<table>
<thead>
<tr>
<th>Title</th>
<th>Mechanism of Atmospheric CO2 Fixation in the Cavities of a Dinuclear Cryptate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors(s)</td>
<td>El-Hendawy, Morad M.; English, Niall J.; Mooney, Damian A.</td>
</tr>
<tr>
<td>Publication date</td>
<td>2012-05-07</td>
</tr>
<tr>
<td>Publication information</td>
<td>Inorganic Chemistry, 51 (9): 5282-5288</td>
</tr>
<tr>
<td>Publisher</td>
<td>ACS Publications</td>
</tr>
<tr>
<td>Item record/more information</td>
<td>http://hdl.handle.net/10197/3743</td>
</tr>
<tr>
<td>Publisher's statement</td>
<td>This document is the Accepted Manuscript version of a Published Work that appeared in final form in Inorganic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/ic300224w.</td>
</tr>
<tr>
<td>Publisher's version (DOI)</td>
<td>10.1021/ic300224w</td>
</tr>
</tbody>
</table>

The UCD community has made this article openly available. Please share how this access benefits you. Your story matters! (@ucd_oa)
Mechanism of Atmospheric CO₂ Fixation in the Cavities of a Dinuclear Cryptate

Morad M. El-Hendawy¹, Niall J. English¹,²* and Damian A. Mooney¹,²

¹The SFI Strategic Research Cluster in Solar Energy Conversion, School of Chemical and Bioprocess Engineering and ²Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.

Keywords: CO₂ fixation, DFT, CO₂ transformation, Dinuclear cryptate, Transition state

Using density functional theory (DFT) methods, we have investigated two possible mechanisms for atmospheric CO₂ fixation in the cavity of the dinuclear zinc (II) octa-azacryptate, and the subsequent reaction with methanol whereby this latter reaction transforms the (essentially) chemically inert CO₂ into useful products. The first mechanism (I) was proposed by Chen et al. [Chem. Asian J. 2007, 2, 710], and involves the attachment of one CO₂ molecule onto the hydroxyl-cryptate form, resulting in the formation of a bicarbonate-cryptate species and subsequent reaction with one methanol molecule. In addition, we suggest another mechanism that is initiated via the attachment of a methanol molecule onto one of the Zn-centres, yielding a methoxy-cryptate species. The product is used to activate a CO₂ molecule and generate a methoxycarbonate-cryptate. The energy profiles of both mechanisms were determined and we conclude that, while both mechanisms are energetically feasible, free energy profiles suggest that the scheme proposed by Chen et al. is most likely.

* Corresponding author: niall.english@ucd.ie
Introduction

In recent years, there has been increasing interest in the development of synthetic analogues which mimic the function of ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) [1-33]; Rubisco catalysing the first major step of carbon dioxide fixation in nature, a conversion process to form energy-rich molecules, such as glucose. This search has become all the more tantalizing in light of the possible negative effects of anthropogenic CO\textsubscript{2} and the need to develop, long-term renewable energy resources. In the latter case, CO\textsubscript{2} being an abundant and readily accessible atmospheric gas, it can be regarded as a useful synthetic source for organic compounds, including fuels. However, its inherent thermodynamic stability and kinetic inertness poses significant challenges so as to achieve CO\textsubscript{2} activation and functionalisation. The formation of coordination bonds with inert molecules is one of the most powerful and popular ways for inducing (fixing) them for subsequent reaction [18]. More specifically, in the case of CO\textsubscript{2} the challenge often encountered is the activation of the thermodynamically stable C-O bond, which has characteristics of a double bond.

Previous work has shown that, in the presence of appropriate ligand environments and electron-rich metal centres, the reduction of CO\textsubscript{2} is possible, producing carbonates, oxalates, for example [1-17]. A variety of transition metal complexes with M-OR fragments undergo insertion reactions with CO\textsubscript{2} [4, 6, 7, 18]. If R is an alkyl or aryl group, corresponding alkyl or aryl carbonate species are formed, while if R is a H atom, bicarbonate species are formed. A series of hydroxo-complexes of first-row divalent metal cations (Mn, Fe, Co, Ni, Cu and Zn) have been found to react with CO\textsubscript{2} to form μ-carbonato-dinuclear complexes [1]. It has also been reported that zinc hydroxyl complexes can be converted to alkyl carbonate complexes by reaction with alcohol [2]. Meanwhile, in biology, for instance, the ubiquitous Zn(II) enzyme carbonic anhydrase removes CO\textsubscript{2} from tissues in the mammalian respiratory process by inserting it into Zn-OH bonds [3].

