<table>
<thead>
<tr>
<th>Title</th>
<th>Low Dose of Amino-Modified Nanoparticles Induces Cell Cycle Arrest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors(s)</td>
<td>Kim, Jong Ah; Åberg, Christoffer; de Cárcer, Guillermo; Malumbres, Marcos; Salvati, Anna; Dawson, Kenneth A.</td>
</tr>
<tr>
<td>Publication date</td>
<td>2013-08-13</td>
</tr>
<tr>
<td>Publication information</td>
<td>ACS NANO, 7 (9): 7483-7494</td>
</tr>
<tr>
<td>Publisher</td>
<td>ACS Publications</td>
</tr>
<tr>
<td>Item record/more information</td>
<td>http://hdl.handle.net/10197/4574</td>
</tr>
<tr>
<td>Publisher's statement</td>
<td>This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Nano, copyright © 2013 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/nn403126e.</td>
</tr>
<tr>
<td>Publisher's version (DOI)</td>
<td>10.1021/nn403126e</td>
</tr>
</tbody>
</table>
Low Dose of Amino-Modified Nanoparticles
Induces Cell Cycle Arrest

Jong Ah Kim**, Jong Ah Kim**, Christoffer Åberg**, Guillermo de Cárcer‡, Marcos Malumbres‡, Anna Salvati***
and Kenneth A. Dawson***

**Centre for BioNano Interactions, School of Chemistry and Chemical Biology, UCD Conway
Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield,
Dublin 4, Ireland.

‡Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid,
Spain.

1 Jong Ah Kim and Christoffer Åberg contributed equally to this work.

*Corresponding authors:

Kenneth A. Dawson (kenneth.a.dawson@cbni.ucd.ie), Anna Salvati (anna.salvati@cbni.ucd.ie)

Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University
College Dublin, Belfield, Dublin 4, Ireland

Phone: +353 0 1 716 2459
Abstract

The interaction of nano-scaled materials with biological systems is currently the focus of a fast-growing area of investigation. Though many nanoparticles interact with cells without acute toxic responses, amino-modified polystyrene nanoparticles are known to induce cell death. We have found that by lowering their dose, cell death remains low for several days while, interestingly, cell cycle progression is arrested. In this scenario, nanoparticle uptake — which we have recently shown to be affected by cell cycle progression — develops differently over time due to the absence of cell division. This suggests that the same nanoparticles can trigger different pathways depending on exposure conditions and the dose accumulated.

Keywords

Nanoparticle, cell cycle arrest, nanotoxicity, cationic nanoparticles, nanoparticle uptake, lysosome, cell division
Thanks to their unique attributes, nanoparticles can enter cells and interact with the cellular machinery using energy-dependent pathways.1-3 For this reason, nanoparticle interactions with biological systems are being investigated for their potential in nanomedicine.4-8 Although several nanoparticles accumulate in cells with no acute toxicity,3,9 some nanomaterials have been found to impact cells and this has generated nanosafety concerns.10-13 Cytotoxic responses have been associated to nanoparticles such as metal oxide ones and fullerenes,14-18 where the effect can be connected mainly to the release of toxic ions due to particle solubility,19 oxidative stress,17,20,21 and cationic damage.20 Recent studies have shown that alterations of the native structure of the proteins that adsorb on the nanoparticles’ surface in the context of biological fluids can trigger signaling cascades and activate inflammatory responses.22 Some positively-charged polymeric nanoparticles such as the amino-modified polystyrene nanoparticles (PS-NH\textsubscript{2}) used here, have previously been shown to induce cell death,20,23,24 interfere with the cell cycle25 and more recently, to induce inflammation.26 Upon their internalisation by cells, PS-NH\textsubscript{2} nanoparticles accumulate in the lysosomes, like several other nanoparticles of different materials and sizes.3,9,27,28 We have previously shown that nanoparticle accumulation is in this case accompanied by strong lysosomal swelling, followed by lysosomal membrane damage, which in turn leads to the leakage of proteolytic enzymes into the cytosol, triggering the apoptotic cascade.20 Mitochondrial damage and production of reactive oxygen species have also been described for these nanoparticles.20,23

Here we report that by lowering the dose administered to lung epithelial A549 cells to a level where cell death is not predominant, PS-NH\textsubscript{2} can induce a form of cell cycle arrest. The cell cycle encompasses all the events during a cell’s life that lead to its duplication and division, and its disruption and deregulation is at the origin of carcinogenesis and cell death.29 However,
induction of cell cycle arrest is often the basis of anti-cancer therapeutics.30 Interestingly, nanoparticles similar to the ones used here but with carboxylated surface modification (PS-COOH) do not show any cytotoxic effect over wide concentration ranges.20 Here we show that despite having the same final intracellular destination in the lysosomes,3,31 low doses of amino-but not carboxylate-modified nanoparticles prevent cell proliferation and induce a series of toxic responses. They inhibit both DNA synthesis and cell division, although the metabolic status of the cells seems unaffected and energy-dependent processes such as nanoparticle uptake do not stop. In recent work we showed that the nanoparticle dose of a cell population decreases over time due to cell division, and also described how this dilution can be distinguished from other phenomena, such as export of nanoparticles out of the cell.31 Since PS-NH\textsubscript{2} impair cell division, we were able to observe how the absence of dilution of the intracellular load affects the uptake and accumulation dynamics of a population, and this allowed us to further confirm the intimate connection between nanoparticle accumulation and cell cycle progression.

Overall, these results suggest that a given nanoparticle is potentially able to activate very different pathways, depending on the exposure conditions and the dose achieved. This also opens up the possibility to discover fundamental connections between cell death mechanisms and cell cycle pathways. Moreover, the induction of cell cycle arrest combined with the unique capacity of nano-scaled objects to cross biological barriers makes these materials — provided careful targeting — appealing for the development of novel therapeutic strategies.

