<table>
<thead>
<tr>
<th>Title</th>
<th>The importance of tetrahedral intermediate formation in the catalytic mechanism of the serine proteases chymotrypsin and subtilisin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors(s)</td>
<td>Petrillo, Teodolinda; O'Donohoe, Catrina A.; Howe, Nicole; Malthouse, J.Paul G.</td>
</tr>
<tr>
<td>Publication date</td>
<td>2012-07-05</td>
</tr>
<tr>
<td>Publication information</td>
<td>Biochemistry, 51 (31): 6164-6170</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Chemical Society</td>
</tr>
<tr>
<td>Item record/more information</td>
<td>http://hdl.handle.net/10197/3872</td>
</tr>
<tr>
<td>Publisher's version (DOI)</td>
<td>10.1021/bi300688k</td>
</tr>
</tbody>
</table>
The importance of tetrahedral intermediate formation in the catalytic mechanism of the serine proteases chymotrypsin and subtilisin†

Teodolinda Petrillo, Catrina A. O'Donohoe, Nicole Howe, and J.Paul.G. Malthouse*

UCD School of Biomolecular and Biomedical Science, UCD Centre for Synthesis and Chemical Biology, SEC Strategic Research Cluster, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.

AUTHOR EMAIL ADDRESS: J.Paul.G.Malthouse@ucd.ie

RECEIVED DATE (to be automatically inserted after your manuscript is accepted if required according to the journal that you are submitting your paper to)

TITLE RUNNING HEAD: Tetrahedral intermediate stabilization in the serine proteases

Abbreviations and Textual Footnotes

†This work was supported by a grant from the Programme for Research in Third-Level Institutions (PRTLI-4). Grant nos. 055637/Z/98 from the Wellcome Trust was used to purchase the NMR spectrometer used in these studies and funding from Science Foundation Ireland was used to upgrade the NMR machine. We thank University College Dublin for research demonstratorships for Catriona O'Donohoe and Nicole Howe.

*To whom correspondence should be addressed. Tel. +353 1 7166872; Fax: +353 1 2837211; E-mail: J.Paul.G.Malthouse@ucd.ie

†The Abbreviation used is: Z, benzyloxycarbonyl.
ABSTRACT: Two new inhibitors have synthesized where the terminal α-carboxyl groups of Z-Ala-Ala-Phe-COOH and Z-Ala-Pro-Phe-COOH have been replaced by a proton to give Z-Ala-Ala-Phe-H and Z-Ala-Pro-Phe-H respectively. Using these inhibitors we estimate that for α-chymotrypsin and subtilisin Carlsberg the terminal carboxylate group decreases inhibitor binding 3-4 fold while a glyoxal group increases binding by 500-2000 fold. We show that at pH 7.2 the effective molarity of the catalytic hydroxyl group of the active site serine is 41,000-229,000 and 101,000 to159,000 for α-chymotrypsin and subtilisin Carlsberg respectively. It is estimated that oxyanion stabilisation and the increased effective molarity of the catalytic serine hydroxyl group can account for the catalytic efficiency of the reaction. We argue that substrate binding induces the formation of a strong hydrogen bond or low barrier hydrogen bond between histidine-57 and aspartate-102 that increases the pKa of the active site histidine enabling it to be an effective general base catalyst for the formation of the tetrahedral intermediate and increasing the effective molarity of the catalytic hydroxyl group of serine-195. A catalytic mechanism for acyl intermediate formation in the serine proteases is proposed.
The catalytic residues serine-195 and histidine-57 of chymotrypsin were first identified by chemical modification studies \{Ong, 1965 #601; Schaffer, 1953 #1432; Schoellmann, 1963 #614\}. The third residue of the catalytic triad aspartate-102 was identified by X-ray crystallographic studies \{Blow, 1969 #1434\}. Kinetic experiments using a highly reactive p-nitrophenol substrate showed a rapid release of the p-nitrophenol product stoichiometric with enzyme which was followed by a slow turnover the substrate \{Hartley, 1954 #2296\}. This provided the first evidence for catalysis proceeding via an acyl intermediate. The minimal kinetic scheme for catalysis involves formation of a Michaelis-Menten complex (ES), an acyl intermediate (ES') and first product (P₁), hydrolysis of the acyl intermediate to give the free enzyme (E) and second product (P₂). The formation and breakdown of the acyl intermediate is thought to proceed via a tetrahedral intermediate. It is generally accepted that the rate limiting step in catalysis is either the rate of breakdown or the rate of formation of the tetrahedral intermediate involved in acyl intermediate formation or breakdown. Therefore the catalytic efficiency of the serine proteases is expected to depend on their ability to catalyse tetrahedral intermediate formation and breakdown. One way they can do this is by transition state stabilisation \{Wolfenden, 1976 #1974\} of the tetrahedral intermediate. Therefore to understand catalysis we should study the transition state stabilisation of the tetrahedral intermediate. However, it is not feasible to study such tetrahedral intermediates because they do not accumulate during catalysis with peptide substrates \{Fastrez, 1973 #2191\}. Inhibitors which are able to react with chymotrypsin to form transition state analogues mimicking the catalytic tetrahedral intermediate offer a practical method for studying tetrahedral intermediate stabilisation in the serine proteases. In this study we use peptide glyoxal inhibitors to provide insights into how the serine proteases promote tetrahedral intermediate formation.