Recently, Nelson and co-workers have observed that the reaction of M2+ ions (where M2+ is Co2+, Ni2+, Cu2+ or Zn2+) with m-benzene-based cryptands (L) in water, and either MeOH or MeCN, produces dinuclear carbonato-cryptates [M\textsubscript{2}L(µ-CO\textsubscript{3})2+] and dinuclear methoxycarbonate-cryptates [M\textsubscript{2}L(µ-MeCO\textsubscript{3})3+], respectively [4]. Chen et al. have repeated these experiments in acidic solution, and obtained bicarbonate [Cu\textsubscript{2}L(µ-CO\textsubscript{3}H)2+] and methoxycarbonate species [Cu\textsubscript{2}L(µ-MeCO\textsubscript{3})3+], respectively [5]. At present, the mechanism
for the formation of the methoxycarbonate species remains unclear. Scheme 1 presents the two possible mechanisms for CO$_2$ fixation and transformation into methoxycarbonate species using dinuclear zinc cryptates [Zn$_2$L]$^{4+}$. The first pathway (and referred to subsequently thus) is suggested by Chen et al, in which a CO$_2$ molecule is taken up firstly to form a bicarbonate species, followed by the attack by MeOH on the carbon atoms of the fixed CO$_2$ fragment [5]. As an attempt to lend credence to this mechanism, we suggest another pathway (from henceforth referred to as “the second pathway”), whereby the methoxy species is formed first by the attachment of MeOH at one of Zn cations of [Zn$_2$L]$^{4+}$, followed by interaction of CO$_2$ with the Zn-OMe bond. Although extensive studies have been conducted to study the mechanism of CO$_2$ fixation using metal-ligand complexes [10, 24-31] little has been done for dinuclear metal macrocycle systems [32, 33]. In view of the importance of clarifying these mechanisms, careful scrutiny of the validity of both mechanisms is needed (cf. Fig. 1). Therefore, in this study, through the use of density functional theory (DFT), we present a comprehensive computational analysis to elucidate the possible mechanisms of methoxycarbonate formation by dinuclear zinc cryptates in methanolic solution, and also highlight the utility of these techniques in yielding insight in understanding catalytic mechanisms.

Computational methodology

All calculations were performed using Density Functional Theory (DFT) as implemented in Gaussian 09 [34]. The hybrid B3LYP approach, involving the Becke exchange functional and Lee-Yang-Parr correlation functional in conjunction with Hartree-Fock exchange [35-37], was used since it generally leads to more accurate energies [37]. Mixed basis sets were used for geometry optimisation, for which Zn atoms were treated with Stuttgart/Dresden double-ζ (SDD) ECP basis sets [38], while all-electron 6-31G(d,p) basis sets were used for the remainder of the elements in the dinuclear zinic cryptate (Crypt) molecule. Both minima and transition states were verified via analytical frequency calculations. Intrinsic reaction coordinate (IRC) calculations and the animation of the negative eigenvector coordinate by visualisation (via GaussView 4) were utilised to verify the connections between the optimised transition states. We refined the energy and carried out population analysis by performing single-point calculations at the B3LYP/6-311++G(2d,2p) level. The thermodynamic and activation parameters were obtained at a temperature, T= 298.15 K (harmonic approximation). The electronic density was analysed using the natural bond orbital
(NBO) technique [39]. To estimate the energetic effects of a methanolic medium, as used experimentally for the fixation process [4, 5], solvation effects were calculated at the B3LYP/6-311++ G(2d,2p) level using the universal solvent model, SMD [40].

Results and Discussion

The two, aforementioned plausible mechanistic pathways for CO₂ fixation into the cavity of dizininic cryptate in methanolic solution will be discussed here. Although, the calculations have been done in both gas and in solution, we found that the solvation effect oscillates around 2.0 kcal/mol in all cases. Thus, all presented results here include the solvation. Both mechanisms start with the Crypt molecule (see Fig. 2 for respective optimized structures). The B3LYP-optimized structure of the Crypt molecule is a bis-chelating macrocyclic complex forming two connected tetrahedrons where the encapsulated zinc cations are coordinated by the three secondary amino donors (N²nd) and the tertiary nitrogen bridgehead (N³r). The structural features of the optimized species does not deviate much than that of the crystallographically derived form [4]. The average Zn-N²nd bond length equals to 2.056 Å while Zn-N³r bonds are higher by 0.02 Å, in good agreement with experiments [4].

