<table>
<thead>
<tr>
<th>Title</th>
<th>Non-Technical Skills (NTS) for enhancing patient safety: achievements and future directions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors(s)</td>
<td>Kodate, Naonori; Ross, Anthony; Anderson, Janet E.; Flin, R.</td>
</tr>
<tr>
<td>Publication date</td>
<td>2012-11</td>
</tr>
<tr>
<td>Publisher</td>
<td>Japanese Society for Quality and Safety in Healthcare</td>
</tr>
<tr>
<td>Item record/more information</td>
<td>http://hdl.handle.net/10197/4917</td>
</tr>
</tbody>
</table>
Non-Technical Skills (NTS) for enhancing patient safety: achievements and future directions

N Kodate,¹ AJ Ross,² JE Anderson,³ R Flin⁴

Introduction

Problems in team communication and decision making have been implicated in accidents in high risk industries such as aviation, off shore oil processing, nuclear power generation. Recognition of the role that breakdowns in communication and teamwork play in patient safety incidents has led to a plethora of studies in the area of what has come to be widely known as non-technical skills (NTS); a term initially used in European aviation (1). This has led to increasing interest in identifying, assessing, training and measuring non-technical skills. Non-technical skills are defined as the cognitive and social skills that complement workers’ technical skills (1). Technical skills are the procedural and clinical skills that healthcare professionals apply when diagnosing, monitoring and treating patients. Non-technical skills refer to the general cognitive and social skills that allow them to, among other things, monitor the situation, make decisions, take a leadership role, communicate and co-ordinate their actions within a team, in order to achieve high levels of safety and efficiency.

There is growing awareness that non-technical skills are essential for competent practice and NTS have been incorporated into medical education and training programmes (2). Internationally,

¹ Lecturer, School of Applied Social Science, University College Dublin (UCD), Ireland; Research Fellow, UCD Geary Institute; Senior Fellow, Todai Policy Alternatives Research Institute (PARI), University of Tokyo, Japan.
² Senior Research Fellow, Simulation and Interactive Learning Centre (SaIL), St. Thomas’ Hospital, London, UK.
³ Senior Lecturer, Florence Nightingale School of Nursing and Midwifery, King’s College London (KCL), UK.
⁴ Professor of Applied Psychology, School of Psychology, University of Aberdeen, UK.
a module on human factors is one component of the World Health Organisation (WHO)’s curriculum on patient safety for medical students (3, 4). In the UK, serious deficiencies in the undergraduate medical curriculum were highlighted by Parliament’s Health Committee Report (5). Now the Royal Colleges of Surgery in Great Britain and Ireland all provide training in NTS although to varying degrees of extent, coverage and financial support for medical students and trainees. One notable example is that the Royal College of Surgeons of Edinburgh began to offer a course called NOTSS (Non-technical Skills for Surgeons) (6) in conjunction with the University of Aberdeen in 2006 (7). This has now developed into two courses. One is a multidisciplinary course called Safer Operative Surgery, which encompasses wider safety issues surrounding surgical teams (Yule et al., 2009; The Royal College of Surgeons of Edinburgh website). The other is a NOTSS Masterclass for surgeons who want to train and assess these skills using the NOTSS system. Although the examples in this article deal primarily with the National Health Services in the UK, NTS are being applied by healthcare practitioners and research groups worldwide, and Japan is no exception (8-12).

In this paper we aim to give an overview of the development and application of NTS in healthcare and offer some thoughts about its future directions. We start by outlining the importance of non-technical skills (NTS) in healthcare, with a focus on patient safety and quality of care, and then provide an overview of how NTS are identified, trained and assessed before considering future directions for NTS theory and practice. We conclude that the future of NTS in healthcare is likely to: a) pay more attention to skills such as teamwork, providing scientific rigour and replicability can be brought to bear on this area; and b) incorporate an appropriate context from systems-theories, in line with recent developments in cognitive science and resilience engineering.
What are non-technical skills

NTS theory and practice has its roots in Crew Resource Management (CRM) techniques developed in aviation (13) and later applied in other domains (14, 15). It also has been influenced by cognitive engineering approaches that investigate the key role of cognitive skills in many work tasks, using methods such as Cognitive Task Analysis to identify them (16).

Definitional aspects remain a contentious issue. Both ‘non-technical’ (17) and ‘skills’ (18) have been criticised as misleading and imprecise terms. Further, there is a debate around whether the term ‘soft skills’ is synonymous (19) or compatible (20) with NTS (‘there is nothing soft about non-technical skills’) (21: p455).

These ongoing debates notwithstanding, it seems beyond question that a) NTS is a term in common usage and b) there is broadly a shared understanding of the cognitive and behavioural factors covered (22). It can be noted that terminology around ‘human error’ and ‘human factors’ has been similarly debated in recent years (23) but the contribution towards patient safety made by behavioural, cognitive and organizational science is generally recognised (24, 25).