Specific substrate derived peptide glyoxals have been shown to be extremely potent competitive inhibitors of the serine proteases chymotrypsin \{Durdjevic-Pahl, 2002 #922; Spink, 2007 #1991; Walker, 1993 #891\} and subtilisin \{Durdjevic-Pahl, 2005 #1442; Howe, 2009 #2063\}. Using \(^{18}\)O and \(^2\)H isotope shifts it has been shown that the active site serine hydroxyl group forms a hemiketal with the glyoxal keto group.
{Spink, 2007 #1997}. Therefore the glyoxal keto carbon should be in the same position as the peptide carbon of the hydrolysed peptide bond of an analogous substrate. Also the hemiketal that is formed when the catalytic serine hydroxyl group reacts with the keto carbon of the glyoxal should be a good analogue of the tetrahedral intermediate formed during catalysis. The resonance stabilisation of the peptide bond is lost on formation of catalytic tetrahedral intermediates from peptide substrates. This makes tetrahedral intermediate formation energetically unfavourable and so the amount of tetrahedral intermediate formed during catalysis will be extremely small {Fastrez, 1983 #2124}. Therefore it is not possible study the tetrahedral intermediates formed during catalysis by techniques such as NMR {Malthouse, 2007 #1989;Malthouse, 1986 #597}. However, the keto-carbon of glyoxal inhibitors readily form tetrahedral adducts with both chymotrypsin {Djurdjevic-Pahl, 2002 #922;Spink, 2007 #1991} and subtilisin {Djurdjevic-Pahl, 2005 #1442;Howe, 2009 #2063}. Oxyanion formation can be followed by 13C-NMR {Finucane, 1992 #809;Malthouse, 1985 #825} and this has made it possible to quantify oxyanion stabilisation in both chymotrypsin- and subtilisin-glyoxal inhibitor complexes {Djurdjevic-Pahl, 2002 #922;Spink, 2007 #1991;Djurdjevic-Pahl, 2005 #1442;Howe, 2009 #2063}. However, it was not possible to quantify the role of hemiketal formation in glyoxal inhibitor binding. This is because in addition to an inhibitor glyoxal group forming a hemiketal with the active site serine hydroxyl group its peptide chain can also bind in the secondary subsites S$_1$S$_2$S$_3$S$_4$. In order to estimate how these two processes contribute to inhibitor binding we have studied the binding of two derivatives of the N-protected tripeptides Z-Ala-Ala-Phe-COOH and Z-Ala-Pro-Phe-COOH. The glyoxal derivatives were formed by converting the peptide carboxyl group to a glyoxal group and the Z-Ala-Ala-Phe-H and Z-Ala-Pro-Phe-H derivatives were formed replacing the peptide carboxyl group with a hydrogen atom. This has also allowed us to determine how the C-terminal α-carboxylate group of the N-protected tripeptides contribute to binding. The mechanistic significance of these results is discussed.

EXPERIMENTAL PROCEDURES
Materials. All materials were obtained from Sigma-Aldrich Chemical Co., Gillingham, Dorset, U.K.

Inhibitor Synthesis. The peptide derived glyoxal inhibitors Z-Ala-Pro-Phe-COCHO and Z-Ala-Ala-Phe-COCHO were synthesised as described by Djurdjevic-Pahl et al. {Djurdjevic-Pahl, 2002 #922} and Cosgrove et al. {Cosgrove, 2007 #1992}. Z-Ala-Pro-Phe-H and Z-Ala-Ala-Phe-H were synthesised by coupling 2-Phenethylamine to either Z-Ala-Ala or Z-Ala-Pro as required, using 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDCI·HCl) as a coupling reagent {Carpino, 1993 #2196; Sheehan, 1973 #902}.

