<table>
<thead>
<tr>
<th>Title</th>
<th>Hippocampal contribution to vector model hypothesis during cue-dependent navigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors(s)</td>
<td>Diviney, M.; Fey, Dirk; Commins, S.</td>
</tr>
<tr>
<td>Publication date</td>
<td>2013-06-17</td>
</tr>
<tr>
<td>Publication information</td>
<td>Learning & Memory, 20 (7): 367-378</td>
</tr>
<tr>
<td>Publisher</td>
<td>Cold Spring Harbor Laboratory Press</td>
</tr>
<tr>
<td>Item record/more information</td>
<td>http://hdl.handle.net/10197/4991</td>
</tr>
<tr>
<td>Publisher's version (DOI)</td>
<td>10.1101/lm.029272.112</td>
</tr>
</tbody>
</table>
Hippocampal contribution to vector model hypothesis during cue-dependent navigation.

Mairead Diviney1, Dirk Fey2, Sean Commins1*

1Department of Psychology,
National University of Ireland Maynooth,
Maynooth,
Co. Kildare,
Ireland.

2Systems Biology Ireland
Conway Institute,
University College Dublin,
Dublin,
Ireland

*Corresponding author; email: Sean.Commins@nuim.ie; fax: +353-1-7084767; telephone: +353-1-7084765.

Submitted to \textbf{Learning & Memory}.
Abstract

Learning to navigate towards a goal is an essential skill. Place learning is thought to rely on the ability of animals to associate the location of a goal with surrounding environmental cues. Using the Morris water maze, a task popularly used to examine place learning, we demonstrate that distal cues provide animals with distance and directional information. We show how animals use the cues in a visually-dependent guidance manner to find the goal. Further, we demonstrate how hippocampal lesions disrupt this learning mechanism. Our results can be explained through the vector model of navigation built on associative learning principles rather than evoking a cognitive map.
Being able to successfully navigate between two points is an essential skill for the survival of animals. A navigating animal is thought to have two sources of information with which it can locate itself within an environment: egocentric and allocentric (Aggleton et al., 2000; Begega et al., 2001; Pearce et al., 1998; Valerio et al., 2010; Wang & Spelke, 2000). In egocentrically-based navigation, animals can use view-dependent information, whereby any available external information (e.g. cues or landmarks) is represented in relation to the animal itself (Brown, 1992; Maurer & Derivaz, 2000). Alternatively, animals can rely on information gained from their own motor movements in relation to a specific point in their journey to get to their goal (Whishaw et al., 2001). Allocentric navigation involves defining a place relative to another location or to another object (e.g. remote landmarks), and is independent of the viewer (Bures et al., 1998). Typically the cues or landmarks remain stable and are at some distance away from the goal, thus allowing the animal to locate its target in relation to those cues (Whishaw et al., 2001).

During allocentric navigation multiple available cues can be used, whereby the navigator processes the spatial relationship between the cues and the goal in order to memorise the target’s position (Allen, 2004; Benhamou & Poucet, 1998). It has been suggested that there are two components to this process. First, the establishment of spatial relationships between landmarks in the environment, and second, the updating of distance and direction from start to goal with reference to information external to the navigator. By using and processing this type of environmental information, it has been suggested that a ‘map’ of the layout of an environment can be developed (Tolman, 1948).
One such widely known and examined ‘map’-like representation is O’Keefe and Nadel’s (1978) cognitive map. This map is developed from the spatial information gained from a previously encountered environment and has been defined as a stable Euclidean representation of the distances and directions between landmarks and locations. A critical feature of the ‘map’, which allows for highly efficient and flexible navigation, is that the moving animal gains information from its surroundings that is also beyond their direct field of perception, allowing for short cuts and novel paths to be taken (Poucet, 1993). O’Keefe and Nadel (1978) proposed that for the map to be successfully generated, the animal must first thoroughly explore their environment; the acquired details of this exploration would then become integrated in the map-like system, subsequently reducing the need for further exploration once it is established. Cognitive mapping theory also proposes that the hippocampus is the neural structure dedicated to creating these map-like representations of space (Morris et al. 1982). However, while cognitive map theory has received much attention, some of the findings reported to confirm these ideas are somewhat imprecise and thus not easily understood (Eichenbaum et al., 1999). Furthermore, there may be simpler explanations to account for animal navigation without evoking the notion of a cognitive map.