The first pathway

Based on our calculation (cf. Fig. 2), CO₂ fixation via this route involves seven distinct chemical steps: (1) the interaction between the Crypt species and a neighboring water molecule, (2) the subsequent deprotonation of water molecule to produce the hydroxy species (Crypt-OH), (3) the formation of a weak associated precursor complex with CO₂ (PC), (4) the rearrangement into a suitable transition state (TS2) pushing the reaction forward (5) the formation of a bicarbonate species (Crypt-CO₃H), (6) the MeOH attack on the bicarbonate species to form activated species (TS3) and (7) the subsequent formation of a methoxide carbonate species (Crypt-CO₃Me). All these steps will be discussed below in a bit more detail.

Step (1&2): attack of an H₂O molecule on one of the Zn ions and subsequent deprotonation

The reaction starts with the attack of a water molecule on one of the four coordinated Zn cations (Zn1) of the initial reactant (Crypt) to form a penta-coordinated Zn centre, with subsequent deprotonation of the water molecule to form a hydroxyl species (Crypt-OH). This has been achieved through the formation of a transition state, labeled TS1, as shown in
Fig. 2. A new (Zn1-O3) bond is formed and the O3-H bond is broken. For TS1, Zn1-O3 and O3-H distances are 2.131 and 1.501 Å, respectively. The formation of Crypt-OH is found to be endergonic with value of 39.6 kcal/mol. This step is thermodynamically unfavorable as the energy of the product is significantly higher than the energy of reactant. The relative activation energy of TS1 for this reaction through the transition state TS1 is 72.0 kcal/mol.

An important observation is made regarding the Zn…Zn distance during the formation of hydroxyl species. Here, although the Zn…Zn distance of Crypt species is 6.841 Å, it reduces to 6.341 Å in the case of TS1, with a further reduction in the hydroxyl species to 6.264 Å. This, of course, incurs a significant energetic penalty. This reduction in the inter-atomic distance between the Zn atoms is attributed to attraction with respect to proximity with the water’s oxygen atom. This can been seen from natural population analysis before and after forming the hydroxyl species, wherein the charge on Zn1 and Zn2 of the Crypt are 1.415 e and 1.420 e, respectively, and they decrease to 1.355 and 1.404 e, respectively, after inclusion of the –OH group in the interatomic distance between Zn atoms.

Step (3): formation of weak associated precursor complex with CO₂

The second step in the first pathway is the formation of a weakly associated precursor complex (PC) from the reactants at infinite separation. The CO₂ molecule locates on the mirror plane perpendicular to the Zn-OH plane, as depicted in Fig. 2 (see ‘PC’ pane). The closest contact between the hydroxyl oxygen (O₃) and the CO₂ carbon atom (C5) is shorter than the van der Waals separation, *i.e.*, 2.918 Å [41]. In addition, the CO₂ molecule deviates little from linearity (average 175°), indicating its somewhat limited interaction with the already-complexed cryptate. The PC formation was found to be enthalpically favorable by 5.4 kcal/mol. Also, as expected, the association led to loss in entropy of 39.4 kcal/mol -K.

Step (4&5): Structural rearrangement and formation of bicarbonate species

In forming the PC, the reaction proceeds through a four-centred transition state (TS2), cf. Figs. 2 and 3; this transition state represents a nucleophilic attack of metal-bound hydroxide at the electrophilic carbon of CO₂ with concurrent formation of a new bond between the H atom of the Zn-bound hydroxide and the O₃ atom of CO₂, leading to proton transfer. Meanwhile, O6 forms a new bond with Zn2. The immediate product from TS2 is the bicarbonate-cryptate (Crypt-CO₃H). The transferred proton is sandwiched between O3 and O4 atoms with O3-H and O4-H distances of 1.240 and 1.326 Å, respectively, and a forming angle (O3-H-O4) equal to 108.7° (as illustrated in Fig. 3a). However, the bending of the O-
C-O moiety (126.1°) at TS2 allows a lone pair on the methoxy ligand to point towards an empty sp² orbital of the carbon atom of the CO₂ molecule. It is observed that the group NPA charge on the bound CO₂ fragment in TS2 and Crypt-CO₃H are -0.756 and -0.583 e respectively. This implies that the charge transfer from dinuclear cryptate to CO₂ molecule removes the inactivity of the latter. The NPA charges of O₄, C₅ and O₆ of the bound CO₂ included in TS2 are 0.786, -0.756 and -0.783, respectively, while those of Crypt-CO₃H are 1.057, -0.824 and -0.816, respectively. By comparison the calculated atomic charge of the free CO₂ atoms (C= 1.014 e, O= -0.507e) at the same level with those of the bound CO₂ in TS2, it is observed that the atomic negative charges of C and O atoms increased greatly by – approximately 0.228 and -0.263 e, respectively.