NMR spectra of Z-Ala-Ala-Phe-H and Z-Ala-Pro-Phe-H. 13C-NMR analysis of Z-Ala-Ala-Phe-H gave the following data (75.475 MHz, d_6-DMSO) δ: 18.11 (1C, CH$_3$), 18.49 (1C, CH$_3$), 35.01 (1C, C$_6$H$_2$CH$_2$), 40.14 (1C, C$_6$H$_5$CH$_2$CH$_2$), 48.09 (1C, CH$_3$), 50.06 (1C, CH$_3$), 65.37 (1C, O-C$_2$H$_5$Ph), 126.08-128.68 (10C, CH=CH), 137.02-139.33 (2C, CH=CH=), 155.74 (1C, O-CO-NH), 171.92-172.00 (2C, CONH). 13C-NMR analysis of Z-Ala-Pro-Phe-H gave the following data (Trans form (83.5%). 13C NMR ([2H$_6$]DMSO) δ: 16.85 (1C, CH$_3$), 24.41 (1C, CHCH$_2$CH$_2$CH$_2$), 29.23 (1C, CHCH$_2$CH$_2$CH$_2$), 35.13 (1C, C$_6$H$_5$CH$_2$CH$_2$), 46.57 (1C, CHCH$_2$CH$_2$CH$_2$), 48.15 (1C, CH$_3$), 40.20 (1C, C$_6$H$_5$CH$_2$CH$_2$), 59.65 (1C, CHCH$_2$CH$_2$CH$_2$), 65.34 (1C, C$_6$H$_5$CH$_2$), 126.02-128.68 (10C, CH=CH), 137.07-139.45 (2C, CH=CH=), 155.69 (1C, O-CO–NH), 170.84 and 171.43 (2C, CO–NH). The amount of the cis form present (16.5%) was determined by quantifying the signals from the trans β (29.2 ppm) and γ (24.4 ppm) proline carbons and the cis β (31.31 ppm) and cis γ (21.62 ppm) carbons.

Enzyme solutions. α-chymotrypsin and subtilisin Carlsberg were obtained from Sigma as crystallized and lyophilized powders. The amounts of fully active chymotrypsin (83%) and subtilisin Carlsberg (45-65%) and subtilisin BPN (73%) were determined as described by Finucane et al., {Finucane, 1989 #644} and O'Connell et al. {O'Connell, 1995 #837}.

Inhibition of chymotrypsin and subtilisin Carlsberg by Z-Ala-Ala-Phe-COOH and Z-Ala-Ala-H. The inhibition of the chymotrypsin catalysed hydrolysis of suc-Phe-pNA or suc-Ala-Ala-Pro-Phe-pNA was studied at 25°C in 3 ml cuvettes containing 0.1M buffers (pHs 7.1-7.3 (potassium phosphate), 3.2 (sodium formate) and 10.6 (potassium carbonate)) and 3.3% (v/v) dimethylsulphoxide. The initial rate of
hydrolysis of suc-Phe-pNA (pHs 7.1-7.3 & pH 10.6) or suc-Ala-Ala-Pro-Phe-pNA (pH 3.2) was followed by the measuring the release of p-nitroaniline (E\textsubscript{410} = 8800 M-1 cm-1 \cite{Erlanger,1961}) over a 5-15 minute period. The pH in the reaction mixture was determined. Stock solutions of substrate and inhibitor were dissolved in dimethyl sulphoxide. The same procedure was used with subtilisin except that the substrate suc-Ala-Ala-Pro-Phe-pNA was used.

\[K_i \text{ values were estimated when } [S_0] << K_M. \] Therefore, the equation for competitive inhibition \[\frac{d[P]}{dt} = k_{cat} \times [E] \times [S] / ([S] + K_M \times (1 + [I]/K_i)) \] reduces to \[\frac{d[P]}{dt} = (k_{cat}/K_M) \times [E] \times [S] \times K_i / ([I] + K_i). \] \(K_i \) values were estimated by using a nonlinear least squares regression program \cite{Malthouse,1985}.

Results

The role of the \(\alpha \)-carboxylate group in peptide binding by \(\alpha \)-chymotrypsin and subtilisin Carlsberg. The \(K_i \) values for inhibition of \(\alpha \)-chymotrypsin by Z-Ala-Ala-Phe-COOH (Structure 1B) and Z-Ala-Pro-Phe-H (Structures 1C) were determined by determining how they inhibited the chymotrypsin catalysed hydrolysis of suc-Phe-pNA when the substrate concentration was non-saturating (Figure 1). The \(K_i \) values with subtilisin were measured in the same way except that suc-Ala-Ala-Pro-Phe-pNA was used as a substrate.

Replacing the \(\alpha \)-carboxyl group of Z-Ala-Ala-Phe-COOH and Z-Ala-Pro-Phe-COOH with a hydrogen atom to give Z-Ala-Ala-Phe-H and Z-Ala-Pro-Phe-H (Structures 1C) led to 3-4 fold tighter binding at pH 7 (Table 1). Therefore the presence of an \(\alpha \)-carboxylate group at pH 7 decreases the effectiveness of peptide binding. This result is expected because for catalytic efficiency we would expect that the enzyme will bind the peptide products of catalyses less effectively than the parent peptide of the substrate.

Therefore when \(\alpha \)-chymotrypsin and subtilisin catalyse the hydrolysis of the peptide substrates the \(\alpha \)-carboxylate of the peptide product will help promote its disassociation from the enzyme. This shows that the \(\alpha \)-carboxylate group does not make a positive contribution to binding in \(\alpha \)-chymotrypsin and subtilisin.
Binding of glyoxal inhibitors. In contrast to the results above, when the glyoxal groups of Z-Ala-Ala-Phe-COCHO or Z-Ala-Pro-Phe-COCHO (Structures 1A) were replaced by a hydrogen atom to give Z-Ala-Ala-Phe-H and Z-Ala-Pro-Phe-H respectively (Structures 1C), the K_i values of the inhibitors were ~3 orders of magnitude larger than those of the corresponding glyoxal inhibitor (Table 1).