One example of this comes from associative learning theory, which is a more recent alternative to the cognitive mapping model of spatial representation. It postulates that allocentric space may be simply represented as an associative mechanism (Miller & Shettleworth, 2007), where one factor (be it object or action) can be learned only through the association with a separate, pre-occurring factor. So rather than building up an overall representation of the layout of an environment, which may be cognitively taxing, the
navigator need only associate individual items in the environment as required. For example, in the Morris water maze (a popular task used to test spatial memory) successful navigation can also be attributed to an associative mechanism, whereby visual cue(s) can become associated with the availability of an escape (Sanchez-Moreno et al. 1999; Hamilton et al. 2004). Indeed, key elements of associative theory including cue competition, blocking and overshadowing have all been reported for place learning in this task (Sanchez-Moreno et al. 1999; Rodrigo et al. 1997; Chamizo et al. 2006). Therefore when a number of cues or landmarks are available, associative theory predicts that during learning the animal will weight some cues as more important than others. So rather than constructing a ‘map’ that incorporates all of the environmental stimuli in an all-or-none manner as described by O’Keefe and Nadel (1978), the animal weights the importance of specific individual cues or landmarks with goal finding. Derived from the traditional learning model of Rescorla and Wagner (1972), a recent model of spatial learning developed by Miller & Shettleworth (2007) extends the idea of cue competition to incorporate geometric cues. This model suggests that geometric cues (e.g. shape of environment) must also adhere to the same associative rules. The authors also include a probability rule for approaching or avoiding locations. While there are many aspects of spatial learning that fit readily into such a model, there are some elements not accounted for (see for example, McGregor et al., 2009). Further, this model says nothing on the role of directional and distance information that may be provided by cues, particularly those cues that are located at a distance from the goal.

The vector-model (Collett et al. 1986), typically applied to insect navigation, may offer a more sophisticated alternative, as it takes some of these issues into account. While
similar to a cognitive map, the model has been interpreted as involving a simpler representation, developed through associative processes rather than an ‘all-or-none’ manner (Collett et al. 1986; Esber et al. 2005; Leising and Blaisdell, 2009; Pearce et al. 2004). This model suggests that animals can use multiple cues in the form of vectors (containing directional and distance information) to guide them to a goal (Collett et al. 1986). Specifically, the animal’s current position may be defined with respect to a landmark- a ‘seen’ vector, and this is compared to a ‘stored’ or remembered vector, which provides the position of the goal with respect to the landmark. The animal can then compute a direct path (i.e. short-cut) by taking the difference between the two, which will enable the navigator to plan an intended path trajectory to a goal (i.e., a movement vector; Cheng 1986; Collett et al. 1986). Behaviourally this model is attractive but, similar to other associative learning accounts, it lacks a detailed neural mechanism.

By varying the locations of the cues relative to the platform in a water maze task, it may be possible to examine how animals use the cues during place learning, and how they determine whether the cues provide task-relevant information. The current study attempts to do this. Fig. 1A (inset) shows the location of the hidden platform relative to the cues in the ‘Near’ and ‘Far’ conditions. Therefore, if animals are required to establish distance and directional information from the cues, this should prove more challenging for the Far group, due to the greater distance and angular deviation between the cues and the platform. Therefore, the Far group should be slower at finding the platform. Furthermore, if we observe these animals making an initial movement towards the cues, which is subsequently followed by a re-direction towards the platform, this behaviour might be indicative of animals using components of the vector model theory (an observed
vector, followed by a movement vector). We may also be able to rule out specific elements of the cognitive map theory; for example, if we find evidence of cues being used individually or that the cues are still being used to establish a bearing late in acquisition (when there should be no need for further exploration, as the map should be well established at this stage). This should be particularly evident in the Far condition.