Results and Discussion

Lung cancer epithelial A549 cells were incubated with 25 µg/ml PS-NH\textsubscript{2} or PS-COOH nanoparticles for different exposure times. Time-resolved characterisation of the nanoparticle
dispersions (Supporting Fig. 1 and Table S1) showed that the nanoparticle size in cell culture medium increased compared to the stocks in water, but overall the dispersions remained stable for the full duration of the experiment, showing no signs of agglomeration over time. It is known that in biological fluids nanoparticles can adsorb proteins and other biomolecules from the surrounding environment, forming a so-called biomolecular corona,32-34 consistent with the increase in size in cell culture medium. A further consequence of this is that nanoparticles of opposite charge, such as the PS-COOH and PS-NH\textsubscript{2} nanoparticles used here, acquire a similar zeta potential, closer to neutrality due to screening of the surface charges.24 It has been shown that the corona composition changes for particles of different surface charge.35 Despite this, the two polystyrene nanoparticles used here appear to behave rather similarly when interacting with cells, both following the endo-lysosomal pathway after internalisation for final accumulation in the lysosomes.3,20,24,31 Once there, however, different outcomes are observed.

A cell viability ATP assay (Fig. 1a) showed that for higher doses of PS-NH\textsubscript{2} nanoparticles strong cell death occurred, while no cell death was detected for cells exposed to the PS-COOH nanoparticles, consistent with literature.23-26,31 However, for PS-NH\textsubscript{2} low levels of cell death were observed for concentrations lower than 100 µg/ml for these particular cells.20 Moreover, monitoring of cell numbers revealed that at these lower doses cell proliferation took place during the first 24 hours of treatment, but over longer incubation times cell numbers did not increase, in contrast to untreated cells in the same conditions (Fig. 1b). Notably, cell numbers did not decrease during the treatment either, suggesting a rather delicate balance between cell division and cell death, or else an arrest of cell cycle progression (or some element of both of these processes).
Figure 1. Low dose of amino-modified polystyrene nanoparticles inhibits cell proliferation. (a) ATP cell viability assay after 24 hours of incubation with amino-modified (PS-NH₂) or carboxylated (PS-COOH) polystyrene nanoparticles at 25-250 µg/ml. Error bars represent standard deviation over three independent experiments. (b) Cell numbers of cultures incubated with cMEM or 25 µg/ml PS-NH₂ nanoparticles for 6-72 hours, expressed as percentages of the number of untreated cells at the start of the experiment (0 h). (c) EdU-DNA scatter plots of cells labelled with EdU and incubated with cMEM (Untreated, above) or 25 µg/ml PS-NH₂ nanoparticles (PS-NH₂, below) for 6-72 hours, obtained by flow cytometry.

In order to analyse cell cycle progression during exposure to the nanoparticles, a double staining technique was performed combining the nucleoside analogue EdU (5-ethynyl-2’-deoxyuridine) and the DNA dye 7-AAD (7-Aminoactinomycin D). All experiments (unless otherwise noted) were performed on asynchronous cell cultures, where cells are found
distributed among all cell cycle phases. Prior to nanoparticle exposure, cells were labelled with EdU which only labels cells in the S phase of the cell cycle, since it is actively incorporated into the DNA during DNA synthesis. The dye 7-AAD was used to stain the total DNA of all the cells at the end of the nanoparticle incubation time. Figure 1c shows that as cell division takes place, the fluorescence due to EdU is diluted over time as the EdU-labelled DNA is distributed among daughter cells. This can be observed for untreated cells (top row) as well as for nanoparticle-treated ones (bottom row) although for the latter this was true only during the first 24 hours of exposure. Incubation with PS-NH₂ nanoparticles for longer than 24 hours resulted in rather unchanged EdU fluorescence levels, which suggests that less cell division took place during incubation with the nanoparticles. Together, the results in Figure 1b-c suggest that during the first 24 hours of exposure to PS-NH₂ nanoparticles the cells were still able, at least in part, to undergo cell division but were impaired to continue to do so for exposure times longer than 24 hours. Thus the PS-NH₂ nanoparticles were capable of interfering with cell cycle progression.

Given that DNA synthesis is a tightly regulated process that is sensitive to insults to cells³⁶,³⁷ and that the nucleoside analogue EdU only labels cells that are actively synthesizing DNA, we also used the EdU/7-AAD staining after applying the nanoparticle treatment in order to estimate the percentage of proliferative cells remaining after different exposure times (Fig. 2a). The percentage of proliferative cells in the S phase decreased dramatically from 40% in untreated cells to 10% in PS-NH₂-treated cells after 24 hours of incubation (Fig. 2b). The proliferative fraction of cells continued to decrease until its total extinction after 72 hours of PS-NH₂ treatment, indicating an increasing inhibition of DNA synthesis. In contrast, in the case of untreated cells, only after 48 hours of incubation a small decrease in the level of EdU incorporation could be detected, which then became more evident after 72 hour exposure, as is
usually observed after sustained cell proliferation and nutrient depletion during such long incubation times. Importantly, PS-COOH-treated cells behaved similarly to untreated ones, suggesting that the carboxylated nanoparticles did not induce any cell cycle perturbation, which is in line with our previous work.31 Given their lack of impact on the cell cycle these nanoparticles have been used here as a negative control and to illustrate the connection between the observed outcomes and different nanoparticle surface modifications.

