<table>
<thead>
<tr>
<th>Title</th>
<th>A new, mild one-pot synthesis of iodinated heterocycles as suitable precursors for N-heterocyclic carbene complexes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors(s)</td>
<td>Iglesias, Manuel; Schuster, Oliver; Albrecht, Martin</td>
</tr>
<tr>
<td>Publication date</td>
<td>2010-10-13</td>
</tr>
<tr>
<td>Publication information</td>
<td>Tetrahedron Letters, 51 (41): 5423-5425</td>
</tr>
<tr>
<td>Publisher</td>
<td>Elsevier</td>
</tr>
<tr>
<td>Item record/more information</td>
<td>http://hdl.handle.net/10197/3686</td>
</tr>
<tr>
<td>Publisher's statement</td>
<td>This is the author's version of a work that was accepted for publication in Tetrahedron Letters. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Tetrahedron Letters (2010) DOI: http://dx.doi.org/10.1016/j.tetlet.2010.07.178</td>
</tr>
<tr>
<td>Publisher's version (DOI)</td>
<td>10.1016/j.tetlet.2010.07.178</td>
</tr>
</tbody>
</table>
A new, mild one-pot synthesis of iodinated heterocycles as suitable precursors for N-heterocyclic carbene complexes
Manuel Iglesias, Oliver Schuster, and Martin Albrecht

The I$_2$/AgOAc couple allows for cheap, mild, and efficient iodination of a variety of heterocycles, which can serve as useful precursors for the synthesis of N-heterocyclic (abnormal) carbene complexes.

Key words: N-heterocycles; Iodination; Ligand precursors; Abnormal carbene complexes; Palladation
A new, mild one-pot synthesis of iodinated heterocycles as suitable precursors for N-heterocyclic carbene complexes

Manuel Iglesias, Oliver Schuster, and Martin Albrecht

School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland

Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland

Abstract—The use of I₂/AgOAc in dichloromethane constitutes a cheap, mild, and efficient method for the selective iodination of a variety of heterocycles. In a number of cases, this method provides superior yields than other literature methods and affords iodinated derivatives as building blocks for carbon-carbon bond forming reactions.

The synthesis of iodinated aromatic heterocycles can be achieved by direct iodination of C-H bonds or by nucleophilic substitution of C-X, where X is a good leaving group. The former method relies on the presence of Lewis acids or strong oxidizing agents to overcome the low electrophilicity of iodine. On the other hand, the latter method requires the pre-installation of a good leaving group. Even though the literature offers a variety of synthetic protocols for the preparation of iodinated (hetero)aromatic compounds, harsh conditions and expensive or toxic chemicals are often required. In addition, one single methodology does typically not perform well for different substrates, thus illustrating the need for the further development of efficient and reliable methodologies for the synthesis of iodinated heterocycles.

Herein we report on convenient and inexpensive methods for the synthesis of a range of iodinated N-heterocycles that are suitable precursors for non-classical NHC transition metal complexes (Scheme 1). We successfully applied the iodine-iodide (I₂ and KI) methodology for the preparation of compound 2a and its N-methylated derivative 2b from the corresponding halide-free imidazoles 1a and 1b, respectively (Table 1, entries 1 and 2). However, this method failed to iodinate 3,5-dimethylisoxazole (1c) for which mainly starting material was recovered (entry 3). In contrast, the use of silver acetate and iodine afforded the desired 3,5-dimethyl-4-iodoisoxazole (2c) in almost quantitative yield (98%). In addition, better yields were obtained for the iodination of 1d under milder conditions (88% at 45 °C as compared to 67% at 100 °C using I₂/KI).

Scheme 1

[Diagram of Scheme 1]

1 Corresponding author. Tel.: +353-1716-2504; fax: +353-1716-2501; e-mail: martin.albrecht@ucd.ie.

2 to whom correspondence pertaining to crystallographic analyses should be addressed: fax: +41-26300-9738; e-mail: oliver.schuster@unifr.ch
Table 1. Iodination of heterocycles 1a–g

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Product</th>
<th>Yield using I\textsubscript{2}/KIa</th>
<th>Yield using I\textsubscript{2}/AgOAca</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1a</td>
<td>2a</td>
<td>73%</td>
<td>58%</td>
</tr>
<tr>
<td>2</td>
<td>1b</td>
<td>2b</td>
<td>78%</td>
<td>n.d.</td>
</tr>
<tr>
<td>3</td>
<td>1c</td>
<td>2c</td>
<td><5%</td>
<td>98%</td>
</tr>
<tr>
<td>4</td>
<td>1d</td>
<td>2d</td>
<td>67%</td>
<td>88%</td>
</tr>
<tr>
<td>5</td>
<td>1e</td>
<td>3e</td>
<td>n.d.</td>
<td>93%</td>
</tr>
<tr>
<td>6</td>
<td>1f</td>
<td>2f, 3f</td>
<td>n.d.</td>
<td>76% (3:2 ratio)</td>
</tr>
<tr>
<td>7</td>
<td>1g</td>
<td>2g</td>
<td><5%</td>
<td><5%</td>
</tr>
</tbody>
</table>

a Isolated yields of 1H NMR pure material obtained after extraction, n.d. = not determined.