There has been some debate over the exact nature of hippocampal involvement in spatial tasks, with suggestions of a hippocampal role in the monitoring of behaviour while swimming in the maze. This stems from observations of significant alteration and sometimes extinction of exploratory behaviours following hippocampal ablation (D’Hooge & De Deyn 2001; Leaton 1965; Morris et al. 1982; Wallace et al. 2002; Whishaw et al. 1994). Cognitive mapping theory accounts for this, maintaining that animals would lose the ability to explore efficiently as they would not be able to learn or retain information about the spatial features around them, leaving exploration redundant (O’Keefe & Nadel, 1978). Others, however, have proposed that the impairments displayed by lesioned animals are not a purely spatial learning deficit, but rather result directly from the behavioural alterations that occur following hippocampal damage (Day et al. 1999; Eichenbaum et al. 1990; Whishaw, 1998). Here we conduct an in-depth behavioural analysis on the role played by the hippocampus in cue-based navigation, and attempt to relate our findings to the above discussion and to the various models of learning.
Results

Animals rely on distal cues to find the goal irrespective of cue location

Animals were randomly divided into two groups and trained in the water maze (4 trials/day for 5 days) under either a Far (n = 14) condition or a Near (n = 14) condition (Figure 1A inset). Fig. 1A demonstrates that both Near and Far groups readily acquired the task following training. An overall significant effect for Day was found (F(4,108) = 43.5, P<0.001), with Bonferroni-corrected t-tests showing the escape latencies on Days 4 and 5 were significantly faster than the other three days. In addition, an overall significant Group (F(1,27) = 14.285, P<0.01) effect was found but no Group X Day interaction effect (F(4,108) = 2.126, P=0.082) was noted. However, to demonstrate that, irrespective of cue distance and location, all animals relied on the distal cues to solve the task, we re-tested both groups in a probe trial. Prior to the retention test, we divided those animals trained under the Near condition into two further groups; one group (n=7) was re-tested in the exact same condition as during training (but with the platform removed; Near CT). The second group (n=7) was re-tested (also without the platform) but with the cues rotated 180 degrees; Near CR). Likewise, we divided those animals trained under the Far conditions into two similar groups; group 1 (n=7) was re-tested in the exact same conditions as during training (but with the platform removed; Far CT). The second group (n=7) was re-tested with the cues rotated 180 degrees; Far CR.

Fig. 1B and 1C demonstrate that all groups retained a strong cue-platform association. A repeated measures ANOVA revealed an overall significant Quadrant effect for the Near CT group (F(3,18) = 9.67, P=0.001, Fig. 1B, black bars), with subsequent
Bonferroni-corrected pairwise comparisons revealing that animals in this group spent significantly more time searching in the NE quadrant (38.05±3.4%) than in the SE (18.76±1.74%) or SW (15.24±2.82%) quadrants (P<0.05). In contrast, Fig. 1B (white bars) shows that Near CR group followed the cues and searched in the SW quadrant. A repeated-measures ANOVA confirmed this, revealing an overall significant effect for Quadrant (F(3,18) = 18.56, P<0.001), with animals searching significantly more in the SW quadrant (40.33±2.93%) compared to the NE (10.29±1.07%) and SE quadrants (17.14±1.97%; Bonferroni-corrected P<0.05). Further independent t-tests indicated that the Near CT group spent significant more time in the NE quadrant compared to the Near CR group (t(12) = 7.78, P<0.001). In contrast, the Near CR group spent more time in the SW quadrant compared to the Near CT (t(12) = 6.17, P<0.001).