In order to determine whether the described effect is solely observed in A549 cells, we performed similar experiments in a different cell line. The treatment with PS-NH\textsubscript{2} had a similar impact on a human colon carcinoma (HCT 116) cell line (Supporting Fig. 2a), which was found to have a similar nanoparticle uptake rate as A549 cells (Supporting Fig. 2b). We also assessed whether the effect of PS-NH\textsubscript{2} could depend on the tumor suppressor protein p53. p53 is a major regulatory protein which plays a pivotal role in controlling the fate of damaged cells that have the potential of becoming cancerous.38 It inhibits their multiplication and stimulates their death in an attempt to block tumor development.39 Importantly, we found that upon exposure to PS-NH\textsubscript{2}, DNA synthesis was also inhibited in HCT cells that lacked a functional p53 protein, as shown by a comparable decrease of EdU-positive cells in p53-null and p53-wild type HCT cells. Overall this suggests that the effect of PS-NH\textsubscript{2} nanoparticles can be reproduced in other cell types and, more importantly, that the effect is p53-independent (Supporting Fig. 2).
Figure 2. Amino-modified polystyrene nanoparticles induce cell cycle arrest and prevent DNA synthesis. (a) EdU-DNA scatter plots of cells incubated with EdU after their treatment with 25 µg/ml carboxylated (PS-COOH), amino-modified (PS-NH₂) polystyrene nanoparticles or nanoparticle-free medium (Untreated) for 6-72 hours. Dashed boxes indicate EdU-positive (S-phase) cells which were actively synthesizing DNA at each given time point. (b) Percentage of cells in the different cell cycle phases from the experiment shown in (a). Note that the percentage of proliferative (S-phase) cells decreases after 24 hours of treatment with PS-NH₂ (whereas it decreases also for untreated cells and cells treated with PS-COOH, but only much later as a consequence of prolonged incubation times).

It is interesting to note that although the treatment with PS-NH₂ interfered with cell cycle progression and inhibited DNA synthesis (as indicated by the decrease in EdU incorporation
levels), the cells did not accumulate largely in one specific phase, even after 72 hours of treatment with PS-NH$_2$ (Fig. 2b). This is in contrast with what is usually observed after treatment with drugs that halt the cell cycle at a specific phase. For instance, treatment with paclitaxel causes cells to accumulate in mitosis and similarly aphidicolin causes a very strong increase in G1/S phase cell percentage.40,41 A closer analysis of the subpopulations of cells in the different cell cycle phases (Fig. 2b) revealed that while for untreated and PS-COOH-treated cells there was an increase in G1/G0 cells (as a consequence of confluence of the cell culture and lack of nutrients at long exposure times), PS-NH$_2$-treated cells exhibited a subtle increase in the percentage of cells in the G2/M phase and a corresponding decrease of those in the S phase. Such a scenario is consistent with a perturbation of cell cycle progression at multiple points along the cell cycle.

To support this interpretation, we performed numerical simulations of cell cycle progression with possible arrest at one or multiple points of the cell cycle, as illustrated in the schematic in Fig. 3a (see Supporting Information for details of the simulations). In this endeavour, we built upon the quantitative agreement between our previous experimental characterisation and theoretical modelling of the normal cell cycle progression of the same cell line.31,42 We performed simulations for three possible scenarios: arrest at the G1/S boundary, the G2/M one and arrest at both points (Fig. 3a). Figure 3b shows the results in terms of the percentage of cells in the different phases after a time long enough for all cells to be arrested and no cell cycle progression to occur anymore. For arrest at the G1/S boundary (left) cells accumulate in G1, similar to aphidicolin treatment (see above). In contrast, arrest at the G2/M boundary (centre) causes cells to accumulate in G2, as for paclitaxel treatment. We found that the experimental
data, however, corresponds better to the third case (right), supporting the hypothesis of a block at multiple points of the cell cycle.

Figure 3. Amino-modified polystyrene nanoparticles arrest the cell cycle at two points and the arrest occurs gradually. (a) Schematics showing three possible arrest scenarios: progression blocked at G1/S boundary (left), G2/M boundary (centre) or both (right). (b) Corresponding results of numerical simulations for the three scenarios, showing the cell cycle phases’ distribution after the arrest has fully developed. (c) Numerical simulations of the kinetics of arrest assuming blockage at multiple points (right panels in a-b) and assuming all (left), 50% (centre) or 25% (right) of cells reaching either point arresting.

We also investigated the kinetics of cell cycle progression in the case of multiple arrest points with the simulations (Fig. 3c). If each cell that reaches one of the two points is arrested at the moment it reaches the respective point, then all cells would be arrested within 10 hours (left). If,
on the other hand, cells that reach either point are only arrested 50% (centre) or 25% (right) of the time, then arrest occurs more gradually. Naturally, there are complicating issues experimentally, such as the increase in the number of G1/G0 cells that occurs even for untreated cells at long incubation times (Fig. 2b). Still, the slow changes in cell cycle phase populations that is observed experimentally for PS-NH$_2$-treated cells likely suggests a gradual arrest with time.

Thus the experimental observations (Fig. 2) are consistent with an arrest that occurs gradually and that occurs at multiple points along the cell cycle. It is natural to identify the arrest points with the two cell cycle check-points, and to better clarify this further studies were performed. In order to experimentally analyse eventual effects on the G1/S checkpoint, we used a commonly applied method in which cells are synchronised in the M phase with nocodazole, isolated as described in the Methods and subsequently seeded in the presence of medium (Control), PS-COOH or PS-NH$_2$ nanoparticles in order to monitor cell cycle progression through the G1/S checkpoint. The percentage of proliferating cells successfully entering in the S phase was measured by the incorporation of the nucleoside EdU (Supporting Fig. 3a). In the presence of PS-COOH nanoparticles, cells entered the S phase after 6-8 hours, similarly to what is observed in the absence of nanoparticles. In contrast, in the presence of the PS-NH$_2$ nanoparticles only after 12-14 hours some cells in S phase could be detected. This strongly suggests that the exposure to PS-NH$_2$ nanoparticles affects the G1/S checkpoint.