Although the NTS that are most relevant to effective performance may vary according to work demands, it is possible to identify the core NTS that are commonly required in high risk industries. Most training courses for NTS are concentrated around a set of core components originally derived from CRM work in aviation and these have been outlined by Flin, O’Connor and Crichton (1, 8). Their list of NTS skill categories and component elements has been applied to healthcare by Engle et al. (21) (see Table 1).
Table 1: Core non-technical skills (21: p454)

<table>
<thead>
<tr>
<th>NTS</th>
<th>Skill components</th>
</tr>
</thead>
</table>
| Situation awareness | • gathering information
| | • recognising and understanding
| | • anticipating future states |
| Decision Making | • defining the problem
| | • identifying options
| | • balancing risks and selecting options
| | • reassessing/reviewing outcomes |
| Communication skills | • giving information clearly and concisely
| | • including context and intent
| | • receiving information
| | • identifying and tackling barriers to communication |
| Team working | • supporting others
| | • solving conflicts
| | • exchanging information
| | • coordinating activities |
| Leadership | • using authority and assertiveness
| | • maintaining standards
| | • planning and prioritizing
| | • managing workload and resources |
| Stress management | • identifying symptoms of stress
| | • recognising effects of stress
| | • implementing coping strategies |
| Fatigue management | • identifying symptoms of fatigue
| | • recognising effects of fatigue
| | • implementing coping strategies |

Identifying NTS

One of the underlying assumptions in this area is that NTS can be trained and assessed. This means that in order to develop training programmes, the relevant NTS for a particular clinical area or occupational group have to be identified. Identification of NTS has to be systematic and objective. This is challenging because non-technical skills are not always directly observable and particularly in the case of cognitive skills, must be inferred from people’s behaviour. There can also be ambiguity in the interpretation of observations meaning that some degree of subjectivity
is inevitable. The identification of relevant NTS is therefore more challenging than the identification of technical skills. Different researchers have approached the identification of NTS in different ways, but in general all the methods are underpinned by human factors approaches to the analysis of work, such as task analysis methods.

Identification of the NTS required for a given job can be based on existing taxonomies for other occupations but will need to be augmented with data gathered from the relevant domain. Some of the generic NTS categories (e.g. situation awareness and teamwork) are likely to be applicable but not all roles in a work team require leadership or decision making as key facets of their responsibilities. Moreover, the element level and specific behaviours can be very different for particular occupations. The use of several methods to gather data is recommended and can include questionnaires, interviews, focus groups, analysis of adverse events and observations. Flin et al (2008) (1, 8) recommend data triangulation, the development of a preliminary taxonomy and then further development and validation, especially if a behavioural rating scale is being developed as well as a training programme.

Table 2 shows an example of a recent study identifying NTS in Emergency Medicine for the development of a behavioural marker system for formative assessment.

<table>
<thead>
<tr>
<th>Table 2: NTS identification vignette (26)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing behavioural markers for Emergency Physicians’ non-technical skills</td>
</tr>
<tr>
<td>Clinical area</td>
</tr>
<tr>
<td>Participants</td>
</tr>
<tr>
<td>Site</td>
</tr>
<tr>
<td>Purpose</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>NTS definition</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Key NTS categories</td>
</tr>
<tr>
<td>Key NTS components</td>
</tr>
<tr>
<td>Methods</td>
</tr>
<tr>
<td>Outcomes</td>
</tr>
<tr>
<td>Learning points</td>
</tr>
<tr>
<td>Limitations</td>
</tr>
</tbody>
</table>

Training NTS

NTS can be trained using a wide range of training techniques, including didactic lectures, demonstrations, and practice based methods such as role play, and simulated exercises with varying degrees of fidelity. Many NTS courses, based on CRM techniques from aviation, are now used widely in many high risk industries, including healthcare. Application has been extended to a range of clinical domains including anaesthesia, surgery, emergency medicine and primary care (19, 27, 28).

There are typically three phases to CRM training:
Raising awareness of NTS and their importance. This is usually accomplished by introducing NTS in an educational session such as a lecture. Specific lectures then follow on individual NTS categories. Pre course reading introducing the topics can also be provided.

Skill practice using exercises and simulations. This is usually followed by feedback and discussion of performance to enable participants to understand how NTS contributed to the outcome of the exercise, and to reflect on their experience.

Reinforcement of NTS in the workplace or involving refresher courses.

Recent years have seen a steady growth in the application of medical simulation modalities to the study of, for example, teamwork (29), leadership (30), empathy (31) and staff-patient communication (32).