A similar pattern was observed with the two groups trained with the cues located in the Far position. Fig. 1C (grey bars) shows that the Far CT group spent most of the time searching in the NE quadrant. A repeated measure ANOVA showed an overall effect for Quadrant (F(3,18) = 9.41, P<0.001) with subsequent Bonferroni-corrected tests revealing that animals spent significantly more time in the NE quadrant (35.04±5.9%) compared to the SW (12.01±2.84%; P<0.01) and SE quadrants (10.08±2.96%; P<0.05). In contrast, Fig. 1C (white bars) shows that Far CR group followed the cues and searched mainly in the SW quadrant, with a repeated-measures ANOVA revealing an overall significant effect for Quadrant (F(3,18) = 5.17, P<0.01). Further independent t-tests showed, as expected, that the Far CT group spent significant more time in the NE quadrant compared to the Far CR group (t(13) = 2.84, P<0.05).
Do animal use distal cues as a guide and how is this achieved?

While animals retained an association between the distal cues and the platform’s location, we wanted to investigate whether the Near and Far groups differed in terms of their acquisition. Thus, in a second experiment, we trained another set of animals in the water maze for 5 days under either the Near or Far condition (n=7/group). Both groups successfully acquired the task, but we found that the Far group was significantly slower (25.49±3.89 sec) in finding the platform compared to the Near group (19.31±2.70 sec), as hypothesised. A 2 x 5 mixed factorial ANOVA confirmed this, showing a significant main effect for Day (F(4,48) = 24.04, P<0.001) and Group (F(1,12) = 5.27, P<0.05), but no Day X Group interaction effect (F(4,48) = 0.66, P>0.05). This finding however does not demonstrate how animals use the cues and how distance and directional information is established.

To show this, we then analysed individual tracks from both groups across the acquisition period. From this micro-analysis, a number of cue-related behaviours were observed (Fig. 2, Methods and Harvey et al. 2008). Initially, both groups swam at the pool side in a thigmotaxic fashion that decreased with time. A 2 x 5 mixed factorial ANOVA confirmed an overall effect for Day (F(4,48) = 10.97, P<0.001), with Bonferroni-corrected t-tests revealing an overall significant decrease in time spent in thigmotaxic behaviour on Days 3, 4 and 5 compared to Day 1 (all P<0.05). However, no Group (F(1,12) = 2.4, P>0.05) or Day X Group (F(4,48) = 1.63, P<0.05) interaction effect was found. Animals showed two types of thigmotaxic behaviour; one in which they swam parallel to the pool wall (parallel thigmotaxis) and another where animals swam facing the wall (vertical thigmotaxis). Although there were no significant differences between the groups
in the mean time spent in these behaviours ($F_{(1,12)} = 0.39, P>0.05$ and $F_{(1,12)} = 2.69, P>0.05$ for parallel and vertical thigmotaxis respectively), Fig. 2A demonstrates that animals in both groups show strong vertical thigmotaxis at their respective cues (particularly on Days 1 & 2), suggesting that all animals rapidly associated the cues with an escape. Therefore, it was not simply the case of swimming towards the uncued area for the Far group. We find that this pattern is not observed in Near or Far animals that have been exposed to a pool in which there was no platform present (Supplementary Fig. 1). These findings suggest that during the initial stage of learning animals have formed a association between the cues and an escape. The cues act as a beacon, towards which they search.

However, as the platform was not located at the cues, but at a given direction and distance from them, we suggest that animals must then use the cues as a guide. Due to the location of the cues behind the platform, animals in the Near group (upon approaching the platform) can maintain at least one cue within their visual field. This occurs when the animal swims in over 64% of the arena. Being able to visualise at least one cue should allow the Near group to be guided more readily, culminating in quicker latencies. In contrast, animals in the Far group, upon approaching a cue, would then have to physically turn around to locate the platform, resulting in longer escape latencies. Figs. 2B-D support these ideas.