Similarly, to analyse the effect of PS-NH$_2$ treatment on the G2/M checkpoint, cells were synchronised in the G1/S transition with thymidine as described in the Methods and then incubated with medium (Control), PS-COOH or PS-NH$_2$ nanoparticles. Progression of the cells into the M phase was indicated by staining with the MPM2 antibody, a mitotic marker.
(Supporting Fig. 3b). The results indicated that cell cycle progression was not affected by exposure to PS-COOH nanoparticles while exposure to PS-NH₂ delayed the entry into the M phase and/or made the cell population enter the phase in a more asynchronous fashion, as suggested by the belated and smaller increase of the percentage of MPM2-positive cells.

Although further experiments are needed in order to draw definite conclusions on this point and, more in general, about the arrest mechanism, a possible interpretation is that the treatment with PS-NH₂ primarily affected the G1/S checkpoint and that the alteration on G2/M progression was a secondary effect due to the interference at the G1/S boundary. Cancer cells like the cells used here are known to have aberrations that weaken their checkpoint mechanisms; thus it is plausible that despite the nanoparticle-induced block at the G1/S checkpoint some cells would have anyway escaped and continued to cycle, but carrying with them a series of damages that would then perturb the G2/M progression later in their cell cycles.

In order to further characterize the observed arrest, we also monitored the levels of key regulators of the cell cycle. Cell cycle progression is tightly regulated by several protein families, among which cyclin proteins and their associated cyclin-dependent kinases (Cdk) play a central role. Figure 4 shows the analysis of the expression levels of some of the key cyclins (E₁, A₂, B₁, D₁ and D₃) by immuno blotting. We observed several time-dependent changes in cells incubated with nanoparticles, compared to untreated cells. However, we focus the discussion on the onset of the arrest, as the interpretation of changes in cyclin levels at long incubation times is complicated by nutrition depletion etc. A first important observation is that after only 6 hours of exposure strong alterations of some of the cyclin levels were already observed. This indicates an earlier onset of the nanoparticle-induced effects than what could be detected with the EdU staining, which instead showed on-going progression of the cell cycle at this exposure time (Fig.
1c). In particular, the levels of cyclin E1 were drastically reduced after 24 hours of exposure. E-type cyclins determine the passage to the S phase and their expression peaks between G1 and S phase, where they bind to Cdk2 and promote the expression of cyclin A, which is in turn needed for the progression of the following S phase. The strong decrease of cyclin E1 and A2 supports the block at the G1/S checkpoint described above (Supporting Fig. 3). Cyclin A also binds to Cdk2 to promote S phase progression and a decrease in its levels is consistent with the reduction of EdU incorporation previously described (Fig. 2). Similarly, Cyclin B1, which peaks later on in the cell cycle at the G2/M checkpoint and forms a complex with Cdk1 that is largely responsible for commitment to cell division, was observed to decrease already after 6 hours, with a stronger effect after 24 hours. Finally, after 24 hours of treatment the levels of cyclin D1 were affected as well. D-type cyclins drive progression into and across the G1 phase, binding to several Cdks, and, together with E-type cyclins, determine the entry into S the phase. Changes in cyclin D1 expression are consistent with the onset of the cell cycle arrest observed after 24 hours in Figure 2. Interestingly, changes in cyclin D3 levels were instead observed only after 72 hours of treatment, when the level of cyclin B1 also seemed to be restored. However, as noted above while the analysis of cyclin levels gives insight on the onset of the observed arrest, the results at these late exposure times could be affected by complications such as nutrient depletion. (The cell cycle phase distributions and EdU incorporation results as shown in Figures 1 and 2, respectively, allow easier analysis of the effects observed at these longer exposure times).
Figure 4. Western blot for cyclins E1, A2, B1, D1 and D3 of protein extracts of cells treated with 25 µg/ml amino-modified polystyrene nanoparticles for 6-72 hours. GAPDH expression levels served as loading control.

In order to further investigate the behavior and metabolic status of the arrested cells, we also measured the ATP content per cell after nanoparticle treatment. It should be noted that the experimental procedure in this case is (as detailed in the Methods) such that the ATP content is measured for the same number of cells in cultures treated with either PS-NH2 or PS-COOH. The viability assay shown in Figure 1a is instead the average over all cells remaining after the treatments and is thus affected by cell numbers. We observed that the intracellular ATP content per cell (Supporting Fig. 4) decreased comparatively little after 24 hours of exposure to
nanoparticles, implying that the overall energy levels of the cells were largely unaffected by the treatment with PS-NH₂, despite the cell cycle arrest already being established.