The optimized geometry of dinuclear zinc carbonato-cryptate, having fixed one CO₂ molecule in the cryptate, is depicted in Fig. 2. The included bicarbonate ion between the two zinc cations adopts a Syn-anti η₁,η₁ coordination mode forming bis-pentacoordinate around Zn-centers. The O₆ atom lies in the plane of the two zinc centers while the rest of carbonate unit lies above it. This reduces the Zn₁…Zn₂ distance to 5.914 Å. It is clear that the effect of the inclusion of the CO₃²⁻ ion affects the Zn₁…Zn₂ distance differently than that of a HCO₃⁻ ion (with the same coordination bond) as the inclusion of a CO₃²⁻ ion reduces Zn₁…Zn₂ distance to approximately 5.163 Å [6]. This supports the columbic interaction between the Zn cations and the encapsulated anion as mentioned before. However, the lengths of Zn₁-O₃ and Zn₂-O₆ bonds of Crypt-CO₃H are 2.071 and 2.045 Å, respectively, which are very close to the experimentally-determined bond distances, 1.979 and 1.989 Å, respectively. Also, the structural features of the encapsulated triangular HCO₃⁻ anion are very similar to those of the free species (calculated at the same level). For example C₄-O₃, C₄-O₆ and C₄-O₅ bond distances of 1.252, 1.263 and 1.373 Å, respectively, are close to those of the free HCO₃⁻ ion, namely 1.242, 1.258 and 1.447, respectively. The calculations indicate that the formation of the bicarbonate species is highly exergonic (-29.4 kcal/mol with respect to PC). Crypt-CO₃H is formed by overcoming the TS2 barrier. It is found that the barrier is very small, and therefore is a highly kinetically favored.

Step (6&7): MeOH attack and formation of methoxide carbonate species

The final step is the attack of MeOH on the bicarbonate species through a four-centred transition state (TS3), cf. Figs. 2 and 3. This transition state represents a nucleophilic attack
of the hydroxyl oxygen atom of MeOH on the C5 atom of the bicarbonate fragment, with the concurrent formation of a new bond between the H atom of MeOH and one O4 atom of the bicarbonate fragment (subsequently leading to loss of a water molecule to form methoxy-carbonato species (\textit{Crypt-CO}_3\textit{Me}). For the four-membered \textit{TS3} fragment, O4-H and O7-H distances are 1.161 and 1.245 Å, respectively, while the O4-H-O7 angle is 145°. Long C5-O4 and C5-O7 distances are observed, namely 1.940 and 1.996 Å, respectively. In the conversion from \textit{TS3} into \textit{Crypt-CO}_3\textit{Me}, the some arrangement occurred. For example, on going from \textit{TS3} into \textit{Crypt-CO}_3\textit{Me}, the C5-O3-Zn1 angle decreased from 140.1° to 127.5°, while the C5-O6-Zn2 angle increased from 136.3° to 150.8°. Meanwhile, Zn1-O3 and Zn2-O6 bond distances reduced by 0.093 and 0.088 Å, respectively.

The second pathway

In contrast with the first pathway discussed above, there exists another possible mechanism. This involves four steps: (1) the interaction between the \textit{Crypt} species with one MeOH molecule from the solvation medium to form the first transition state species (\textit{TS1'}) (2) subsequent deprotonation of the complexed MeOH species to form the methoxy species (\textit{Crypt-OMe}), (3) the attack of the \textit{Crypt-OMe} species by a proximate CO2 molecule from the atmosphere to form the second transition state complex (\textit{TS2'}), and (4) the formation of methoxide carbonate species due to the rearrangement of the now attached CO2 molecule (\textit{Crypt-CO}_3\textit{Me}). The energetics of inclusion a CO2 molecule into the Zn-OCH3 bond of the methoxy species to yield the methoxycarbonato-cryptate is depicted in Fig 5.