Fig. 2B demonstrates that although both Near and Far groups spent an increasing amount of time along a direct path as training progressed, the Near group spent more time (39.44±4.1%) in a straight route compared to the Far group (30.63±2.87%). A 2 x 5 mixed factorial ANOVA confirmed this, with an overall effect for Day ($F_{(4,48)} = 10.54,$
P<0.001) and Group (F(1,12) = 12.14, P<0.01). No interaction Day X Group interaction effect was found (F(4,48) = 1.85, P>0.05). We then examined the direction towards which animals swam when performing direct movements (Fig. 2C). The mean number of times each group spent directly swimming in a certain direction or towards a defined region of the pool was calculated. As this behaviour was not performed as readily as thigmotaxis, the pool was divided into two segments, with one segment containing cues and the other containing no cues. The cue containing area for the Near group encompassed the region from 60-240° and for the Far group encompassed the area from 240-60°. The non-cued area for the Near group encompassed the region from 240-60°, and for the Far group included the area from 60-240°. Analysis revealed that the Near group spent significantly more time heading towards the cued area than towards the non-cued region of the maze (t(6) = 2.32, P<0.01; t(6) = 4.47, P<0.01; t(6) = 5.62, P<0.001; t(6) = 11.6, P<0.001 for Days 2-5, respectively). In contrast, the Far group did not appear to have any significantly preferred heading direction across training; Day 1: t(6) = 1.46, P>0.05; Day 2: t(6) = 1.19, P>0.05; Day 3: t(6) = 0.75, P>0.05; Day 4: t(6) = 0.40, P>0.05; Day 5: t(6) = 0.77, P>0.05. Fig. 2c shows data for Day 5 only. This suggests that the Far group did not swim along a direct trajectory and spent a similar amount of time heading towards the cues as away from them, across training.

This idea is developed further when we analysed the mean number of turns away from the cues. Fig. 2D and 2E show that the Far group made significantly more turns away from the cues across all days compared to the Near group. A 2 x 5 ANOVA confirmed this, by revealing no overall significant effect for Day (F(4,48) = 2.01, P>0.05). However, a main effect for group was found (F(1,12) = 67.46, P<0.001), where the Far
group made significantly more turns-away from the cues (10.8±1.33) than the Near group (4.54±1.04, Fig. 2D and 2E). Furthermore, this group showed a significant heading, after the turn, towards the platform ($F_{(1,12)} = 109.6, P<0.01$). This indicates that the Far group approached the cues to get bearings before turning in the correct direction, suggesting that the cues are providing directional information. With time, the locations of turns get closer to the platform (Fig. 2D) suggesting that animals no longer need to swim directly towards the cues and that distance information has been established.