Ward-based simulations (33), exercises in high fidelity simulation suites (34, 35) and in situ or mobile simulations (36) have all been applied to the training of non-technical skills to positive effect. Table 3 shows an example of a recent study of combined ward-based and high fidelity suite-based simulation for the training of non-technical skills in a multidisciplinary team for the care of older people.

Table 3: NTS training vignette (32, 37, 38)

<table>
<thead>
<tr>
<th>Simulation training for improving the quality of care for older people</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical area</td>
</tr>
<tr>
<td>Participants</td>
</tr>
<tr>
<td>Site</td>
</tr>
<tr>
<td>Purpose</td>
</tr>
<tr>
<td>NTS definition</td>
</tr>
<tr>
<td>Key NTS categories</td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
<tr>
<td>Key NTS components</td>
</tr>
<tr>
<td>Methods</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Outcomes</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Learning points</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Limitations</td>
</tr>
</tbody>
</table>

Assessing NTS

Formal methods for assessing NTS are required for the following purposes:

1. To give training programme participants feedback about their level of skill
2. To test skills for a licensing programme
3. To evaluate the effectiveness of a training programme and to assess whether skills have transferred to the work environment
4. To audit skill levels in a team or department for ongoing training and development needs (1, 8).

Behavioural marker systems have been developed to define the different components of the skills and to give positive and negative examples of practice relating to the skill. These are usually combined with a rating scale that allows observers to rate how effectively the skill is being practised. Rating scales can have varying formats but should adhere to the principle of having good psychometric properties, including reliability, validity and sensitivity. Observers usually require extensive training. Using video for recording performance and later analysis of performance allows multiple raters to observe the same scenarios and compare their interpretations, increasing the reliability of the ratings.

A number of behavior rating systems have been designed and developed for specific specialties, including the operating theatre teams (Oxford NOTECHS) (43) and associated professional groups such as anaesthetists (ANTS) (44, 45), surgeons (NOTSS) (6, 46, 47) and scrub practitioners (SPLINTS) (48, 49). Parker et al. (2012) describe a specific inventory for surgical leadership (50). Hull et al. (2012) also outline the use of a number of global performance rating scales applied to non-technical performance (51).

Table 4 shows an example of a recent study assessing the psychometric properties of a new NTS behavioural rating system.

<table>
<thead>
<tr>
<th>Table 4: NTS assessment vignette (52)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessing Scrub Practitioners’ Intraoperative Non-Technical Skills using the SPLINTS system</td>
</tr>
<tr>
<td>Clinical area</td>
</tr>
</tbody>
</table>
Participants | Scrub practitioners (nurse, operating department practitioner, or instrument technician)
---|---
Site | Northern UK, off site – based on video simulation

Purpose
Validate (reliability, validity, usability) the SPLINTS tool for assessing scrub practitioners’ NTS

NTS definition
“the cognitive, social and personal resource skills that complement technical skills, and contribute to safe and efficient task performance”

Key NTS categories
Situation awareness, communication and teamwork, task management

Key NTS components
Gathering information; recognising and understanding information; anticipating; acting assertively; exchanging information; coordinating with others; planning; providing and maintaining standards; coping with pressure

Methods
Introduction to human factors concepts (3 h) and trained in the use of the SPLINTS system (2 h)

Practice with using the tool to rate behaviours seen in a simulated video scenario (1 h)

Used SPLINTS to rate the performance of scrub practitioners seen in seven standardized simulated, surgical video scenarios (1 h).

Outcomes
Non-technical skills of scrub practitioners can be identified (from behaviours seen in realistic scenarios showing scrub practitioner performance in the intraoperative phase of surgery) using the SPLINTS system

The results indicate that the SPLINTS system has a consistent internal structure, and can be used with a reasonable level of accuracy to rate performance in simulated scenarios, when compared with subject matter expert ratings

Participants indicated that the SPLINTS system is usable and contains the most important non-technical skills for the scrub practitioner to perform effectively

Even with minimal training, scrub practitioners can use the SPLINTS behavioural rating system to reliably rate the non-technical skills performance of scrub practitioners seen in simulated, standardized video scenarios

Learning points
Providing a common language and a structured method for rating and training non-technical skills could take scrub practitioners one step closer to reducing the still unacceptably high adverse event rate seen in the operating theatre

Limitations
Fairly small number of participants (n= 34); The use of semi-scripted recorded scenarios rather than live or recorded operating theatre situations meant that some of the scenarios may have seemed more realistic than others

Future Directions
Definition
As more healthcare practitioners and health sciences researchers become familiar with the broad area of NTS, the definition of NTS is being reconsidered, especially in relation to interactions with patients. In the operating theatre where most NTS research in healthcare has taken place, patients are normally anaesthetised. A fundamental question is whether interpersonal and listening skills that are essential for good patient care should be considered as a category of NTS. Ross et al. (2012 Under Review) argue that compassionate and empathetic communication with patients, for example, are important not just for patient experiences but for safety and quality and thus should be considered key NTS (38). However most researchers continue to focus on NTS as they apply to co-ordination and communication between team members but not between healthcare professionals and their patients.

