Title	Beneficial and problematic interactions between NOx trapping materials and carbonaceous particulate matter
Authors(s) | Sullivan, James A.; Keane, Orla; Cassidy, Andrew
Publication date | 2007-08-29
Publication information | Applied Catalysis B: Environmental, 75 (1 - 2): 102-106
Publisher | Elsevier
Item record/more information | http://hdl.handle.net/10197/3999
Publisher's statement | This is the author's version of a work that was accepted for publication in Applied Catalysis B: Environmental. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Applied Catalysis B: Environmental, 75 (1 - 2) 2007-01, pp.102-106. DOI: 10.1016/j.apcatb.2007.04.004
Publisher's version (DOI) | 10.1016/j.apcatb.2007.04.004

The UCD community has made this article openly available. Please share how this access benefits you. Your story matters! (@ucd_oa)

Some rights reserved. For more information, please see the item record link above.
Beneficial and problematic interactions between NO\textsubscript{x} trapping materials and carbonaceous particulate matter.

James A Sullivan*, Orla Keane, and Andrew Cassidy
UCD School of Chemistry and Chemical Biology, Belfield, Dublin 4, Ireland
E-mail: james.sullivan@ucd.ie

Abstract
The presence of a NO\textsubscript{x} trapping BaO component with a Pt active phase does not per-se promote carbon combustion. However when coupled with trap regeneration promotion of soot combustion is seen. Operating NO\textsubscript{x} trapping materials promote combustion due to the periodic localised increases in [NO\textsubscript{2}]\textsubscript{(g)} generated during the regeneration rather than due to a co-generated exotherm. However, it has been noted that the presence of soot prevents NO\textsubscript{x} traps from employing their full trapping capacity.

Keywords: Particulate combustion, NO\textsubscript{x} trap promotion, transient studies.

Introduction
Carbonaceous Particulate Matter (PM) forms around sulphur nucleation sites within combustion chambers of diesel engines and has several well documented adverse affects both on human health and the urban and global environment [1-3]. One method for the removal of such particulates from exhaust streams involves trapping them within cordierite monolith filters and subsequently oxidising them to CO\textsubscript{2} [4]. During this process either O\textsubscript{2} or NO/O\textsubscript{2} mixtures can be used as oxidants [5]. The presence of NO improves the rate of combustion and the mechanism of this promotion involves the transfer of an oxygen atom to soot particles via an NO\textsubscript{2}\textsubscript{(g)} intermediate [6], Scheme 1.

Another after-treatment system used in the purification of diesel or lean-burn gasoline engines is a NO\textsubscript{x} trap. This removes NO from a fuel-lean exhaust stream by converting NO\textsubscript{(g)} into Ba(NO\textsubscript{3})\textsubscript{2(s)} through reaction with O\textsubscript{2} and BaO. The first step in this conversion is the oxidation of NO into NO\textsubscript{2}, i.e. the same step that operates in the NO promotion of soot combustion detailed above. Once the trap becomes saturated it is regenerated by a pulse of hydrocarbons and the NO\textsubscript{x} released and reduced on a Rh
component [7]. A simplified scheme of NO\textsubscript{x} storage and reduction is shown in Scheme 2.

The combination of these two features in the after-treatment system of a diesel engine would be a major advancement in the development of 4-way catalysts [8-10], i.e. a single bed catalysing the removal of CO, Volatile Organic Compounds (VOC), NO\textsubscript{x} and PM from the exhaust of fuel efficient diesel vehicles (the Toyota DPNR concept).

There have been relatively few reports [11-14] of materials that can both store NO\textsubscript{x} for and NSR cycle and also combust soot using an NO\textsubscript{2} promoter. This is unusual given that the same first step operates in both cycles and materials that have activity in one cycle might be expected to show some activity in the second. Significantly, there have been recent reports [11, 15, 16, 18] that the combustion of PM from diesel exhausts can be improved through the incorporation of a NO\textsubscript{x} trapping component within the filter.

Also there are relatively few reports regarding any detrimental interactions between NO\textsubscript{x} traps and soot combustion catalysts although Makkee et al. [14] have reported that the NO\textsubscript{x} storage capacity of NSR materials decreases upon aging under soot oxidising conditions.

In this work we have evaluated the effect of the presence of a NO\textsubscript{x} trapping component (BaO) upon the activity of model 0.3\% Pt/SiO\textsubscript{2} catalysts for promoting the combustion of soot. We also analyse for any effects that the presence of soot has upon the behaviour of the NO\textsubscript{x} trap in terms of NO\textsubscript{x} trapping capacity.