Step (1&2): attack of one MeOH molecule on one of Zn ions and deprotonation

The first step is the attack of one MeOH molecule on the Zn1 cation to form a penta-coordinated centre. The optimized structure of this methoxy species (\textit{Crypt-OMe}) is presented in Fig. 4. As shown the methoxy species lies above the plane formed by dinuclear zinc centers, where Zn1-O3-C is 120.3° and the Zn1-O3 distance is 1.910 Å. It is worth
mentioning that the Zn1…Zn2 distance is greatly affected by the formation of the methoxy species. Although the Zn…Zn distance of the Crypt species is 6.841 Å, it reduces to 6.307 Å in TS1’, with a further reduction in Crypt-OMe to 6.162 Å. This notable reduction is due to the columbic attraction as a result of the proximity of the water’s oxygen atom to the activated species. This can been seen from natural population analysis before and after forming the Crypt-OMe, wherein the charges on Zn9 and Zn10 of Crypt are 1.415 e and 1.420 e, respectively, and they decrease to 1.358 and 1.394 e, respectively, after the inclusion of the –OCH3 group in the dinuclear zinc pairing. However, the formation of the methoxy species is relatively endergonic by 37.5 kcal/mol, which is 2.1 kcal/mol less than for Crypt-OH. Thus, the formation of the former is more thermodynamically favorable step than that of the latter. The relative activation barrier to the transition state TS1’ is 69.6 kcal/mol, which is less by 2.5 kcal/mol than TS1, thus the formation of the methoxy species is slightly more kinetically accessible than the formation of the hydroxyl species.

Step (3&4): Activation of CO2 and formation of methoxide carbonate species

Once the methoxy species is formed, it attacks one CO2 molecule to generate a four-centred transition state TS2’, where the CO2 molecule interacts with both the Zn1 center and the oxygen atom of the O-CH3 group. Through it, a carbonate bridge is formed where one bond is broken and three new bonds formed. The O4 atom of the free CO2 interacts with Zn1 atom to form a Zn1-O4 bond (2.230 Å) with a concurrent C5-O4 bond formation (1.425 Å). Meanwhile, the Zn1-O3 bond elongates from 1.910 to, a considerable, 2.469 Å. These structural arrangements are sufficient to bring the Zn2 atom close to the O6 atom; to a distance of 2.226 Å, resulting in a methoxycarbonate bridge formation. In this case, the insertion mechanism is not needed as O6 is close to Zn2. For the insertion mechanism, the C-O bond of CO2 interacts firstly with the metal-oxygen bond then the bound CO2 rotates to direct the unbound oxygen to the reaction position [29]. In TS2’, the C5-O4 distance is closer to the equilibrium distance (by 0.058 Å) than the Zn1-O4 and Zn2-O6 distances (by 0.169 and 0.189 Å). This geometrical feature shows that the driving force for CO2 activation arises from the interaction with the methoxy ligand. However, the dihedral angle of Zn1-O4-O6-Zn2 is 173.0° indicating that the MeCO3– fragment deviates slightly from the plane formed by the two zinc centers.
It is observed that the group NPA charge on the bound CO\(_2\) fragment in TS2’ and Crypt-CO\(_3\)Me are -0.754 and -0.599 e respectively, indicating the role that charge transfer plays a significant role in the activation of CO\(_2\). For example, O4, C5 and O6 of the bound CO\(_2\) included in TS2’ are 0.786, -0.756 and -0.784 e, respectively, while those of Crypt-CO\(_3\)Me are 1.033, -0.812 and -0.820 e, respectively. By comparison the calculated atomic charge of the free CO\(_2\) atoms (C= 1.014 e, O= -0.507e) at the same level with those of the bound CO\(_2\) in TS2’, it is observed that the atomic negative charges of C and O atoms increased greatly by approximately -0.228 and -0.309 e, respectively. However, based on our calculation, this step is exergonic by over 52.0 kcal/mol (Fig.6), indicating that the activation of CO\(_2\) is energetically quite stable. The transition state (TS2’) is a significant barrier between Crypt-OMe and Crypt-CO\(_3\)Me. The corresponding relative activation barrier is equal to 62.5 kcal/mol, characteristic of a kinetically accessible step. The coordination mode of the CO3Me’ fragment in Crypt-CO\(_3\)Me cavity adopts the same mode as that of Crypt-CO\(_3\)H molecule. Interaction of the CO\(_2\) molecule with the Zn-OMe bond of Crypt-OMe molecule reduces Zn1…Zn2 greatly by 0.295 Å.