Using a dynamic model of spatial navigation we recently developed (Fey et al. 2011) some of these findings were tested. Using the model (Fig. 3A) we were able to separate out different learning strategies and compare the resulting escape latencies to our experimental data. For example, Fig. 3B demonstrates that if animals select a random cue (located in the Far position), swim towards it and continue to repeat this strategy until the platform is found (F-CA), the resulting escape latencies are very high (~52 seconds, similar to what is observed behaviourally on Day 1). If animals approach a cue (again, located in the Far position) turn and head in a random direction (F-CA-RND), this behaviour reduces the escape latencies to ~39 seconds. Similarly, if animals approach a cue and turn in the exact direction from where they came (F-CA-180), the escape latencies also remain high (at ~35 seconds). However, if animals approach a cue (in the Far position) and turn in the direction of the platform, their escape latencies drop to ~20 seconds (CA-DC). Furthermore, when animals use this last strategy but learn to limit their cue approach (as was observed in the behaviour data above, with turns getting closer to the platform) their escape latencies dropped to a figure similar to what we have observed experimentally (DC; 13.9 seconds in the model vs 14.1 +/- 2.8 seconds in the
Fig 3C models this strategy further and shows how escape latencies can decrease by simply reducing the number of steps/distance taken towards the cues. A strategy of heading towards the cues, turning away and heading in the direction of the platform is one strategy adopted but we also observed a more efficient method of cue guidance, particular relevant for the Far group. This emerged from our analysis of *turns towards* the cues. Although the mean number was similar for both groups (12.17±0.67 (Near) and 10.17±0.67 (Far)) the location of where the turns occurred differed. Fig. 4A demonstrates the mean location of turns in the Near group remained stable across time with turns towards cue 1 (blue), cue 2 (red) and cue 3 (green) being 41.17°, 315.5° and 255.2°, respectively, on Day 5. Thus, the turns towards a specific cue tended to be located opposite the cue itself, thereby increasing the chance of the animal finding the platform. In contrast, the Far group’s mean location of turns changed with time and became increasing clustered north of the platform by the final training day (Fig 4B). The mean location of turns towards cue 1 (blue), cue 2 (red) and cue 3 (green) on Day 5, for example, was 214.6°, 132.6° and 337.1° relative to the platform, respectively. Therefore, the mean location of turns changed gradually from being *at* the cues on Day 1 to *opposite* the cues by Day 5, thereby allowing animals to approach the platform while maintaining at least one cue within their visual field (as for the Near group). Furthermore, for both groups the location of turns got closer to the platform over time, although at a slower pace for the Far group (Fig. 4C & 4D). A 5 x 3 repeated measures ANOVA examining turn location for the Near group revealed no significant main effect for day ($F_{(4,24)} = 1.07, P>0.05$), however a significant main effect for zone was revealed ($F_{(2,12)} = $)
20.33, P<0.001), where the overall mean number of turns in the far zone was significantly higher (M: 8.17±1.27) than the middle (M: 5.2±1.21, p<0.01) and near zones (M: 4.15±1.11, p<0.01). A significant interaction effect between day and zone (F(8,48) = 3.30, P<0.01) was also found. No difference between the zones was noted (F(2,12) = 0.24, P>0.05) by Day 5 (Fig. 4C) suggesting that all turns were conducted in a similar location. Similar analysis were conducted for the Far group. Overall, no main effect for day was noted (F(4,24) = 2.54, P>0.05). A main effect for zone was found (F(2,12) = 66.31, P<0.001) with subsequent Bonferroni-corrected t-tests illustrating the highest mean number of turns were in the far zone. In addition, an interaction effect between zone and day was also noted (F(8,48) = 18.95, P<0.05). A significant difference was noted between the zones on Day 5 (F(2,12) = 9.16, P<0.01), with differences between the near and far (P<0.01) and middle and far zones (P<0.01).

Overall, these results suggest that animals need to visualise the cues and use individual cues to guide them to the goal. These findings suggest a visually-dependent guidance mechanism that speaks more to an associative account of spatial learning (Chamizo et al. 2006; Chamizo and Rodrigo, 2004) rather than a cognitive map per se. Animals need to visualise the cues to evoke a particular direction and distance.

Separating the contribution of directional and distance knowledge to the learning process.

While it maybe considered that successful navigation depends on the contribution of both distance and directional information, this contribution may not be equal. Using our model, we were able to separate the contribution of directional and distance information by
either reducing the directional uncertainty (\(\sigma_{\text{direction}}\)) or the distance uncertainty (\(\sigma_{\text{steps}}\)) following a cue turn and comparing the resulting escape latencies. Fig. 5A demonstrates the distributions of escape latencies and % of unsuccessful trials in response to decreasing distance uncertainty (while keeping the directional uncertainty constant at 30 degrees (i.e. animals essentially know the direction to the platform)). Fig. 5B shows the distributions of escape latencies in response to decreasing the directional uncertainty \(\sigma_{\text{direction}}\) while keeping the distance uncertainty constant (zero distance uncertainty). Note, that in all simulations rats approach cues during the first swimming episode only (\(n_{\text{cue}} = 0\)). In this model, loss of direction seemed to affect escape latencies more than loss of distance. This can be seen more clearly in Fig. 5C which shows the distribution of escape latencies resulting from different combinations of both directional and distance uncertainties using 2500 simulated trials (see table). The surface of Fig. 5C represents a smooth fit to these data with the solid lines (isoclines) marking equal escape latencies and the dashed lines represent two possible learning curves that depend on the extent of distance or directional information acquired.

