<table>
<thead>
<tr>
<th>Title</th>
<th>Controlling speckle using lenses and free space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors(s)</td>
<td>Kelly, Damien P.; Ward, Jennifer E.; Gopinathan, Unnikrishnan; Sheridan, John T.</td>
</tr>
<tr>
<td>Publication date</td>
<td>2007-12-01</td>
</tr>
<tr>
<td>Publication information</td>
<td>Optics Letters, 32 (23): 3394-3396</td>
</tr>
<tr>
<td>Publisher</td>
<td>Optical Society of America</td>
</tr>
<tr>
<td>Link to online version</td>
<td>http://dx.doi.org/10.1364/OL.32.003394</td>
</tr>
<tr>
<td>Item record/more information</td>
<td>http://hdl.handle.net/10197/3345</td>
</tr>
<tr>
<td>Publisher's statement</td>
<td>This paper was published in Optics Letters and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-23-3394. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.</td>
</tr>
<tr>
<td>Publisher's version (DOI)</td>
<td>10.1364/OL.32.003394</td>
</tr>
</tbody>
</table>
Controlling speckle using lenses and free space

Damien P. Kelly, Jennifer E. Ward, Unnikrishnan Gopinathan, and John T. Sheridan

1Institut für Photonik & Zentrum für Mikro- und Nanostrukturen, Technische Universität Wien, A-1040 Wien, Austria
2School of Electrical, Electronic & Mechanical Engineering, College of Engineering, Mathematical and Physical Sciences, University College Dublin, Belfield, Dublin 4, Ireland

Received June 13, 2007; revised August 18, 2007; accepted September 12, 2007; posted October 19, 2007 (Doc. ID 84141); published November 20, 2007

Coherent light reflected from an optically rough surface produces a grainy interference pattern known as a speckle field. A speckle field carries information about the surface it originates from, so much so that changes to the surface profile through applied stress [1,2], motion [3–7], or object surface slopes [8] can be detected by monitoring the resultant variation in the field. While an imaging system is often used for speckle metrology, alternative optical systems [described by using the linear canonical transform (LCT)], have been shown to be useful for estimating simultaneous in-plane translation and surface tilting [LCT], and the field at the rough surface. As in [9], we wish to find the autocorrelation function of the intensity of the light distribution, i.e.,

\[R(x, \tilde{x}) = \langle I_1(x) \rangle \langle I_2(\tilde{x}) \rangle + |J_A(x, \tilde{x})|^2, \]

(2)

where \(J_A(x, \tilde{x}) \) is the mutual intensity of the fields after two different LCT transforms (LCTs 1 and 2) and is defined as

\[J_A(x, \tilde{x}) = \langle U_{LCT1}(x) U^*_{LCT2}(\tilde{x}) \rangle, \]

(3)

where the LCT1 and LCT2 subscripts refer to the particular LCT transform and \(* \) denotes complex conjugate. We now make three assumptions:

(i) The speckle field is fully developed and \(\langle u(x_0)u^*(\tilde{x}_0) \rangle = C \delta(x_0-\tilde{x}_0) \), where \(C \) is a constant,

(ii) \(p(x_0) = \begin{cases} 1, & |x_0| \leq L/2 \\ 0, & \text{otherwise} \end{cases} \)

(iii) \(I(x) \) and \(I(\tilde{x}) \) are slowly varying and approximately equal to each other. Thus, a study of \(J_A(x, \tilde{x}) \) is sufficient to describe the decorrelation of the speckle field [9].

With these assumptions and after some manipulation, Eq. (3) can be rewritten as

\[|J_A(x, \tilde{x})| = C \int_{-1}^{1} \exp[j \alpha N] \exp(j \pi N^2) \exp(j \alpha N \Delta x) \]

(4a)

with dimensionless variables

\[\tau = \frac{\pi L^2 A_1}{4 \lambda B_1} \left(1 - \frac{B_1}{A_1} \right), \quad \alpha = \frac{\pi L (B_1 \gamma - \Delta B)}{\lambda B_1 (B_1 + \Delta B)}, \]

(4b)

where \(\psi = (A_1 + \Delta A)/(B_1 + \Delta B) \), \(\Delta A = A_2 - A_1 \), \(\Delta B = B_2 - B_1 \), \(\gamma = \tilde{x} - x, x_N = x_0/(L/2) \).