An inspection of the free energy profiles for the pathways investigated suggests that both pathways are possible, with the mechanism proposed by Chen et al. [5] the more likely. We believe that this agrees with the experimental findings obtained by J. Nelson and co-workers [4] as well as with Chen et al. [5]. The former obtained a crystal product of Crypt-CO\(_3\)Me starting from the Crypt (solvating the Crypt species in a mixture of methanol-acetonitrile with one equivalent of preformed carbonate anion under anaerobic conditions) or Crypt-OMe species (starting from the Crypt-OMe species and reacting under atmospheric conditions). Meanwhile, as already mentioned previously, Chen et al. [5] could react dinuclear copper cryptate in acidic conditions with methanol to form Crypt-CO\(_3\)Me. However, Chen et al. could not react CO\(_2\) with the methoxy species to form the methylcarbonate; evidenced by the attempt to react it with the mononuclear complex [Cu(tren)(H\(_2\)O)][ClO\(_4\)]\(_2\) CH\(_3\)OH/CH\(_3\)CN (1:1), which did not generate the methylcarbonate species, even when NaOCH\(_3\) was added and the solution left in the open for three days. Taken as a whole, that is previously reported experiments and the computational results presented here, we suggest that both mechanisms offer feasible routes to CO\(_2\) fixation with that reported by Chen et al. [5] being, on the balance, more likely.

Conclusions
We have investigated two possible reaction mechanisms for the activation of CO$_2$ catalysed by a dizinc cryptate. The potential energy profiles were calculated using DFT methods in vacuo and in methanol. Based on these DFT computations, we conclude that both mechanisms can be considered as representative models for CO$_2$ activation in dinuclear cryptate using thermodynamics and kinetic considerations. We can speculate that both pathways can be used to model similar other dinuclear cryptates using different metals like Co$^{2+}$, Ni$^{2+}$, Cu$^{2+}$. However, on balance, the mechanism proposed by Chen et al. offers the pathway with the least free energy penalty.

Acknowledgements

The authors acknowledge useful discussion with Dr. Grace Morgan. This material is based upon work supported by Science Foundation Ireland (SFI) under Grant No. [07/SRC/B1160]. The authors acknowledge the support of industry partners to the Cluster: SolarPrint, Celtic Catalysts, Glantreo, Mainstream Renewable Power, Kingspan and SSE Renewables. We also thank SFI and the Irish Centre for High-End Computing for the provision of high-performance computing facilities.
References

Figure Captions
Fig. 1. Two suggested reaction pathways (I and II) for activation of atmospheric CO$_2$ fixation into dinuclear cryptate cavity. The labeling of atoms is illustrated on the individual structures in the figure.

Fig. 2 Optimized structures of the reactant, intermediates, transition states and the product in the first pathway. The atomic labeling of key atoms and bond distances in Å and angles in degree are illustrated on the structures.

Fig. 3 (a) fragment of TS2 (b) side view of fragment of TS3 (c) top view of fragment of TS3 in the first pathway (bond distances in Å and angles in degree).

Fig. 4 Optimized structures of the reactant, intermediates, transition states and the product in the second pathway. The atomic labeling of key atoms and bond distances in Å and angles in degree are illustrated on the structures.

Fig. 5. Calculated Gibbs free energy (kcal/mol) profile for the first pathway including the solvation. The values refer to relative Gibbs energy w.r.t. the starting reactants.

Fig 6. Calculated Gibbs free energy (kcal/mol) profile for the second pathway including the solvation. The values refer to relative Gibbs energy w.r.t. the starting reactants.
Density functional theory (DFT) is used to model CO$_2$ fixation and reaction (with methanol) in the cavity of a dinuclear zinc (II) octa-azacryptate (shown here). Two mechanisms were considered and the corresponding energy profiles determined.
Fig. 1
Fig. 2
Fig. 3