We also monitored nanoparticle uptake and intracellular localisation at the same exposure times. The time-resolved measurement of the cell fluorescence intensity by flow cytometry indicated continuous internalisation of PS-NH₂ nanoparticles by the cells over the whole duration of the experiment (Fig. 5a), even after the onset of cell cycle arrest. Interestingly, the uptake kinetics appears different from the uptake kinetics observed for PS-COOH nanoparticles (reproduced in Fig. 5a from ref 31 to allow comparison). For PS-COOH we have shown previously that the uptake kinetics was determined by a competition between nanoparticle uptake and cell division. In such a scenario, uptake kinetics show a linear increase during the first few hours but after one day deviate from linearity due to dilution of the internalised nanoparticle load when cells divide. The competition between uptake and cell division eventually results in a plateau of the uptake kinetics, although other factors such as the cell culture reaching confluence and lack of nutrients most likely also play a role for late times.³¹ In the case of the PS-NH₂ nanoparticles the uptake kinetics appeared to follow the same trend of the PS-COOH nanoparticles during the linear regime for early times (a linear fit of the data for the first hours is also shown in Fig. 5a to facilitate the observation). However, somewhat later a deviation from non-linearity could be observed due to cell division for both treatments, consistent with some cell cycle activity still occurring in the cells treated with PS-NH₂ for these exposure times, as discussed above. However, after roughly 24 hours of incubation, the uptake kinetics of PS-NH₂ nanoparticles continued to increase, whereas that of the PS-COOH ones started plateauing. This is certainly consistent with the PS-NH₂ inhibiting cell division, thus providing a means to avoid the competition between nanoparticle uptake and dilution due to cell division in favor of uptake.
For later times (48 hours and longer), there are necessarily complicating factors (for both types of nanoparticles) such as lack of nutrients, likely dominating the non-linear behaviour for PS-NH$_2$ uptake kinetics and also contributing to the plateau observed with PS-COOH at these late times. From a broader perspective, these results further confirm that nanoparticle accumulation is strongly connected to cell cycle progression, both for cases where no changes in cell cycle progression is induced (PS-COOH) as well as for cases where cell cycle progression is impaired (PS-NH$_2$).

Figure 5. Effect of amino-modified polystyrene nanoparticle-induced cell cycle arrest on the uptake and accumulation kinetics of nanoparticles. (a) Cell fluorescence intensity due to continuous exposure to 25 µg/ml amino-modified (PS-NH$_2$; red) or carboxylated (PS-COOH; black) polystyrene nanoparticles as a function of time, measured by flow cytometry. Error bars represent standard deviation over three replicas. (b) Fluorescence intensity of cells exposed to 25 µg/ml PS-NH$_2$ for 24 hours (thus inducing cell cycle arrest) and further grown in nanoparticle-free medium (red) or medium containing non-fluorescent PS-NH$_2$ (black). The equivalent experiment for PS-COOH is shown for comparison (grey). Fluorescence values shown are
normalised to the cell fluorescence measured after 24 hour exposure (0 hour from particle removal). In both panels, data for PS-COOH are reproduced from ref 31 and are included for comparison.

Furthermore, by labelling S-phase cells with EdU and monitoring their fluorescence intensity during continuous exposure to fluorescent PS-NH₂, we could confirm experimentally that in the first hours of exposure to the nanoparticles, during which the cell cycle arrest is not yet established, the internalised dose of nanoparticles is diluted by cell division (as indicated by the lower fluorescence of cells that have just divided compared to that of cells that have not divided yet, as shown in Supporting Fig. 5). It is interesting to note that at later exposure times, when cell division is impaired, although the uptake rate seems to decrease in comparison to the first 24 hours of incubation, clearly nanoparticle uptake still occurs for both EdU-positive and EdU-negative cells (Supporting Fig. 5). Thus, despite the cell cycle arrest, the strong perturbations of cyclin levels and the lack of DNA synthesis described, cells treated with PS-NH₂ nanoparticles did not show a strong reduction in their energy levels and continued to accumulate nanoparticles, which is also known to be an energy-dependent process.³⁹

We also performed further numerical simulations to support our interpretation of the experimental results shown in Figure 5a. As the experimental data on cell cycle progression is qualitatively consistent with simulations of arrest at multiple points of the cell cycle, we assumed this scenario to be true in the following. In the simulations we coupled the progression and arrest of cells along the cell cycle to a constant rate of nanoparticle uptake (as detailed in the Supporting Information and building upon our previous work).³¹ As above, we investigated the effect of what fraction (0, 25, 50 and 100%) of cells that reach either checkpoint are arrested
(Supporting Fig. 6). If none (0%) of cells are arrested, then cell division competes with nanoparticle uptake, leading to a plateau in the nanoparticle uptake kinetics, as for the case of carboxylated polystyrene shown in Figure 5a, as previously demonstrated.31 In the other extreme, where all (100%) of the cells are arrested when they reach a checkpoint, cell division ceases rapidly and for this case, nanoparticle uptake kinetics is essentially linear for all times. Between the two extremes (0 and 100%), there is some element of cell cycle activity, though the amount of residual cell cycle activity decreases with time. Thus, the nanoparticle uptake kinetics shows some element of non-linear behaviour due to cell cycle activity (split of internalized nanoparticles upon cell division), but the linear part dominates progressively more as time goes on. The experimental results for PS-NH\textsubscript{2} (Fig. 5a) showed qualitatively similar results (though complicating factors at late times were not taken into account in the simulations).

An idealisation we used in the simulations is that we assumed that the given fraction (0, 25, 50 or 100%) of cells that were arrested when they reached a checkpoint was constant in time. Conceivably, this fraction could vary with time as nanoparticles are internalised. In order to investigate how sensitive the results could be to such time-variations, we investigated some extreme examples of time-variation, wherein we kept the fraction of arresting cells constant in time, but delayed the time at which the cell cycle arrest started. The results turned out to be rather insensitive to the timing (Supporting Fig. 6). Hence, we believe the idealised picture to be qualitatively correct.