NMR studies have shown that at pH ~7 the active site catalytic serine residue of both chymotrypsin {Djurdjevic-Pahl, 2002 #922;Spink, 2007 #1991;Spink, 2007 #1997} and subtilisin {Djurdjevic-Pahl, 2005 #1442;Howe, 2009 #2063} form negatively charged hemiketals with the glyoxal inhibitors Z-Ala-Ala-Phe-COCHO and Z-Ala-Pro-Phe-COCHO (Structure 2). With subtilisin Carlsberg and Z-Ala-Ala-Phe-COCHO an equal amount of the fully hydrated form of Structure 2 is also formed {Howe, 2009 #2063}. Therefore while the negatively charged carboxylate group decreases binding efficiency the formation of a negatively charged hemiketal with a glyoxal inhibitor greatly facilitates binding. This tight binding demonstrates that hemiketal formation is energetically favoured and confirms that the negatively charge hemiketal is a good transition state analogue of the catalytic tetrahedral intermediate.

Scheme 1 represents the minimal scheme that we have used to analyse hemiketal formation when glyoxal inhibitors interact with chymotrypsin or subtilisin. In this model K_{H1} is the hydration constant for the glyoxal inhibitor ($K_{H1} = \text{Hydrate/keto group} = [GH]/[G]$), K_s is the dissociation constant ($K_s = [E][G]/[EG]$) of the non-covalent enzyme-glyoxal inhibitor complex(EG) and $K_{HK(\text{obs})}$ is the observed equilibrium constant for hemiketal formation ($K_{HK(\text{obs})} = \text{[Hemiketal]}/[EG]$).

The observed binding constant, $K_i(\text{obs}) = [E]/([G]+[GH])/([EG]+[HEMIKETAL])$.

Therefore:

$$K_i(\text{obs}) = K_s(1+K_{H1(\text{obs})})(1+K_{HK(\text{obs})})$$ \hspace{1cm} (1)

$$K_{HK(\text{obs})} = (K_s(1+K_{H1(\text{obs})})-K_i(\text{obs})) / K_i(\text{obs})$$ \hspace{1cm} (2)
The hydration constant \((K_{H1}^{\text{obs}})\) of the keto carbon of the glyoxal group of Z-Ala-Ala-Phe-COCHO was estimated by quantitative \(^{13}\text{C}\)-NMR to be \(1.58 \pm 0.05\). It was assumed that the \(K_{i}^{\text{obs}}\) value for Z-Ala-Ala-Phe-H was a good approximation for \(K_{s}\), the disassociation constant for the non-covalent enzyme-glyoxal inhibitor complex (EG) in Scheme 1.

Therefore using the values of \(K_{i}^{\text{obs}}\) for Z-Ala-Ala-Phe-COCHO and Z-Ala-Ala-Phe-H respectively (Table 2) we calculated the \(K_{H1}^{\text{obs}}\) values for the glyoxal inhibitors (Table 2). For chymotrypsin and subtilisin the \(K_{H1}^{\text{obs}}\) values were 1170 and 2870 respectively for ZAAF-COCHO at pH 7 (Table 2).

The hydration constant \((K_{H1}^{\text{obs}})\) of the keto carbon of the glyoxal group of Z-Ala-Pro-Phe-COCHO is \(1.28 \pm 0.05\) \cite{Spink, 2007 #1997}. Therefore we could estimate \(K_{H1}^{\text{obs}}\) for Z-Ala-Pro-Phe-COCHO inhibiting both chymotrypsin and subtilisin. In this case even larger values of \(K_{H1}^{\text{obs}}\) were obtained for chymotrypsin and subtilisin Carlsberg (Table 2). However, the hydration constant \((K_{H1}^{\text{obs}})\) is not a true thermodynamic constant and must be divided by the water concentration to give the correct thermodynamic association constant \((K_{H1})\). For the hydrates of Z-Ala-Pro-Phe-COCHO and Z-Ala-Ala-Phe-COCHO the values of \(K_{H1}\) were \(0.0230\text{ M}^{-1}\) and \(0.0284\text{ M}^{-1}\) respectively (Table 2).

