<table>
<thead>
<tr>
<th>Title</th>
<th>Atypical cutaneous actinobacillosis in young beef cattle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors(s)</td>
<td>Cahalan, S. D.; Sheridan, L.; Akers, C. R.; Lorenz, Ingrid; Cassidy, Joe</td>
</tr>
<tr>
<td>Publication date</td>
<td>2012-10</td>
</tr>
<tr>
<td>Publication information</td>
<td>Veterinary Record, 171 (15): 375</td>
</tr>
<tr>
<td>Publisher</td>
<td>BMJ Publishing Group</td>
</tr>
<tr>
<td>Item record/more information</td>
<td>http://hdl.handle.net/10197/3972</td>
</tr>
<tr>
<td>Publisher's version (DOI)</td>
<td>10.1136/vr.100906</td>
</tr>
</tbody>
</table>
Atypical cutaneous actinobacillosis in young beef cattle

ACTINOBACILLOSIS is a sporadic, inflammatory disease of the soft tissue in cattle, sheep, goats (Swarbrick 1967, Fubini and Campbell 1983, Muhammad and others 2006, Radostits 2007) and other species (Dibb and others 1981, Carmalt and others 1999, Kennerman and others 2006). The causative organism, Actinobacillus lignieresii, is part of the oral flora (Rycroft and Garside 2000, Quinn 2002) and invades mucosal surfaces following trauma caused by abrasive ingesta or the action of the teeth during mastication (Radostits 2007). In cattle, the disease typically involves the formation of pyogranulomas in the oral cavity, tongue or fore-stomachs with subsequent spread to regional lymph nodes (Hebeler and others 1961, Mortimer 1962, Rycroft and Garside 2000), although the skin of the head, neck and, occasionally, the limbs can also be affected. An unusual presentation of the disease is reported here where extensive distal limb involvement resulted in severe lameness in 20 of 130 animals on a beef fattening unit.

The cases occurred in a group of one- to two-year-old Aberdeen Angus crossbred cattle over an 11-month period from when the animals were housed in October 2009 until the following August 2010. Affected animals were housed in groups of 30 to a pen in slatted units at a stocking density of 1 animal/2 metre².

The cases presented clinically as focally extensive unilateral firm swellings distal to the elbow/stifle regions of the fore and hind limbs, resulting in significant lameness. In three animals, multiple limbs were involved. Affected animals lost varying degrees of body condition over a number of weeks due to reduced mobility. All affected animals were treated with parenteral antibiotics including seven-day treatments of penicillin–streptomycin (Pentstrep Norbrook) and five-day treatments of amoxicillin–clavulanic acid (Noroclav, Norbrook). Approximately 40 per cent of treated cases recovered sufficiently for the animals to be sent for slaughter, 40 per cent improved transiently before relapsing once treatment was terminated, and in the remaining 20 per cent, there was no response to treatment.

Two Aberdeen Angus-cross bullocks, (a yearling, animal A and two year old, animal B), exhibiting typical distal limb lesions which had received no treatment, were referred to the University Veterinary Hospital, University College Dublin for further investigation. On clinical examination, both animals were in good body condition and had non-weight-bearing lameness of their affected limbs. Extensive firm swellings extending from the right stifle to the coronary band were noted in both animals (Fig 1). These animals were euthanased on welfare grounds and submitted for necroscopy examination.

On necroscopy examination, animal A had a focal, circumscribed, raised, ulcerated lesion in the skin overlying and involving the right precrural lymph node (Fig 2). On sectioning, this lesion contained yellow foci measuring 1–2 cm in diameter (‘sulphur’ granules) within a dense fibrous stroma (Fig 3).

Diffuse circumferential subcutaneous oedema and fibrosis extended from the right stifle to the digits, with multifocal small ‘sulphur’ granules scattered throughout. Prominent, firm, raised, tortuous tracts were evident from the skin surface, consistent with chronic lymphangitis. Similar lesions were present in animal B without regional lymph node involvement.

Histopathological examination of the cutaneous lesions revealed multiple pyogranulomatous foci within the dermis and subcutis...
centred on densely clustered basophilic coccobacilli surrounded by radiating mantles of eosinophilic ‘clubs’. These were surrounded by neutrophils, macrophages and multinucleate giant cells within a thick fibrous stroma. Similar pyrogranulomas were noted in the capsule of the right precrural lymph node. A lignieresii and Staphylococcus aureus were isolated from the precrural lymph node of the younger bullcock using standard microbiological culture techniques (Quinn 2002).