The effect of the absence of cell division on the internalised nanoparticle load could also be observed when fluorescent nanoparticle-loaded cells were further grown in either nanoparticle-free medium or non-fluorescent nanoparticle-containing medium (Fig. 5b). When the cell cycle progressed normally, as in the case of cells treated with PS-COOH nanoparticles (data
reproduced from ref 31 is shown for comparison), a gradual decrease of the internalised nanoparticle load was observed over time as the cells divided (Fig. 5b; grey). However, when after 24 hours of exposure to PS-NH$_2$ nanoparticles, the arrested cells were further grown in nanoparticle-free medium, the initial load of internalised nanoparticles was also diluted over time, though to a lesser extent (Fig. 5b; red). This is, again, consistent with not all cells having yet arrested after 24 hours of treatment with PS-NH$_2$ but could also be interpreted as some cells being able to recuperate from the arrest. It appears as if there is significant cell cycle progression occurring after PS-NH$_2$-treatment and subsequent incubation in nanoparticle-free medium (Supporting Fig. 7). Still, these results are not conclusive as to whether cells can recuperate from the arrest or not, and to completely disentangle the two effects one would need an explicit marker for arrested cells. When instead the arrested cells were further grown in medium containing non-fluorescent PS-NH$_2$ nanoparticles, the intracellular concentration of the fluorescent nanoparticles remained roughly constant over time (Fig. 5b; black), as a consequence of the low amount of cell division taking place due to the uninterrupted exposure to PS-NH$_2$ nanoparticles. This also suggested the absence of significant nanoparticle export, as has also been reported for other examples of nanoparticles accumulating in the lysosomes.3,9,31

Finally, nanoparticle localisation was studied by fluorescence microscopy during the 72 hours of exposure in order to understand the final fate of the nanoparticles inside the cells. Confocal images confirmed nanoparticle internalisation and, consistent with what has previously been reported, immuno-staining of subcellular compartments showed the final intracellular destination to (predominantly) be the lysosomes (Fig. 6a).20 After 6 hours of incubation, PS-NH$_2$ nanoparticles were detected inside the cells and some degree of co-localisation with the lysosomes (LAMP1-positive vesicles) was observed. At later stages, co-localisation increased
notably and, more importantly, lysosomes loaded with PS-NH₂ nanoparticles appeared enlarged. Similar observations on lysosomes have been reported for higher doses of the same nanoparticles,²⁰,²⁴ although in those conditions lysosomal swelling was accompanied by leakage of proteolytic enzymes into the cytosol and finally, activation of cell death pathways.²⁴ It has been proposed that the effect of cationic nanoparticles on lysosomes could be due to a mechanism called the proton sponge in which the amine groups on the nanoparticles’ surface get protonated inside the acidic organelles and increase the osmotic pressure of the vesicles due to the internalisation of neutralising ions and water.⁴⁸-⁵⁰ However, data on non-protonable cationic nanoparticles suggest that protonation alone would not be enough to account for nanoparticle-induced lysosomal damage.²³,²⁴ In order to further study the observed swelling and investigate if lysosomal membrane permeability was compromised in the exposure conditions applied here, PS-NH₂-treated cells were stained with the acidotropic dye LysoTracker Red (Fig. 6b). An increase in the mean intensity of the staining was found for the PS-NH₂-treated cells, which is consistent with the increase in the volume of acidic subcellular compartments observed by confocal imaging. Loss of LysoTracker staining can be observed as a second peak at much lower intensities when higher doses of PS-NH₂ nanoparticles are applied (see 72 hours panel in Fig. 6b), and this is a sign of compromised lysosomal membrane integrity.²⁴ However, at the nanoparticle concentration used here (25 µg/ml), the second peak at lower intensity was not observed for short incubation times, and given that in these conditions cell death levels were low, the results suggest that despite the observed lysosomal swelling the severity of the damage to such organelles was less than that described for higher nanoparticle doses at which cell death is induced. In agreement with this, the presence of the lysosomal protease cathepsin was not
obvious in the cytosol, as opposed to what is observed at higher nanoparticle doses (Supporting Fig. 8).

Although a clear connection between cell cycle regulation and lysosomal function has not been reported yet, it has been shown that drugs which induce lysosomal damage, such as for instance chloroquine, can lead to cell cycle arrest and cell death due to interference with autophagic processes, and similarly some findings in other model systems have connected cathepsins and mitotic events. This overall suggests that the effects observed on cell cycle progression may be connected to the lysosomal alterations detected upon exposure to the PS-NH₂ nanoparticles and accumulation in the lysosomes. More efforts are needed in this direction in order to fully elucidate the origin of the observed cell cycle arrest.
Figure 6. Amino-modified polystyrene nanoparticles accumulate in the lysosomes, causing their enlargement and compromising their membrane integrity. (a) Confocal images of cells incubated with 25 µg/ml amino-modified polystyrene (PS-NH$_2$) nanoparticles for 6-72 hours. Different colors are applied to improve visualization: nuclei (Draq5) are shown in blue; lysosomes (LAMP1) in red; nanoparticles in green. Top images are overlapped channels for nuclei, lysosomes and nanoparticles; bottom images show the same without the nanoparticle channel. (b) Enlargement of lysosomes due to treatment with PS-NH$_2$ nanoparticles. Lysotracker fluorescence intensity of cells incubated for 6, 24, 48 and 72 hours with cMEM (black), carboxylated polystyrene at 25 µg/ml (red) or amino-modified polystyrene nanoparticles at 25 µg/ml (blue) or 50 µg/ml (yellow), measured by flow cytometry.