The effective molarity of the catalytic serine in \(\alpha\)-chymotrypsin and subtilisin. Hemiketal formation within the enzyme inhibitor complex is a unimolecular process \((K_{H1}^{\text{obs}}) = [\text{Hemiketal}]/[\text{EG}]\) while the hydration of the unbound glyoxal inhibitor is a bimolecular process involving the reaction of water with the glyoxal group \((K_{H1} = [\text{Hemiketal}]/[\text{Glyoxal}][\text{H}_2\text{O}]\). Therefore the ratio \(K_{H1}^{\text{obs}} / K_{H1}\) gives the molarity of water required to be as effective as the the enzyme's serine hydroxyl group in hemiketal formation. At pH 7.2 with Z-Ala-Ala-Phe-COCHO the effective concentration of the active site serine hydroxyl group of chymotrypsin relative to a water hydroxyl group is \(1170/0.0284 = 41,200\text{ M}\). For subtilisin Carlsberg at pH 7.1 the effective concentration is even larger at \(2870/0.0284 = 101,000\text{ M}\). These correspond to stabilisations of 26.3 kJ/Mole and 28.6 kJ/mole for Z-Ala-Ala-Phe-COCHO with chymotrypsin and subtilisin Carlsberg respectively (Table 2).
With Z-Ala-Pro-Phe-COCHO at pH 7.2 the effective concentration of the active site serine hydroxyl group relative to a water hydroxyl group is larger at 229,000 M for chymotrypsin and 159,000 M for subtilisin Carlsberg. These correspond to stabilisations of 30.6 kJ/Mole and 29.7 kJ/Mole for Z-Ala-Pro-Phe-COCHO with chymotrypsin and subtilisin Carlsberg respectively (Table 2). For subtilisin BPN the effective concentration of the active site serine hydroxyl group is ~20 times lower than in Subtilisin Carlsberg (Table 2).

The effect of pH on hemiketal formation. From pH 7.2 to pH 3.2 there is a ~17 fold decrease in binding of Z-Ala-Pro-Phe-COCHO and a similar ~5 fold decrease in binding of Z-Ala-Pro-Phe-H (Table 3). This demonstrates that protonation of the hemiketal oxyanion only decreases binding by a small amount (~3 fold). The fact that the the Kₐ values for both Z-Ala-Pro-Phe-COCHO and Z-Ala-Pro-Phe-H increase from pH 7.2 to pH 10.6 by similar factors of ~6 and ~3 (Table 3) supports the earlier suggestion {Spink, 2007 #1991} that this is due to a conformational change resulting from the ionization of the ion pair between isoleucine-16 and aspartate-194 in chymotrypsin.

How the effective molarity of the catalytic serine and oxyanion stabilization contribute to catalysis. During catalysis by chymotrypsin formation of the acyl intermediate is expected to proceed via a tetrahedral intermediate (Scheme 3) analogous to the hemiketal formed when Z-Ala-Ala-Phe-COCHO or Z-Ala-Pro-Phe-COCHO react with chymotrypsin. It is therefore reasonable to assume that both tetrahedral species will be formed and stabilised in the same way with the active site histidine acting as a general base catalyst for tetrahedral intermediate formation and a general acid catalyst for tetrahedral intermediate breakdown (Scheme 3). Therefore we would expect that the enzyme catalysed formation of the tetrahedral intermediate would be ~100,000 times more effective than the uncatalysed reaction in water (Table 2).

It has been determined that the rate of hydrolysis of a peptide bond in water at 25°C and pH 7 is 3 x 10⁻⁹ s⁻¹ {Kahne, 1988 #951}. In the enzyme catalysed reaction the greater effective molarity of the serine hydroxyl group should increase this rate by at least 100,000 to a value of 3 x 10⁻⁵ s⁻¹. This rate is
still considerably slower than the k_{cat} values usually observed with chymotrypsin and similar substrates such as Ac-Ala-Pro-Phe-NH$_2$ {Bauer, 1976 #1938} where k_{cat} is 2.3 s$^{-1}$ at pH 8. Therefore k_{cat} would be expected to be \sim1 s$^{-1}$ at pH 7 as k_{cat} depends on a pK$_a$ of \sim7.

However, we have also shown that in chymotrypsin {Djurdjevic-Pahl, 2002 #922;Spink, 2007 #1991} and subtilisin {Djurdjevic-Pahl, 2005 #1442;Howe, 2009 #2063} the pKa for oxyanion formation by the glyoxal hemiketal is reduced by \sim5 pK$_a$ units. If the catalytic rate is directly proportional to the amount of oxyanion formed then this would increase the catalytic rate from 3×10^{-5} s$^{-1}$ to a value of 3 s$^{-1}$. This is very similar to the expected value of \sim1 s$^{-1}$.

DISCUSSION

It is accepted that for chemical reactions in aqueous solutions reactions proceed via neutral tetrahedral intermediates {Cox, 2011 #2239}. However, it is clear from studies with both reversible {Liang, 1987 #595;Djurdjevic-Pahl, 2002 #922;Djurdjevic-Pahl, 2005 #1442;Howe, 2009 #2063;Malthouse, 2007 #1989;Spink, 2007 #1991} and irreversible inhibitors {Finucane, 1992 #809;Malthouse, 1985 #825;O'Connell, 1995 #837;O'Sullivan, 1999 #913} that the serine proteases preferentially stabilise tetrahedral adducts with a negatively charged oxyanion.

