation. Attachment of the dppe ligand resulted in no photoactivity regardless of the metal centre in the σ-bonded redox-active organometallic
units. Interestingly when C≡C linkers are employed, the dithienylethenes containing a dppe group formed the ring closed product following irradiation.

Recent studies have shown that the rhodium dinuclear complex \([(\text{RhCp*})_2(\mu-\text{CH}_2)_2(\mu-\text{O}_2\text{SSO}_2)]\) \((\text{Cp*} = \text{pentamethylcyclopentadienyl})\) interconverts quantitatively to \([(\text{RhCp*})_2(\mu-\text{CH}_2)_2(\mu-\text{O}_2\text{SOSO})]\) [78]. This reaction is triggered by absorption of 510 nm light into the charge transfer band from \(\sigma(\text{S}−\text{S})\) to \(\sigma^*(\text{S}−\text{S})\) and \(\sigma^*(\text{Rh}−\text{Rh})\) orbitals, Figure 30.

Figure 30. Structures for \([(\text{RhCp*})_2(\mu-\text{CH}_2)_2(\mu-\text{O}_2\text{SSO}_2)]\) and \([(\text{RhCp*})_2(\mu-\text{CH}_2)_2(\mu-\text{O}_2\text{SOSO})]\).

Studies on the organoorhodium dithionate complex discussed here represent one of the few examples of photochromic crystals based on metal complexes. Furthermore, most photochromic materials involve photocyclisation, \(\text{cis}/\text{trans}\) isomerisation, or H transfer, but the rhodium system differs in that it involves intramolecular oxygen-atom insertion.

7. Concluding remarks and future developments

In this overview a wide range of photoinduced processes for both organometallic compounds and transition metal complexes are discussed. The processes observed vary from photoinduced ligand exchange, to photoinduced isomerisation of the coordination sphere and isomerisation of the ligands attached and ligand rearrangements. Where appropriate the relevance of the photochemical transformations for catalytic processes such as the water gas shift reaction and photocatalytic CO\(_2\) reduction are outlined. However, more studies are required to improve our understanding of the relationship between photochemical transformations and photocatalytic processes. These studies should involve both detailed photophysical and theoretical studies including DFT.
The application of the photoinduced modification of molecules for the development of molecular machines has been highlighted widely as already indicated in the introduction. It is generally accepted that the successful immobilisation of supramolecular assemblies of solid surfaces is an important requisite for the successful design of a practical device [79]. The most important step to realising practical applications may be related to the successful immobilisation of components on solid surfaces without deactivation of the photoprocesses of interest. It has been shown already that this can be achieved when polymers modified with ruthenium complexes are mobilised on electrode surfaces. The photochemical properties of [Ru(bpy)$_2$(PVI)Cl]Cl where PVI is poly N-vinyl imidazole [80] and [Ru(bpy)$_2$(PVP)Cl]Cl, where PVP is poly-4-vinylpyridine [81] have successfully been transferred from solution to electrode surfaces and the photolability of the Cl ligand can be utilised to modify the sensing selectivity of the modified electrode. More recently the unidirectional molecular motor reported by Feringa was also successfully transferred to a gold surface via thiol containing linkers while retaining its photochemically and thermally driven rearrangements [82]. Pseudorotaxanes have also been immobilised and reversible dethreading and rethreading has been observed indicating that molecular motion can also been retained at solid surfaces [83]. Other studies carried out have included the immobilisation of photoactive materials on nanoparticles [84] and carbon nanotubes.[85] Examples of photonic interfacial assemblies based on monolayers have also been discussed.[86] It is important to realise that the surface used for the immobilisation of the photoactive components may have a strong effect on the photophysical properties of the attached molecules. A particularly important example of this is in the Grätzel type dye sensitised solar cell, where the inherent photolability of the attached dyes may be eliminated by the strong coupling between the molecules and the TiO$_2$ surface [5]. These examples demonstrate that the photophysical properties of photoactive compounds can be transferred to surfaces and in this manner novel interfacial assemblies can be obtained. Finally, a relatively long but under represented relationship exists between photophysics and magnetism. Gütlich and co-workers [87] have carried out a considerable amount of excellent and detailed work on light induced excited state spin trapping, a process that is normally observed at low temperatures. In addition ligand driven light induced spin change has be observed at room temperature in solution as reported in by Nishihara and coworkers [62]. In a recent review novel developments in the area of nanomagnetic materials such as single molecule magnets have been reviewed [88]. With these novel materials in mind is seems likely that increased collaboration between the two research areas could lead to the development of optical/magnetic systems with unique and unexpected properties.
Acknowledgements

The authors thank Science Foundation Ireland (Grant No. 07/SRC/B1160 Advanced Biomimetic Materials for Solar Energy Conversion and Grant numbers 08/RFP/CHE1349 and 05/RF/PHY082) and the Environmental Protection Agency (Project number 2008-ET-MS-3-S2) for financial support.
References

[1] (a) W.A. Adamson, J. Phys Chem. 79 (1967) 798
(b) A. W. Adamson, Advances in Chemistry Series, No. 49, American Chemical Society, Washington, D. C., 1965

(c) D. Gust, T. A. Moore A. L. Moore, Acc. Chem. Res. 42 (2009) 1890

b) A. Heller, Acc. Chem. Res. 23 (1990) 128
c) A. Aoki, A. Heller, J. Phys. Chem. 96 (1992) 3567

Lett. 5 (2005) 2485
[11] (a) V. Balzani, Small 1 (2005) 278 (b) V. Bazani, M. Venturi, A. Credo, Molecular Devices and
Soc. 124 (2002) 12092
(1998) 479
(2008) 2456
(1996) 2167 (d) M. Yagi, A. Syouji, S. Yamada, M. Komi, H. Yamazaki, S. Tajima,