Multiple cases of cutaneous actinobacillosis in cattle involving the limbs, and resulting in severe lameness, have not been previously reported. This atypical ‘outbreak’ is highly unusual given the high morbidity over a relatively short timeframe of 11 months. A previous report described circumscribed cutaneous nodules in the distal limbs of two cattle, however, lameness was not a reported feature (Holzhauer and Roumen 2002). Subclinical actinobacillosis is a relatively common incidental finding in cattle at slaughter, with characteristic involvement of the tongue and lymph nodes of the head (Herenda and Dukes 1988, Bradley and Jericho 1997); the disease is usually sporadic, involving small numbers of animals (Campbell and others 1975, Nakazawa and Azuma 1977, Radostitis 2007, Bazargani and others 2010). In these cases, predisposing factors have included: the feeding of large amounts of dry fibrous hay, haylage, oat or wheat straw; crowded animal accommodation resulting in cutaneous injuries; and contamination of the animal environment and feed through discharging lesions and/or saliva (Campbell and others 1975, Smith 2009). Following detailed on-farm investigation in the current study, the fact that five cases of lingual actinobacillosis had occurred on the farm over the previous four years, together with the relatively high stocking density, were considered predisposing factors. No significant changes had been made to the diet or accommodation on this unit for a number of years prior to the outbreak.

The distribution of lesions over the distal limbs suggests the organism was transmitted through infected saliva during allo- or autogrooming, with the pathogen entering the skin through small percutaneous abrasions or wounds. Young cattle in particular, are susceptible following subcutaneous inoculation, and lesions can develop in a number of days (Rycroft and Garside 2000) A lignieresii-infected surgical wounds have been reported in cattle following caesarean section (De Kruijf and others 1992), and in humans following animal bites (Dibb and others 1981, Reel and others 1991). Inspection of the animal accommodation failed to reveal abrasive surfaces, edges or vegetation that could have facilitated percutaneous infection. Since the outbreak some 18 months ago, the stocking rate on the premises has been reduced, with no further cases reported to date.

What role S aureus played in this outbreak remains unclear, although the histopathological appearance of the lesions was highly characteristic of those associated with A lignieresii infection. However, given that S aureus results in pyogranuloma formation (botryomycosis) following wound infection in horses and pigs (McCavin 1955), its additional presence may have increased the severity of the lesions in this case.

Successful medical treatment of cutaneous actinobacillosis has been reported in the literature. Chronic cutaneous lesions in three animals responded well to a two- to four-week course of procaine penicillin and dihydrostreptomycin or streptomycin and dihydrostreptomycin (Milne and others 2001). This ‘outbreak’ of cutaneous actinobacillosis involving the lower limbs of young cattle was atypical in the numbers of animals involved and the distribution of the lesions. Actinobacillosis should be considered in the differential diagnosis of firm cutaneous lesions on the limbs of cattle that present with lameness. Reduction of stocking density and identification and removal of potential sources of trauma within animal housing units are suggested control/prevention strategies.

Acknowledgements

I would like to thank Mr Paul Quinn for facilitating the farm inspection and providing detailed histories; Mr Brian Cloak for expertise in gross and histological photography; and Ms Yvonne Abbott and Bernadette Leggett for their work on the microbiological cultures.

References

Moritscher, P. H. (1960) An extrathoracic oesophageal lesion, later attributed to actinobacillosis, causing unusual symptoms in a dairy cow. Veterinary Record 74, 392–394

FIG 3: Yellow ‘sulphur granules’ within a dense fibrous stroma (animal A)
Atypical cutaneous actinobacillosis in young beef cattle

Veterinary Record published online August 22, 2012
doi: 10.1136/vr.100906

Updated information and services can be found at:
http://veterinaryrecord.bmj.com/content/early/2012/08/21/vr.100906.full.html

These include:

References
This article cites 18 articles, 4 of which can be accessed free at:
http://veterinaryrecord.bmj.com/content/early/2012/08/21/vr.100906.full.html#ref-list-1

P<\textgreater
Published online August 22, 2012 in advance of the print journal.

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

Advance online articles have been peer reviewed, accepted for publication, edited and typeset, but have not not yet appeared in the paper journal. Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial publication.

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/