Protonation of the hemiacetal oxyanion and hemiketal oxyanion only had a small effect (an 5-17 fold increase in K_i) on inhibitor binding (Table 3). Therefore the oxyanion and its conjugate acid are bound with similar affinities. Both the oxyanion and its conjugate acid should be hydrogen bonded within the oxyanion hole {Henderson, 1970 #584;Kraut, 1977 #593}. Tighter binding of the negatively charged oxyanion relative to its neutral conjugate acid is expected because hydrogen bonds involving charged groups are stronger than those involving uncharged groups {Fersht, 1987 #576;Fersht, 1985 #575}. However, it has been shown that in glyoxal inhibitor complexes the oxyanion pK$_a$ is reduced by \sim5 pK$_a$ units {Djurdjevic-Pahl, 2002 #922;Djurdjevic-Pahl, 2005 #1442;Howe, 2009 #2063;Spink, 2007 #1991}. It is clear that this large decrease in pK$_a$ cannot be attributed to better binding of the oxyanion but must reflect destabilisation of its conjugate acid.
We have shown that the binding glyoxal inhibitors to chymotrypsin \cite{Spink,2007} and subtilisin \cite{Howe,2009} raises the pKₐ of the active site histidine to a value > 11. This led to the suggestion \cite{Howe,2009,Spink,2007} that this increase in pKₐ would allow the positively charged imidazolium ring of the active site histidine to lower the hemiketal oxyanion pKₐ and also lower the pKₐ of the active site serine hydroxyl increasing its nucleophilicity. The hydroxide ion is solvated in water and so not very reactive \cite{Cox,2011}. However in non-aqueous solvents its reactivity may be increased by as much as 14 orders of magnitude \cite{Dolman,1967}. Therefore in the enzyme-inhibitor complex the entropic advantage of fixing the reactive groups within the Michaelis complex \cite{Jencks,1981} combined with desolvation, a lower pKₐ for the active site serine hydroxyl and general base catalysis by the imidazole group of histidine-57 can easily explain the effective concentration of ~100,000 M for the active site serine hydroxyl group relative to the hydroxyl group of water.

Blow first identified the catalytic triad of serine-195, histidine-57 and aspartate-102, with aspartate-102 forming a hydrogen bond to Nδ₁ of histidine-57 \cite{Blow,1969}. His canonical forms are still be being incorrectly quoted as suggesting a neutral aspartate and histidine even though this possiblity was not considered likely by the authors \cite{Blow,1997}. Recently it has been proposed that the catalytic aspartate is protonated in Michaelis Menten complexes \cite{Wahlgren,2011}. However, subsequent studies contradict this as they claim to show that aspartate-102 has a low pKₐ of 1.5 or less which they propose is compatable with the reaction driven ring flip mechanism but not mechanisms which require a strong hydrogen bond between His-57 and Asp-102 \cite{Everill,2012}. However, ¹H-NMR has been used to observe the Nδ₁ proton shared between histidine-57 and aspartate-102 \cite{Robillard,1972,Robillard,1974}. Bachovchin used ¹⁵N enrichment of the Nδ₁ nitrogen of histine-57 to confirm that the NMR signal at 14-18 ppm is due to the Nδ₁ proton of histidine-57 \cite{Bachovchin,1985}. Pioneering studies on peptidyl trifluoromethyl ketone complexes of chymotrypsin showed the presence of a ¹H-NMR signal at 18.7 ppm which was attributed to a hydrogen
strongly hydrogen bonded between His-57 and Asp-102 \{Liang, 1987 #595\}. It was proposed that such proton chemical shifts of ~16-20 ppm show the presence of strong hydrogen bonds called low barrier hydrogen bonds \{Frey, 1994 #578\}. This has been confirmed by D/H fractionation factors and activation energies\{Lin, 1998 #1450\} and also by deuterium\{Cassidy, 2000 #1939\} and tritium\{Westler, 2002 #2298\} isotope shifts in peptidyl trifluoromethyl ketone complexes of chymotrypsin. Therefore a chemical shift of 16-18 ppm for the Nδ1 of histidine-57 shows that histidine-57 is fully protonated and confirms that a strong hydrogen bond exists between aspartate-102 and Nδ1 of histidine-57.