Experimental

Catalyst Preparation

The model catalysts studied, 0.3\% Pt/SiO\textsubscript{2} and 0.3\%Pt/5\%Ba/SiO\textsubscript{2}, were prepared using standard wet impregnation techniques from solutions of H\textsubscript{2}Pt(OH)\textsubscript{6} (dissolved in dilute HNO\textsubscript{3}) and Ba(C\textsubscript{2}H\textsubscript{3}O\textsubscript{2})\textsubscript{2} dissolved in water. The SiO\textsubscript{2} was provided by Grace and had a surface area of 256 m2g-1. SiO\textsubscript{2} rather than the more conventional Al\textsubscript{2}O\textsubscript{3} was chosen as a support due to the fact that it does not interact with or store NO\textsubscript{x} and this makes de-convolution of the transient experiments (see later) more straightforward.
Accurately weighed samples of \(\text{H}_2\text{Pt(OH)}_6 \) sufficient to yield a nominal Pt loading of 0.3% were dissolved in ~1ml (sufficient to fill the pores of the support material) of 0.5M HNO\(_3\) and the solution was added dropwise to 1g of SiO\(_2\). The mixture was then dried overnight at 110 °C and calcined in air for 2h at 500 °C.

Similarly accurately weighed samples of \(\text{Ba(C}_2\text{H}_3\text{O}_2)_2 \), sufficient to yield a Ba loading of 5% Ba, were dissolved in 1 ml of water and the solution was again added dropwise to 1g of SiO\(_2\). This mixture was then dried and calcined as before.

In the ternary catalyst (Pt/Ba/SiO\(_2\)) the SiO\(_2\) was firstly impregnated with Ba, dried and calcined before subsequently being impregnated with Pt (again followed by drying and calcination steps) in order to maximise the exposure of the Pt which is the active component in the \(\text{NO} \rightarrow \text{NO}_2 \) transformation.

Activity Measurements

Activity in the soot combustion reaction was studied by holding the catalyst/soot mixtures (Degussa Printex L) with quartz wool in a reactor tube connected to a gas manifold and an online GC (Shimadzu FID GC 8A fitted with a methanator) or mass spectrometer (Prolab). The catalysts were mixed with soot in a 1 part catalyst:2 part soot ratio. A mixture of catalyst (212-350 μm) and soot was mixed thoroughly using a spatula (approximating a “loose contact” situation) and subsequently this mixture was wet into a paste using the minimum amount of CH\(_3\)OH. The paste was then dried (to remove methanol) and the resultant solid sieved to particle sizes of (212-350 μm). This treatment provides some adhesion between the catalyst particles and the carbon.

The combustion of soot in the mixtures was studied under *pseudo*-steady state conditions, *i.e.* in a flow of O\(_2\) (4%) or O\(_2\) (3.4%) and NO (1320 ppm) in N\(_2\) at several temperatures and under transient conditions, *i.e.* at 400 °C in a flow of He with periodic injection of various combinations of NO\(_2\), O\(_2\) and H\(_2\) through the manipulation of electrically actuated 4-way valves. It should be noted that during the transient studies when a gas is switched into the reactant stream an equivalent volume of He is removed thus keeping the overall flow constant.
Temperature Programmed Desorption

A fresh sample of Pt/Ba/SiO$_2$ was exposed (at 400 °C) to NO (1250 ppm) and O$_2$ (4.5 %) mixture for 60 s in the presence and absence of soot. In both cases the same mass of catalyst was used so direct comparison of the profiles generated is possible. The catalyst (or catalyst/soot mixture) was then cooled to 300 °C and subsequently ramped in a flow of He to 650 °C at a ramp rate of 20 °C min$^{-1}$. The exit gases were continuously monitored using on line mass spectrometry.

Results and Discussion

Pseudo steady-state reactions

Figure 1 shows the *pseudo* steady-state activities of the Pt/SiO$_2$ and Pt/Ba/SiO$_2$ catalysts as a function of temperature in the presence and absence of NO. Obviously more combustion takes place in all cases at higher temperatures but it can also be clearly seen that over both catalysts the production of CO$_2$ is enhanced in the presence of NO due to the operation of the mechanism shown in Scheme 1.