The I\textsubscript{2}/AgOAc route is a variation of a previously reported method9 and involves the substitution of the Lewis acidic silver trifluoroacetate, by less expensive silver acetate. Moreover, unlike the literature procedure, I\textsubscript{2}/AgOAc-mediated iodination was performed as a one-pot synthesis and does not require repetitive additions of silver salt or iodine. To the best of our knowledge, this is the first time that the system I\textsubscript{2}/AgOAc has been reported as a reagent for the iodination of heterocycles.

The scope of this method is quite broad. A diverse range of heterocyclic iodides was prepared in good to excellent yields (Table 1). In all cases, a small excess of iodine was sufficient to ensure high conversions. In a typical procedure, solid iodine was added in portions to a suspension containing the heterocyclic substrate and AgOAc. After complete addition, the solution became dark red and the desired product formed as a yellow precipitate, which was isolated, washed, and dried. Selective monoiodination was indicated specifically by the disappearance of the pertinent 1H NMR resonance signal in the non-iodinated precursor (e.g. 1H NMR for the C4-bound hydrogen in 1) and was unambiguously confirmed by mass spectrometry.

The I\textsubscript{2}/AgOAc methodology proved also efficient for the iodination of 1-ethyl-3,5-dimethyl-1\textsubscript{H}-pyrazole (1d), 2,4dimethylimidazole (1a), 2-methylimidazole (1e), and (1f). The iodinated imidazoles 2d and 2a, and the diiodinated imidazole 3e, were obtained in good yields and high selectivity (88%, 58% and 93%, respectively). Conversely, iodination of 1-methylimidazole (1f) was not selective and afforded a mixture containing several products. Analysis using NMR spectroscopy and mass spectrometry, and comparison with authentic products obtained via different routes indicated that the product mixture includes 2,5-diiodo-1-methylimidazole and 1-methyl-2-iodoimidazole as the main products in an approximate 2:3 ratio. The desired
mono-iodinated heterocycle 2f was easily separated by column chromatography (SiO2, Et2O) to give the pure product in 46% isolated yield (along with pure 3f, 30% isolated yield). This method thus represents a more convenient alternative to the synthesis of 1-methyl-2-iodoimidazole compared to other literature methods, in particular because it does not require strictly anhydrous conditions nor the handling of sensitive organolanthanum reagents.

Attempts to iodinate 3-methylpyridine (1g) by either the I2/KI or the I2/AgOAc route failed thus far. Successful formation of 2-iodo-3-methylpyridine (2g) was accomplished, however, by reacting 2-bromo-3-methylpyridine (4) with sodium iodide and trimethylsilyl chloride in MeCN (Scheme 2).58 Long reaction times (>7 days) and high temperatures were required in order to obtain the desired iodinated pyridine 2g in good yield (82%). The 1H and 13C NMR signals of the iodinated product barely differ from the brominated starting material, and mass spectrometry was used instead for monitoring the progress of the reaction.

Scheme 2

\[
\text{Br} \quad \text{Nal, Me3SiCl} \quad \text{MeCN} \quad \text{I} \quad \text{N} \\
\text{4} \quad \text{2g} \quad (82\%)
\]

The potential of iodinated N-heterocycles such as 2 can be illustrated by the straightforward synthesis of the new abnormal carbene complex 5 (Scheme 3). Thus, alkylation of 4-iodoisoxazole (2c) with MeOTf followed by oxidative addition to Pd(dba)2 as a palladium(0) source in the presence of pyridine afforded complex 5 in good overall yield.12 Complex 5 features a 4-isoxazolylidene ligand as a rare type of so-called abnormal carbens, and has been fully analyzed, including an X-ray structure analysis of single crystals grown from CH2Cl2 and pentane.13 The Pd–C bond length is 1.974(4) Å and fits into the 1.95–2.03 Å range expected for abnormal N-heterocyclic carbene palladium bonds.52 The two hetero-cycles are almost coplanar (torsion angles are less than 8°), and they are nearly orthogonal to the palladium coordination plane (torsion angle ca. 70°). In the 13C NMR spectrum, the palladium-bound carbene carbon appears at δC 155.5.