We have shown that in glyoxal inhibitor complexes proton signals at 18.7 and 17.4 ppm can be observed at pHs 3.5 and 10.9 respectively, showing that the pKₐ of the active site histidine has been raised to a value >11 (Scheme 4) on binding the glyoxal inhibitor \{Howe, 2009 #2063;Spink, 2007 #1991\}. The fact that the signal at 18.7 ppm is present at low pH when the oxyanion is present as its conjugate acid shows that the increase in pKₐ must be due to the interaction of aspartate-102 with histidine-57 and not with the oxyanion. However, it has been argued that because aspartate-102 has a low pKₐ a strong hydrogen bond cannot exist between histidine-57 and aspartate-102 \{Everill, 2012 #2294\}. However, as a strong hydrogen bond is formed between the negatively charged carboxylate group and the Nδ1 proton of the positively charged histidine then it will be difficult to protonate the aspartate as this will result in disruption of the low barrier hydrogen bond. Consequently the aspartate is expected to have a low pKₐ <1.5 (Scheme 4) as recently reported \{Everill, 2012 #2294\}. Therefore when inhibitors or substrates are bound to chymotrypsin the zwitterionic species (Structure B in Scheme 4) is the predominant species formed from pH 1.5-11. The strong hydrogen bond between the aspartate and the histidine shows that reaction driven ring flip mechanism is not possible. The fact that the low barrier hydrogen bond is present even when the oxyanion has been protonated suggests that the binding of inhibitors and substrates must increase the pKₐ of histidine-57. This, as our work shows, can increase the effective molarity of the active site hydroxyl group by more than 5 orders of magnitude (Table 2). The catalytic serine is expected to have a pKₐ of ~15 and so the increase in pKₐ of the active site histidine will allow it to enhance the nucleophilicity of the serine hydroxyl group so that it can react at the substrate peptide carbonyl to form a
tetrahedral intermediate. The strengthening of the hydrogen bond between the histidine-57 and aspartate-102 may result from a decrease in dielectric constant due to substrate excluding water from the active site {Finucane, 1992 #809} and or by the induction of steric compression between histidine-57 and aspartate-102 {Lin, 1998 #1452}. Therefore on substrate binding water is excluded from the active site and the pKₐ of the histidine is raised allowing it to abstract the proton from the serine hydroxyl which then reacts with the peptide carbonyl of the substrate to form a tetrahedral intermediate (Scheme 3). A small re-orientation of the imidazole ring {Zhou, 2011 #2292} will then allow histidine-57 to act as a general acid catalyst protonating the nitrogen of the leaving group (Scheme 3) which is expected to have a pKₐ of ~10 {Finucane, 1992 #809; Komiyama, 1979 #1459}. The formation of the acyl intermediate will then complete the first half of the catalytic cycle.
Table 1: Binding of inhibitors to chymotrypsin and subtilisin Carlsberg

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>pH</th>
<th>K_i(obs) (µM)a</th>
<th>$K_{iZAAF-H}$</th>
<th>$K_{iZAAF-COOH}$</th>
<th>$K_{iZAPF-H}$</th>
<th>$K_{iZAPF-COOH}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Chymotrypsin</td>
<td>7.2</td>
<td>166 ± 9</td>
<td>532 ± 50</td>
<td>0.365b</td>
<td>0.31</td>
<td>455</td>
</tr>
<tr>
<td>Subtilisin Carlsberg</td>
<td>7.1</td>
<td>97.6 ± 12.6</td>
<td>419 ± 32</td>
<td>0.0876 ± 0.016</td>
<td>0.23</td>
<td>1110</td>
</tr>
<tr>
<td>ZAPF-H</td>
<td>7.2</td>
<td>77.4 ± 6.4</td>
<td>241 ± 7</td>
<td>0.0335b</td>
<td>0.32</td>
<td>2310</td>
</tr>
<tr>
<td>Subtilisin Carlsberg</td>
<td>7.2</td>
<td>1600 ± 600</td>
<td>ND</td>
<td>1.00 ± 0.03</td>
<td>ND</td>
<td>1600</td>
</tr>
</tbody>
</table>

a Errors are the standard deviations of 3 determinations.

b {Spink, 2007 #1991}

Table 2: The effective molarity of the catalytic serine of the serine proteases when forming hemiketals with glyoxal inhibitors

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>pH</th>
<th>K_i(obs)a, µM</th>
<th>K_{HK}(obs), M$^{-1}$</th>
<th>Effective Molarity, M</th>
<th>ΔG at 25°C, kJ mol$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZAAF-H</td>
<td>7.2</td>
<td>166 ± 9</td>
<td>0.365b</td>
<td>41,200</td>
<td>-26.3</td>
</tr>
<tr>
<td>Subtilisin Carlsberg</td>
<td>7.1</td>
<td>97.6 ± 12.6</td>
<td>0.0876 ± 0.016</td>
<td>101,000</td>
<td>-28.6</td>
</tr>
<tr>
<td>ZAPF-H</td>
<td>7.2</td>
<td>77.4 ± 6.4</td>
<td>0.0335b</td>
<td>229,000</td>
<td>-30.6</td>
</tr>
<tr>
<td>Subtilisin Carlsberg</td>
<td>7.2</td>
<td>1600 ± 600</td>
<td>1.00 ± 0.03</td>
<td>159,000</td>
<td>-29.7</td>
</tr>
<tr>
<td>Subtilisin BPN</td>
<td>7.0</td>
<td>451 ± 47d</td>
<td>5.32c</td>
<td>8,390</td>
<td>-22.4</td>
</tr>
</tbody>
</table>

a Errors are the standard deviations of 3 determinations.