Control experiments in the presence and absence of NO either using SiO$_2$ support material or Ba/SiO$_2$ as a catalyst show lower activities than these catalysts in the combustion in O$_2$ and there is no effect on activity seen following the addition of NO – showing the necessity of an NO oxidation functionality for promotion.

What is also noticeable is that there is no discernable difference in activity between the Pt/SiO$_2$ catalyst and the Pt/Ba/SiO$_2$ material, *i.e.* there is *no* promotional effect seen once a NO$_x$ trap is incorporated into the catalytic mixture. If anything, the presence of Ba slightly poisons the reaction when NO is in the feed. Therefore the presence of a NO$_x$ trapping component coupled with a Pt active phase does not promote steady state soot combustion. We have previously noted similar results over BaO combined with less active (regarding the promotion of the NO\rightarrowNO$_2$ reaction) FeZSM-5 catalysts [17].

Suzuki *et al.* [11] have noted increased combustion of PM following the incorporation of a NO$_x$ trap into the catalytic material. However, their experiments involved transient Temperature Programmed Reaction monitoring of the production of CO$_2$. These measurements are obviously not steady-state or *pseudo* steady-state in nature. They
ascribe this increased activity to direct contact between the soot particles and the nitrate NO\textsubscript{x} storage material. Following the results obtained above, where nitrate NO\textsubscript{x} storage material behaves in exactly the same manner as catalysts without such sites, we suggest rather, that Suzuki’s results are due to desorption of NO\textsubscript{2} from the NO\textsubscript{x} storage sites as the temperature is raised and the subsequent use of this NO\textsubscript{2} to either combust C\textsubscript{(s)} or activate it for combustion with O\textsubscript{2}. Such processes cannot take place in the absence of the NO\textsubscript{x} storage component and hence promotion is seen in the presence of NO\textsubscript{x} traps.

Transient Studies

However, it should be recalled that once operational NO\textsubscript{x} traps do not work under steady-state or *pseudo*-steady state conditions (see Scheme 2). For 99% of the time the NO\textsubscript{x} storage and reduction catalyst exists under a flow containing (as reactive species) mostly O\textsubscript{2} and NO (as the flow in which the *pseudo*-steady state measurements were taken above). Once the BaO NO\textsubscript{x} trap is saturated, it is regenerated using a rich pulse of hydrocarbons. The material exists in this mixture ~1% of the time (Scheme 2). These hydrocarbons regenerate the BaO trapping material, cause the release of NO\textsubscript{2(g)} and reduce the Rh component of a catalyst to the metal (upon which NO\textsubscript{x} is subsequently reduced) while concomitantly themselves oxidising to CO\textsubscript{2} and H\textsubscript{2}O.

It has also been reported that that an alternatively lean and rich operation promotes soot oxidation to a greater extent that a constant lean atmosphere [18]. Suzuki and Matsumoto [11] ascribe this to a second mechanism of promotion (as well their “contact” mechanism discussed above) and discuss this mechanism in terms of “activated species decomposed under the rich atmosphere” oxidising PM.

There are two features of this rich pulse that could be envisaged to promote PM combustion, *i.e.* (a) the localised exotherm caused when the hydrocarbons combust and (b) the transient localised increase in [NO\textsubscript{2(g)}]. In their article [11] Suzuki and Matsumoto neglected to account for the possibility of the former effect causing promotion of soot combustion.

In order to determine which of these two potentially promotional mechanisms is the more important in promoting combustion over the NO\textsubscript{x} trapping materials we have
attempted to mimic these effects of NO$_x$ trap regeneration (exotherm and NO$_2$ increase) over a Pt/SiO$_2$/soot mixture in a flow of NO/O$_2$ at 400 °C using pulses of different gas mixtures.

Firstly, pulses of H$_2$ (which immediately combusts at this temperature) were added to mimic the exotherm generated when hydrocarbons interact with Pt/Ba(NO$_3$)$_2$ in the presence of O$_2$ and secondly, pulses of NO were added mimic the latter effect, i.e. transiently increased concentrations of [NO$_2$]$_g$. In both cases before the experiment was begun the samples were subjected to periodic treatments in O$_2$ and NO/O$_2$ in order to remove any heterogeneous carbon from the system.

Figure 2 shows the CO$_2$ profiles formed during these transient experiments. It should be noted that control experiments performed over the SiO$_2$ support materials and Ba/SiO$_2$ catalysts show that their soot combustion activities remain relatively unaffected by either pulses of H$_2$ or NO.