Conclusions

In conclusion, the potential of PS-NH$_2$ to induce cell death at high concentrations has been extensively described.20,23,24 At the lower concentrations studied here, PS-NH$_2$ accumulated in the lysosomes and lysosomal swelling was observed. Although at this dose the swelling was not accompanied by severe loss of lysosomal membrane integrity and strong cell death (as reported for higher nanoparticle doses), a different outcome was instead observed wherein cell cycle progression was impaired. Strong perturbations of cyclin levels were detected already after 6 hours, together with lack of DNA synthesis and inhibition of cell proliferation. Using a combination of numerical simulations and experiments, we suggest that the observed impairment of the cell cycle is consistent with combined arrest at the transitions between G1/S and G2/M phases, and that the arrest occurs gradually. Of noteworthy, despite the cell cycle being arrested, the intracellular ATP level did not decrease and nanoparticle internalisation (an energy-
dependent process) did not cease either. Although further work is needed in order to elucidate the mechanism of action of PS-NH$_2$, the results presented here clearly show that the same nanoparticles hold the potential to activate very different cellular signals and, in this example, either induce cell cycle arrest or trigger cell death pathways depending on the intracellular load achieved.

The effects on cell cycle progression were also reflected in nanoparticle accumulation kinetics. Comparing with previous experimental results and also using numerical simulations, we demonstrated the strong connection between cell cycle progression and nanoparticle accumulation, both in the presence and absence of cell division. We previously demonstrated that in the presence of cell division, the internalised nanoparticles are split among daughter cells when the cell divides, thereby lowering the nanoparticle dose over time. Here, on the other hand, we found that when cells do not divide, which in this case is an effect of the accumulation of the nanoparticles themselves, relatively higher accumulation levels of nanoparticles are achieved.

Finally, since lysosomal alterations were observed also in the conditions studied here, and considering that many other nanoparticles are known to accumulate in the lysosomes, these results constitute an ulterior example of the centrality of lysosomal signaling for answering and understanding nanosafety concerns, though in some cases such as this one, a clear link with the observed effects is yet missing and needs to be elucidated.

Methods

Cell culture

Tissue culture reagents were purchased from GIBCO Invitrogen Corporation/Life Technologies Life Sciences (Carlsbad, CA, USA). A549 cells (ATCC-CCL-185) were
maintained as monolayer cultures in MEM supplemented with 10% FBS, 1% penicillin-streptomycin and 1% non-essential amino acids (cMEM) at 37°C and 5% CO₂.

Nanoparticles

Fluorescently labelled amino-modified polystyrene nanoparticles (PS-NH$_2$, Sigma, blue, 50 nm) and carboxylate-modified (PS-COOH, Invitrogen, yellow-green, 40 nm) were used without further modification or purification. Nanoparticle size (hydrodynamic diameter) by Dynamic Light Scattering (DLS) and zeta potential were measured using Malvern Zetasizer Nano ZS90 (Worcestershire, UK). Freshly prepared nanoparticle dispersions were characterized in water, phosphate buffered saline (PBS) and complete cell culture media (cMEM) at 25 °C. DLS measurements are the average of a minimum of 5 runs each containing 100 sub-measurements; results are reported in Supporting Table S1.

Flow cytometry assays

35 mm diameter plates were seeded with 150,000 cells and were grown for 24 hours. Under these conditions the cell culture is, at the start of the experiment, asynchronous. Cells were incubated with 10 μM EdU (5-ethynyl-2’-deoxyuridine) nucleoside analogue in cMEM for 30 minutes at 37°C prior to (in the experiments where cell cycle progression was monitored) or after nanoparticle exposure (where the proliferative percentage was estimated). Nanoparticle dispersions were prepared freshly under sterile conditions by diluting the stock in cMEM to the required concentration, immediately prior to their addition to plates. Cells were harvested with 0.05% Trypsin-EDTA 1x and finally fixed and stained using the Click-iT EdU Flow Cytometry Kit (Invitrogen Corporation/Life Technologies Life Sciences, CA, USA), following
manufacturer’s instructions. For the staining of total DNA, the Red Cell Cycle dye (7-AAD) provided in the kit was used. Sample analysis was carried out on Dako CyAn-ADP flow cytometer equipped with 405 and 488 nm lasers. A total of 15,000 events were acquired per sample. Data were analysed using the Summit software (DAKO).

To study uptake kinetics, cells were incubated with nanoparticles for different time intervals (nanoparticle dispersions were prepared immediately prior to their addition to plates by diluting the stock in cMEM to the required concentration), harvested with 0.05% Trypsin-EDTA 1x and fixed with 4% formaline (Sigma-Aldrich) before their resuspension in PBS and analysis by flow cytometry.

Effect on lysosomes was studied using the Lysotracker dye (Invitrogen Corporation/Life Technologies Life Sciences, Carlsbad, CA, USA). After incubation with nanoparticles, cells were harvested and incubated with 50 nM Lysotracker in cMEM for 20 minutes at 37°C. Finally, cells were washed and resuspended in PBS for their analysis by flow cytometry.

Cell cycle synchronisation was performed by two different means. Mitotic arrest was induced by incubating cells with 200nM nocodazole \(^{43}\) (Sigma-Aldrich) for 15 hours. Mitotic cells were then shaken-off, washed with PBS and transferred to new plates with nocodazole-free medium containing the different nanoparticles as well as EdU in order to monitor S-phase entry. Samples were fixed with 4% formaline, stained using the Click-iT EdU Flow Cytometry Kit (Invitrogen Corporation/Life Technologies Life Sciences, CA, USA), following manufacturer’s instructions and finally analysed by flow cytometry every 3 hours for a period of 15 hours. G1/S synchronisation was achieved by double thymidine block. \(^{44}\) Cells were incubated with 2.5 mM thymidine (Sigma-Aldrich) for 16 hours, washed with PBS and further incubated in thymidine-free medium for 10 hours. Subsequently, cells were incubated again with thymidine for 12 hours,
washed with PBS and placed in thymidine-free medium with the different nanoparticles. Samples were taken at regular intervals for a period of 24 hours. After fixation with 4 % formaline (Sigma-Aldrich), cells were stained with MPM2 antibody (Millipore, MA, USA) in order to evaluate their entry into mitosis and with PI staining to enable total DNA content analysis.