b {Spink, 2007 #1991}.

c {Djurdjevic-Pahl, 2005 #1442}.

d pH 7.3
Table 3: Effect of pH on hemiketal formation in glyoxal inhibitor complexes with chymotrypsin

<table>
<thead>
<tr>
<th>pH</th>
<th>$K_{i(\text{obs})}$, μMa</th>
<th>$K_{\text{H}(\text{obs})}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>381 ± 41</td>
<td>1494</td>
</tr>
<tr>
<td>7.2</td>
<td>77.4 ± 6.4</td>
<td>5267</td>
</tr>
<tr>
<td>10.6</td>
<td>242 ± 16</td>
<td>2744</td>
</tr>
</tbody>
</table>

a Errors are the standard deviations of 3 determinations.

b {Spink, 2007 #1991}
Structure legends

Structure 1: Structure of inhibitors. R is either ZAP (Z-Ala-Pro-) or ZAA (Z-Ala-Ala-).

Structure 2: Negatively charged hemiketal formed when glyoxal inhibitors react with the serine proteases.
Structure 1

A

B

C

ZAPF-COOH
ZAAF-COOH

ZAPF-COCHO
ZAAF-COCHO

ZAPF-H
ZAAF-H
Structure 2.
Scheme Legends

Scheme 1: Minimal scheme for hemiketal formation by the serine proteases.

Scheme 2: Formation of the acyl intermediate by the serine proteases.

Scheme 3: Microscopic ionization states of histidine-57 and aspartate-102 in the serine proteases.
SCHEMES

Scheme 1
Scheme 3

[Chemical diagram showing the structures of compounds A, B, C, and D with pKₐ values indicated as pKₐ < 1.5 and pKₐ > 11.]
Figure legend

Figure 1: Inhibition of the α-chymotrypsin catalysed hydrolysis of succ-Phe-pna by Z-Ala-Pro-Phe-H (ZAPF-H) and Z-Ala-Pro-Phe-COOH (ZAPF-COOH). All samples contained 3.3 % dimethyl sulfoxide and 0.1 M potassium phosphate buffer at pH 7.2 (A) For inhibition by ZAPF-COOH (10 data points), α-chymotrypsin and succ-Phe-pna concentrations were 5.2 and 54 µM respectively. The solid line was calculated using the equation $d[P]/dt=(k_{\text{cat}}/K_M) *[E]*[S]* K_i/([I]+ K_i)$ and the fitted values of $14.3 \pm 0.4 \text{M}^{-1}. \text{s}^{-1}$ and $233 \pm 24 \text{µM}$ for k_{cat}/K_M and K_i respectively. (B) For inhibition by ZAPF-H (9 data points), α-chymotrypsin and succ-Phe-pna concentrations were 5 and 54 µM respectively. The solid line was calculated as in (a) using the fitted values of $17.9 \pm 0.5 \text{M}^{-1}. \text{s}^{-1}$ and $84.2 \pm 6.4 \text{µM}$ for k_{cat}/K_M and K_i respectively. All errors are the standard errors obtained on fitting the experimental data.
Figure 1

A

$10^{-9} \times \frac{d[P]}{dt}$ (M·s$^{-1}$) vs. ZAPF-COOH (mM)

B

$10^{-9} \times \frac{d[P]}{dt}$ (M·s$^{-1}$) vs. ZAPF-H (μM)
CORRIGENDA

TOC
There are extra + signs in the TOC that should be deleted.

MANUSCRIPT
1. Page C, Figure legend, 3 lines from the bottom
"panel a using" should be: panel A using
2. Results, 4 paragraph, 4 lines from bottom
The word "greatly" should be deleted
4. Page C, Table 1
1st Header Column 7, subscript "ZAPF-COOH" should be: ZAAF-COOH
Page C, Table 1
2nd Header Columns 7 & 8, subscript "ZAAF- " In all cases should be: ZAPF-
To clarify this a corrected version of the last two Columns of Table 1 is below.
Table 1 corrections
Corrected text for subscripts of headers in last 2 columns(7 & 8) of Table 1.

<table>
<thead>
<tr>
<th>$\frac{K_i_{ZAAF-H}}{K_i_{ZAAF-COOH}}$</th>
<th>$\frac{K_i_{ZAPF-H}}{K_i_{ZAPF-COOH}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.31</td>
<td>455</td>
</tr>
<tr>
<td>0.23</td>
<td>1110</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\frac{K_i_{ZAPF-H}}{K_i_{ZAPF-COOH}}$</th>
<th>$\frac{K_i_{ZAPF-H}}{K_i_{ZAPF-COOH}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.32</td>
<td>2310</td>
</tr>
<tr>
<td>ND</td>
<td>1600</td>
</tr>
</tbody>
</table>

6. Page F, line 411
Please change "2837211" to: 7166893