At the beginning of the experiment the mixture is held in a flow of He at 400 °C. After 1 minute NO (1100 ppm) and O$_2$ (4 %) are switched into the flow and soot combustion commences (as measured by on-line mass spectrometry). The system is left for a further minute and then the second gas (NO, increasing overall [NO] to 3060 ppm or H$_2$, giving a [H$_2$]$_{inlet}$ of 3000 ppm) is switched in for 10 seconds. The system is then left in a flow of NO/O$_2$ for 30 seconds. This pulse sequence is repeated a further 4 times before the NO/O$_2$ is finally switched out. For clarity in figure 2 only one point in 100 is labelled to distinguish the different profiles.

Figure 2 clearly shows that the addition of extra NO$_x$ is a much more important feature in terms of promoting soot combustion than the exotherm generated when H$_2$ is combusted (measured to be of the order of 5 °C).

Interestingly when only O$_2$ is used as an oxidant the overall conversion to CO$_2$ is much lower (as expected since the promotional effect of NO is removed) but the effect of the H$_2$-generated exotherm is proportionately much greater. This is shown as the lower profile in figure 2.
The results presented above have shown that of the two mechanisms suggested by Suzuki and Matsumoto for the NOx traps promotion of soot combustion (a) contact between a soot particle and nitrated NOx trap and (b) the activated species decomposed under the rich atmosphere oxidising soot, that the latter is of far greater importance. We have also discounted a previously unconsidered possibility, i.e. that the exotherm caused by regeneration is the reason for the increase seen in soot combustion activity. This does not preclude the possibility that a larger exotherm caused by the combustion of higher concentrations of hydrocarbons would have a larger effect.

Effects of PM on NOx storage capacities
Having ascertained the reason why NOx traps promote the combustion of soot the final area of interest in this work was to evaluate whether the presence of soot in any way affects the sorption capacity of a NOx trap. This feature directly affects the first step in the NOx trap cycle, i.e. where NO is oxidised to NO2 over Pt and subsequently the NO2 adsorbs on, and reacts with, BaO. We studied this effect using a Temperature Programmed Desorption technique to analyse the concentrations of NOx adsorbed on a fresh sample of Pt/Ba/SiO2 following exposure (at 400 °C) to NO (1250 ppm) and O2 (4.5 %) mixture for 60 s in the presence and absence of soot. The catalysts were then cooled to 300 °C and subsequently ramped in a flow of He to 650 °C at a ramp rate of 20 °C min⁻¹. Control experiments studying adsorption of NOx onto (and desorption of NOx from) SiO2, Ba/SiO2, Pt/SiO2 and soot alone have shown that the adsorption onto each of these species is negligible under the conditions of the experiment.

Both materials show desorptions which are characteristic of the decomposition of Ba(NO3)2 [19] and, from figure 3, it is clear that the sample which had been dosed in the presence of soot desorbs (and thus initially adsorbs) far less NOx than that which was dosed in the absence of soot (643 μmol g⁻¹ as against 205 μmol g⁻¹).

While the former concentration is relatively close to the theoretical limit for the formation of Ba(NO3)2 (the loading of Ba is 364 μmol g⁻¹ giving a maximum NOx trapping capacity of 728 μmol g⁻¹) increases in the length of the dosing time shown (60s) have little effect on the latter NOx loadings (results not shown).
As an aside, only very small amounts (<10 μmol) of CO (confirmed as CO rather than N₂ by analysis of the m/e = 12 signal) were formed during the TPD. Therefore the possibility that equivalent amounts of NOₓ were initially adsorbed onto the Pt/Ba/SiO₂ material in the presence and absence of soot but that in the presence of soot desorbing NO₂ was reduced to N₂ and soot concomitantly oxidised can be discounted as the reason for seeing less desorbed NOₓ. Less NO desorbed form the second material simply because initially less was adsorbed during the dose.

This result shows that the presence of soot decreases the sorption capacity of the NOₓ trapping component. The obvious explanation for these observations is that in the presence of soot the NO₂ formed over the Pt component (a necessary prerequisite to the formation of Ba(NO₃)₂) reacts with soot before reacting with BaO (see Scheme 3).

This feature, i.e. the fact that the NOₓ trapping component is less able to store NOₓ in the presence of soot, has consequences for the engine management cycle required to most efficiently operate a NOₓ trap (regarding frequency of regeneration or catalyst NOₓ trap loadings required for efficient deNOₓ) if amalgamating these two functions (NOₓ removal and Particulate Matter combustion) is to be considered in so called 4-way catalysis.