In conclusion, we have synthesized a variety of iodinated N-heterocycles that are suitable precursors for abnormal carbenes by using a novel protocol based on I2/AgOAc. This method is of considerably broad scope and provides convenient access to a variety of iodinated aromatic heterocycles under mild conditions. The products were isolated in good yields and with satisfactory purity after a simple extraction procedure. The procedure may prove useful for the synthesis of a wide variety of new NHC-type complexes, and also for catalytic applications which rely on in situ generated catalysts from low-valent metal precursors.

Acknowledgements

This work has been financially supported by the Swiss National Science Foundation, the European Research Council (ERC), a Marie-Curie Intra-European Fellowship (to O.S.), and by UCD through a start-up grant.

References

10. In a typical experiment, 3,5-dimethylisoxazole (1e) (500 mg, 5 mmol) was added dropwise to a suspension of AgOAc (0.935 g, 5.5 mmol) in dry CH2Cl2 (20 mL). Subsequently, I1 (1.500 g, 6.4 mmol) was added in portions under N2 and the reaction mixture was stirred at 50 °C for 16 h. The resulting purple solution was filtered and washed with a saturated solution of NaHCO3. The aqueous layer was basified to pH 9 with KOHaq and extracted with CH2Cl2 (3 × 20 mL). The combined organic layers were then washed with saturated NaHCO3 (40 mL) and brine (15 mL), dried over MgSO4, filtered, and dried under reduced pressure to afford 3,5-dimethyl-4-isoxoisoxazole (2e) (476 mg, 98%). 1H NMR (360 MHz, CDCl3): δ 2.43 (s, 3H, CH3), 2.25 (s, 3H, CH3). 13C(1H) NMR (90 MHz, CDCl3): δ 169.0 (C9-Me), 160.5 (C7-Me), 59.1 (C8-Me), 11.5 (CH3), 11.2 (CH3). HR-MS: 223.9578 (calcd for C8H11NO, 223.9572).

12. In a typical experiment, MeOTf (0.034 mL, 0.30 mmol) was added dropwise to a solution of 3,5-dimethyl-4-isoxoisoxazole (2e) (56 mg, 0.25 mmol) in CH2Cl2 (5 mL) and stirred at room temperature for 3 h. The volatiles were distilled under reduced pressure and the residue rinsed with Et2O (3 × 5 mL). The white solid thus obtained was dissolved in CH2Cl2 (10 mL) and stirred for 15 min at room temperature with Pd(dba)2 (75 mg, 0.25 mmol), subsequently, an excess of NaI (75 mg, 0.50 mmol) and pyridine (0.025 mL, 0.25 mmol) were added and the reaction mixture was stirred overnight at room temperature. The resulting suspension was filtered through a short pad of Celite and the solution concentrated to ca. 2 mL. Addition of Et2O induced precipitation of a yellow solid which was collected by decantation, rinsed with Et2O (3 × 10 mL) and dried under reduced pressure to afford 8 as a yellow solid (98 mg, 72%). 1H NMR (360 MHz, CDCl3): δ 9.05 (dt, 2H, o-CH3), JH-H = 5.2, JH-H = 3.7. 7.6 (tt, 1H, p-CH3), JH-H = 7.7, JH-H = 1.5). 7.29 (m, 2H, m-CH3), 3.98 (s, 3H, NCH3), 2.75 (s, 3H, CH3), 2.64 (s, 3H, CH3). 13C(1H) NMR (90 MHz, CDCl3): δ 170.1 (C9-Me), 162.6 (C7-Me), 155.5 (C5-Pd), 154.0 (o-CN), 137.1 (p-CN), 124.2 (m-CN), 37.0 (m-CN), 16.9 (CH3), 15.7 (CH3). Anal. Calcd for C8H11NO, 223.9578: C, 72.95; H, 7.71; N, 10.30. Found: C, 72.70; H, 7.72; N, 10.32.

13. Crystal data for 5: C10H11O5N3Pd2O, M = 550.46, monoclinic, a = 8.9614(18), b = 14.124(3), c = 12.544(3) Å, β = 1559.4(6) Å, β = 100.83(3)°, γ = 130(2)°, space group Ce (No. 9), Z = 4. μcalcd = 2.345 g cm−3, μ (Mo-Kα) = 5.137 cm−1, 9631 total reflections, 2891 unique (Rint = 0.031), Rs = 0.0150, wR2 = 0.0320, S = 1.13 for I > 2σ(I). Crystallographic data (excluding structure factors) for this structure have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. 781506. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax +44-(0)1223-336033 or e-mail: deposition@ccdc.cam.ac.uk).

Supplementary Material

Experimental details of all products from Table 1.