Cell numbers

In order to monitor cell numbers during continuous exposure to nanoparticles, samples were harvested at different exposure times, resuspended in 1 ml of PBS and counted manually with 0.4% Trypan blue (HyClone, Thermo Fisher Scientific, IL, USA) in a haemocytometer chamber. Results are expressed as percentage of the number of cells in untreated cultures at the beginning of the experiment (0 h exposure).

ATP Content Luminiscence Assay

Intracellular levels of adenosine triphosphate (ATP) were quantified with the CellTiter-Glo Luminescent Cell Viability Assay (Promega Corporation, USA) according to the manufacturer’s recommendations. Relative luminescent units (RLU) were detected with Varioskan Flash plate reader (Thermo Fisher Scientific, IL, USA). Results are presented as percentages of the values obtained for untreated cells. Where the aim was to analyze cell viability, the assay was performed on 96-well plates in which 10,000 cells were seeded per well. On the following day, cells were exposed to the nanoparticles for 24 hours prior to ATP measurements. Where the aim was instead to measure the levels of ATP per cell after exposure to nanoparticles, the ATP content of equal cell numbers was measured for all the treatments. For this purpose, 150,000
cells were seeded in 35 mm diameter plates on the day before the treatments. Thus cells were exposed to nanoparticles, and after 24 hours cells were harvested, and cell number determined as described above. Then, for each sample, 10,000 cells per well were transferred to 96-well plates, and ATP levels were measured as described above.

Confocal Imaging

150,000 A549 cells were grown on 15 mm glass coverslips inside a 35 mm plate for 24 hours prior to nanoparticle exposure for different time intervals. Cells were fixed and permeabilised with ice-cold methanol for 4 minutes, stained with anti-LAMP1 antibody (ABcam, UK) and green Alexa488 anti-mouse secondary antibody (ABcam, UK). Nuclei were stained with DRAQ5 (Sigma-Aldrich Fine Chemical Co., St. Louis, MO, USA). Cells were imaged with LSM500 Zeiss confocal microscope using the lasers 364 nm, 488 nm and 633 nm.

Cellular fractionation and Immuno blot assay

Cytosolic and membrane fractions were obtained from nanoparticle-treated cultures using a previously described protocol. Briefly, nanoparticle-treated cells were harvested and incubated in MSH buffer with protease inhibitor (Roche Diagnostics, UK) for 45 minutes on ice. Cells were lysed mechanically with a syringe until 50% of the cells were trypan blue-positive and then ultracentrifuged at 100,000 g for 40 minutes at 4°C in a Beckman-Coulter Optima L-100XP ultracentrifuge, rotor SW 55Ti. The cytosolic fraction contained in the supernatant was separated from the membrane fraction (pellet) which was further lysed in MSH buffer with 1% Triton for 15 minutes on ice. After centrifugation at 10,000 rcf for 10 minutes at 4°C, the membrane
fraction contained in the supernatant was collected. Protein quantification was performed using the BCA Protein Assay Reagent kit (Thermo Fisher Scientific, IL, USA).

For western blot analysis, a formerly published protocol was followed. Briefly, 8 µg of protein was resolved by 10% SDS-PAGE and transferred onto PVDF membranes, which were probed with anti-Cathepsin L primary antibody (Cell Signaling, MA, USA) and detected with horseradish peroxidise-conjugated anti-mouse secondary antibody (Sigma-Aldrich Fine Chemical Co., St. Louis, MO, USA), using the ECL chemoluminiscence kit (Thermo Fisher Scientific, IL, USA) and X-ray film. Membranes were then stripped with 0.02% Sodium Azide in TBS-Tween buffer and re-probed with anti-GAPDH primary antibody (Cell Signaling, MA, USA) as a protein loading control.

Whole cell lysates and Immuno blot assay

Whole cell lysates were obtained from cells incubated with amino-modified nanoparticles for different time intervals. Cells were harvested as previously explained and lysed in RIPA buffer with protease inhibitor (Roche Diagnostics, UK) for 15 minutes in ice. Samples were then centrifuged at 14,000 rpm for 10 min at 4°C and supernatant collected. Samples were quantified as explained above and probed with mouse/rabbit anti-Cyclin D1, D3, E, A and B1 primary antibodies (Cell Signaling, MA, USA) and detected with horseradish peroxidase-conjugated anti-mouse/rabbit secondary antibody (Cell Signaling, MA, USA). Western blot analysis and protein loading control were performed as explained above.

Acknowledgements
Funding was provided by the INSPIRE Programme of the Irish Government’s PRTL4, National Development Plan 2007-2013 (J.A.K. and A.S.), the Small Collaborative project NanoTransKinetics (NMP4-2010-EU-US-266737) funded by the EU 7th Framework Programme (C.Å.), Science Foundation Ireland (SFI) under Grant No. [09/RFP/MTR2425] (C.Å.) and the Irish Research Council for Science, Engineering and Technology (C.Å.). Additionally, it was supported by SFI Grant No. [SFI/SRC/B1155], the Small Collaborative project NeuroNano funded by EU 7th Framework Programme (NNP4-SL-2008-214547) and the ESF Research Networking Programme EpitopeMap. Dr Alfonso Blanco (Flow Cytometry Core Facilities of the UCD Conway Institute) and Prof Jeremy Simpson (Imaging facilities at UCD’s School of Biology) are acknowledged for technical support. We thank Prof Bert Vogelstein at the Johns Hopkins University for kindly providing the HCT 116 wt and p53-ko cells.

Supporting Information Available

References

Synopsis Table of contents