There is a possible further consequence of the presence of soot on the NSR cycle which relates to the reduction step. The desorbed species in NSR (NO₂) is reduced over a Rh component and it has been widely reported that NO₂ is a more active oxidant (and thus easier to reduce) than NO [20, 21]. Therefore there is also an issue with the possibility of carbon reducing liberated NO₂ to NO before the reduction component of the NSR catalyst “sees” and fully reduces it to N₂. If the particular reduction process relies on a concentration of NO₂ rather than of NO (which can be the case in lean-NOₓ reduction with hydrocarbons [20] or NH₃ [21]) then this might also decrease the effectiveness of the NSR cycle. Further work is ongoing to determine whether this is the case.

Conclusions

We have found that the reason that BaO promotes particulate combustion is related to the transient release of NO₂ during trap regeneration. The exotherm generated during
the regeneration plays a more minor role in the promotion (although it is more significant in the absence of NO). On the other hand the activity of nitrated BaO in promoting soot combustion is negligible. The presence of soot, on the other hand, is detrimental to the performance of a NO$_x$ trap since it offers another reaction route for the utilisation of NO$_2$ rather than the desired formation of Ba(NO$_3$)$_2$.

Acknowledgements
We gratefully acknowledge the Environmental Protection Agency (Ireland) (EPA) for funding this research.

References
13 Z.Wang, Z. Jiang and W.Shangguan, *Catal Comm, in press*
Figure 1: *Pseudo* Steady-State soot combustion activity of Pt/SiO₂ (■) and Pt/Ba/SiO₂ (○) catalysts using air (open symbols) and NO/air (filled symbols) as oxidants.
Figure 2: Transient production of CO$_2$ from a 0.3%Pt/SiO$_2$ catalyst/soot mixture in a flow of NO + O$_2$ with periodic injection of NO (□) and H$_2$ (○). The lower profile (△) shows the effect of injecting H$_2$ into a stream of O$_2$ over the catalyst/soot mixture.
Figure 3: TPD of NO from Pt/Ba/SiO$_2$ dosed with equivalent concentrations of NO/O$_2$ at 400 °C in the presence of soot (□) and in the absence of soot (●).
Scheme 1

\[\text{NO} + \text{Pt-O} \rightarrow \text{Pt} + \text{NO}_2, \]
\[2\text{Pt} + \text{O}_2 \rightarrow 2\text{Pt-O}, \]

followed by

\[\text{NO}_2 + \text{C}(s) \rightarrow \text{CO and/or C-O}_{\text{ads}} \]

Scheme 1: A simplified mechanism showing NO promotion of soot combustion.
Scheme 2

NO\textsubscript{x} Storage (99\% of time)

\[\text{NO} + \text{Pt-O} \rightarrow \text{Pt} + \text{NO}_2, \]
\[2\text{Pt} + \text{O}_2 \rightarrow 2\text{Pt-O}, \]

followed by

\[\text{NO}_2 + \text{BaO} \rightarrow \text{BaO-NO}_2 \rightarrow \text{Ba(NO}_3)_2 \]

NO\textsubscript{x} Reduction (1\% of time)

\[\text{Ba(NO}_3)_2 + \text{HC/H}_2/\text{CO} \rightarrow \text{BaO} + \text{NO}_2 + \text{H}_2\text{O} + \text{CO}_2 \]
\[\text{Rh}_2\text{O}_3 + \text{HC/H}_2/\text{CO} \rightarrow \text{Rh} + \text{CO}_2 + \text{H}_2\text{O} \]
\[\text{NO}_2 + \text{HC/H}_2/\text{CO} \rightarrow \text{N}_2 + \text{CO}_2 + \text{H}_2\text{O} \quad \text{(on Rh)} \]

Scheme 2: A simplified mechanism showing NO\textsubscript{x} storage and reduction
Scheme 3: The proposed mechanism by which Particulate Matter decreases the NO\textsubscript{x} adsorption capacity of a NO\textsubscript{x} trap. NO\textsubscript{2} formed over oxidised Pt can either adsorb on BaO (eventually forming Ba(NO\textsubscript{3})\textsubscript{2}) (route a) or, in the presence of PM, interact with carbon and become reduced to NO (route b). The latter route then precludes the formation of Ba(NO\textsubscript{3})\textsubscript{2}.