To represent Eq. (4a) in a normalized form, we introduce the correlation coefficient of intensity, \(\mu_1 \). From Eqs. (9) and (11) of [9] we find that
Equations (4) and (5) are statistical relationships that describe the mutual correlation of LCT fields in different domains. This has been discussed in a different context elsewhere for fractional Fourier transform (FRFT) systems [15].

An analytical solution for Eq. (5) exists, and we plot the results in a contour plot in Fig. 1. The function $\mu_1(\alpha, \tau)$ varies from 0 $< \mu_1(\alpha, \tau) < 1$ in 11 steps. Clearly, as α and τ vary from zero, μ_1 decreases and the speckle field decorrelates. We now define when the speckle field is considered decorrelated by using two criteria: lateral and what term phase-space speckle size. The phase-space speckle size can be considered a generalized longitudinal speckle size [9,10]; however, as we will see below, it can also define the maximum distance that a lens in some lossless optical system can be moved before the speckle field at the output plane decorrelates. Since, in general, (longitudinal) decorrelation can occur even though the input and output planes are stationary, we use the term phase-space speckle throughout the rest of this Letter.

Lateral Speckle Size ($\Delta_\lambda=0$, $\Delta_B=0$). Lateral speckle size refers to the maximum distance that the output plane can be translated along the x axis before the speckle fields are decorrelated. Importantly, the LCT system is left physically unchanged between observations. Therefore, $\Delta_B=\Delta_\lambda=0$. From Eq. (4b), we see that in this case $\mu=0$ and $\alpha=\pi L/\lambda B_1$. The first minimum of $\mu(\alpha,0)=|\sin(\alpha)/\alpha|^2$ occurs when $\alpha_{\text{min}}=\pi$. Solving $\mu_1(\alpha_{\text{min}},0)$ for γ, we define the lateral speckle size, γ_{LS}, as

$$\gamma_{\text{LS}} = \lambda B_1/L.$$

(6)

From Eq. (6) we see that the lateral speckle size can be controlled by changing the variable B_1, which, in turn can be achieved by using combinations of lenses and free space.

Phase-Space (General Longitudinal) Speckle Size ($\gamma=0$). We now compare the speckle field at the output plane of two different LCT systems (i.e., in different domains). We assume that the output plane is not translated between observations; thus $\gamma=0$. Nevertheless, in general, $\alpha \neq 0$, and so μ_1 is still a function of both α and τ. To define when the field is correlated we first convert to polar coordinates $\{r, \theta\}$, such that $\alpha = r \cos(\theta)$, $\tau = r \sin(\theta)$. For a particular value of θ, the first local minimum of the function $\mu_1(r \cos(\theta), r \sin(\theta))$ can be found numerically. Repeating this procedure for $0 < \theta < 2\pi$ traces out what we propose to term the boundary of correlation (BOC), depicted in Fig. 1. μ_1 is not constant over the BOC but varies from a value of 0 at $\{\alpha, \tau\} = \{3.14, 0\}$ to 0.24 at $\{\alpha, \tau\} = \{2.01, 3.43\}$. Any values of α and τ that lie outside this BOC are thereby defined as being uncorrelated. We now examine the three separate systems: (i) the FST; (ii) a single paraxial lens system, and (iii) an optical FRFT system.

Fresnel Transform. For the special case of free space propagation, the LCT parameters reduce to $A_1=A_2=1$, $B_1=z, B_2=2$. If we further assume that $z=2$ and $x=0$, then we find that $\gamma_{\text{LS}} = \lambda z/L$ and $\varepsilon_{\text{SS}} = 7.31(\varepsilon/L)^2$, where ε_{SS} is the longitudinal speckle size. These results are consistent with those derived by Leuschke and Kirchner [9]. For an optical system with $z=20$ cm, $L=10$ cm, and $\lambda=633$ nm, $\gamma_{\text{LS}} = 1.26 \mu m$, and $\varepsilon_{\text{SS}} = 18 \mu m$. Now we set $x=8$ mm, and from Eq. (4b) we can see that α is no longer zero; however, we do note that both α and τ vary as a function of the difference $\tilde{z}-z$. This can be conveniently expressed in the form of a parametric plot (referred to as the FST) which we overlay on Fig. 1 (solid black line). By examining the point of intersection of the FST with the BOC, a value for both α and τ can be found, which we refer to as the decorrelation point (DP). From Eq. (4b) an equivalent value for ε_{SS} can be calculated. In this case $\varepsilon_{\text{SS}} = 18.5 \mu m$ at 103% of the on-axis value, indicating that the speckle field decorrelation is not strongly affected by x, once $x < \pm 8$ mm.