Clinical areas
Although NTS is a general term, its application in healthcare has tended to focus on acute specialities such as anaesthesia (53) and surgery (54). In cognitive terms, the thrust of much work has been towards features of individual cognitive performance such as situation awareness, planning and decision making (33). Nevertheless, an important strand in surgical work has been the cross-disciplinary nature of study in this area (55). Applications concerned specifically with nurses’ teamwork and cognitive skills are becoming more visible in the literature (e.g. resuscitation teams (56); scrub practitioners (48, 52); midwives (57)) but this is an area that has room to develop (58).

System perspective and resilience
Researchers have approached NTS mostly at the level of individual behaviours, as in most industrial domains practitioners do not always work with the same team. Hence each worker requires portable NTS that they can apply in any team and accordingly NTS are assessed on an
individual basis. Saurin et al. (2012) argue that traditional categories (e.g. situation awareness) derived from CRM have been applied via methods that ‘adopt, implicitly, paradigms that are based on cognition in the mind paradigm, rather than on cognition in the wild’ (15: p37). This refers to the emerging areas of distributed cognition (59) and situated cognition (60) wherein cognition is interpreted as bound in situ within social, cultural and physical contexts. Without a better understanding of interactions between individual professionals and these contextual factors, post-training teams will not be able to fully utilize their newly acquired NTS in a sustained manner. There also needs to be organizational support, such as senior management commitment to institutional resources, development of official policies and creation of ‘champions’ (27: p114). The main implication for developing NTS applications is that NTS should be approached from a systems-level perspective if they are to be ultimately successful in understanding flexibility and adaptation in organizations. Important consideration should be given to the context in which skills are performed (61).

Saurin et al. (2012) suggest that applying Resilience Engineering principles to NTS could be fruitful (15). Resilience Engineering is ‘an emerging discipline which ‘emphasizes the capacity of a system to adapt safely to changing conditions’ (62: p3) even when unexpected conditions are encountered (63). Resilience is viewed as an emergent feature of the work system (64) and the focus moves beyond human error (65, 66) towards understanding the adaptive capacity of the system and how people anticipate, deal with and recover from difficult demands and challenging conditions (66, 67). This perspective suggests an additional application of NTS work; it will be important to develop ideas about how the core skills and components (see Table 1) reflect organizational or systems level adaptations to fluctuations and pressures in the work system. Training would focus less on rating individual behaviour and more holistically on interactions
between NTS categories, and the relationship between NTS and technology, resources and work systems including documents, procedures and policies.

NTS achievements to date

There is general acceptance that the introduction of NTS concepts into healthcare via training, development and research has had an impact on medical outcomes. Hull et al. (2012) conclude in a review of surgery that ‘Although the available literature is somewhat heterogeneous, this review provides evidence that [NTS] skills can and do have an effect on surgeons’ technical performance’ (51: p228). Similarly, another simulation study found a strong correlation between technical and non-technical skills (68). Moreover, recent prospective observational studies demonstrate that surgeons’ NTS can be reliably measured using various work-based assessment methods (69, 70).

Conclusions

In this paper we have outlined the importance of NTS in healthcare and some of its contributions to patient safety and quality of care. Examples have been provided of how they are identified, trained and assessed. It can be concluded that future directions for NTS theory and practice involve: increasing applications in nursing and interprofessional environments; focus on skills for interacting with patients; approaches that consider cognition in complex systems. Amalberti et al. (2001) describe a ‘plateau’ reached by tools derived from CRM in ‘ultra-safe’ industries that already have high safety records (71). These are levels of safety that healthcare strives to emulate and CRM approaches may help to play a part in that endeavour. It is thus important that the field of NTS in healthcare continues to evolve. The future of NTS in healthcare is likely to:

a) attend to skills such as teamwork, leadership and communication skills, providing scientific
rigour and replicability can be brought to bear on this area; and b) incorporate systems-theoretical extensions, in line with recent developments in cognitive science and resilience engineering.

Acknowledgements

We would like to thank all those who participated in and supported the Anglo-Japanese collaboration for Improving Patient Safety (AnJIPS) project (2011-2012), funded by the Daiwa Anglo-Japanese Foundation. Special thanks to Dr Ken Taneda, Dr Kenji Harada, Mr Michael Marrinan, Professor Yasushi Kodama and Dr Chiaki Sato.
References