Single-Lens System. We now consider a single-lens (SL) system with a fixed distance S between the input and output planes [5]. We first show that the lateral speckle size is dependent on the lens position. Then, with $\gamma=0$, we determine the phase-space speckle size; i.e., we examine how the speckle field in the output plane decorrelates as a function of lens position. The A and B parameters for this system are given by [5]

$$A_1 = 1 - \frac{z_l}{f}, \quad B_1 = z_l + (z_l - S) \left(1 - \frac{z_l}{f}\right).$$

(7)

From Eq. (7) we can see that B_1 is a function of the lens position, z_l. Using Eqs. (6) and (7), it is clear that γ_{LS} can be varied. In a real optical system ($L=10$ cm, $f=10$ cm, and $\lambda=633$ nm) this means that $1.15 < \gamma_{\text{LS}} < 79 \mu m$ when $0.01 < z_l < 0.15$.

Fig. 1. Contour plot of $\mu(\alpha, \tau)$ as a function of τ and α. SL, single lens; DP, decorrelation point.
We now wish to examine how the system decorrelates as a function of Δz_l and ΔB. We introduce a new variable Δz_l defining the distance that the lens has been moved between observations. From Eqs. (4b) and (7), ΔA and ΔB can be expressed as a function of Δz_l. Setting $L=10$ cm, $\lambda=633$ nm, $S=20$ cm, and $f=10$ cm, we examine two cases: SL1 where $z_l=17$ cm and $x=0.1$ mm, and SL2 where $z_l=5$ cm and $x=-0.1$ mm. In Figs. 2 we plot the variation of α and τ, respectively, as a function of Δz_l. For systems SL1 (dashed) and SL2 (solid). Both α_{SL1} (dashed) and α_{SL2} (solid) increase at similar rates; however, τ_{SL2} (solid) increases more quickly than τ_{SL1} (dashed), and so we expect that the SL2 system will decorrelate more quickly. The results in Fig. 2 have again been expressed as a parametric curve and overlaid on Fig. 2 (solid and dashed gray lines). The DPs for SL1 and SL2 are given by (0.433, 5.81) and (0, 0, 0, 5.69), respectively. By plotting two straight lines $\tau = 5.81$ and $\tau = -5.69$ in Fig. 2, corresponding to the τ coordinate of the DP, we can determine that SL1 and SL2 are decorrelated at $\Delta z_l = 14 \mu m$ and $4.75 \mu m$, respectively (it is completely equivalent to use the α coordinate instead). We note that the amount the lens can be moved before total decorrelation depends on the initial position of the lens.

Fractional Fourier Transform System. Finally, we briefly examine phase-space speckle size for an FRT system, referring the reader to [6, 16, 17] for suitable definitions of A and B. Setting $L=10$ cm, $\lambda=488$ nm, $f=10$ cm, and $x=2$ mm, we construct an FRT system of fractional angle $\phi=2.2$ rad (order 1.4) as in [6]. The variables α and τ again vary as a function of $\Delta \phi$, and it can be shown that total decorrelation occurs when $\Delta \phi = 27 \mu rad$. A central assumption in the interpretation of the experimental results presented in [6] was that the speckle fields at the output of an FRT system of fractional angle 2.2 and π rad would be uncorrelated with respect to each other. We note that this assumption is supported by the analysis presented here.

In relation to the FRT it is interesting to note that, since there is no mathematical difference between an FRT system of angle β and $2\pi+\beta$, we could expect speckle fields produced by two physically different (but lossless) optical systems to be perfectly correlated and repeat periodically every 2π. This assumes, however, that no light is lost from the system, which may not be achievable in practice.

Obtaining high fringe contrast and low speckle noise in speckle interferometry requires balancing the lateral speckle size and camera pixel area with the expected error introduced by undesired in-plane displacement of the sample under investigation [18]. This is typically controlled by adjusting the size of the limiting aperture in the system [18]. If the limiting aperture is small, the system will be more sensitive to decorrelation introduced by an unintentional tilting of the sample under investigation [2, 4, 5]. The results derived in this Letter are applicable to apertures in optical systems if it can be assumed that the coherence area of the field in the aperture plane is very small compared with the size of the aperture area [4, 5, 13]. Using Eq. (6) we can control the lateral size of the speckle in the observation plane by using lenses and free space as well as the limiting aperture size. With this extra flexibility it may be possible to design a speckle interferometry system with both high fringe contrast and low speckle noise that allows the user control over the effect of errors introduced by unintentional tilting of the sample under investigation.

References