Does cue location affect hippocampal functioning?

Following our behavioural analysis, we then wanted to examine the role of the hippocampus in cue-dependent learning. As our results suggested that animals in both Near and Far groups use a similar learning mechanism (albeit at a slower rate for the Far group), we would expect that hippocampal lesions would have similar effects on both groups. To examine this we trained two groups of animals (Sham and Dorsal Hippocampal lesion (DH); \(n=8/\text{group}\)) in the MWM with cues located in the Near
position and a further 2 groups (Sham and DH; n=7/group) to find the platform using cues located in the Far position. We demonstrate that both DH groups were significantly impaired at finding the hidden platform compared to their respective sham controls (de Bruin et al. 2001; Morris et al. 1990; $F_{(1,14)} = 12.59, P<0.01$ (Fig. 6A) and $F_{(1,13)} = 17.92, P=0.001$ for Near and Far groups, respectively). When we compared the two lesioned groups directly, we found that the Near DH group had an overall mean escape latency of 38.61 ± 5.75 sec and the Far DH group had a mean of 46.29 ± 3.81 sec. A 2 x 5 mixed factorial ANOVA revealed an overall effect for Day ($F_{(4,52)} = 4.91, P<0.01$) with Bonferroni-corrected pairwise comparisons revealing significantly shorter escape latencies on Day 5 compared to Day 1 ($P<0.05$), suggesting that as training progressed some improvement in task performance occurred. However, there was no significant difference seen between the two lesioned groups ($F_{(1,13)} = 2.03, P>0.05$). Further, no Group X Day interaction effect was observed ($F_{(4,52)} = 0.99, P>0.05$). There was also no significant difference between the groups in the retention probe task ($t_{(13)} = 1.77, P>0.05$). These results suggest that both lesioned groups, having similar levels of hippocampal damage (Supplementary Fig. 2) and irrespective of cue location, performed at a similar level.

How does the hippocampus contribute to cue-dependent learning?

We demonstrate that both hippocampal groups have common impairments indicating an inability to quickly inhibit maladaptive behaviours and cue-guidance difficulties. Initially, lesioned animals displayed a greater amount of thigmotaxis and failed to reduce this as rapidly as shams. While both lesioned and non-lesioned animals displayed vertical
thigmotaxis at the cues, suggesting that lesioned animals still recognise that cues have a value, lesioned animals maintained this behaviour for longer ($F_{(1,13)} = 14.93$, $P<0.01$). Supplementary Fig. 3 shows, for the most part, vertical thigmotaxis for both Near and Far lesioned groups occurred at the cues.

As animals learned the task (especially for the Near group), we observed that they stayed on straighter trajectories for longer, heading towards the cues before re-adjusting their position, with turns getting progressively closer to the platform with time (Figs. 2B, 2C and 4C, respectively). Animals with hippocampal lesions, however, have major navigational problems. First, hippocampal animals are unable to maintain a direct path. Fig. 6B shows that the mean percentage time spent by sham animals in direct behaviour increased with continued training ($F_{(4,28)} = 5.39$, $P<0.01$), this was not replicated in the lesioned group ($F_{(4,28)} = 1.82$, $P>0.05$). A 2 x 5 mixed factorial ANOVA confirmed these findings, demonstrating no overall effect for Day ($F_{(4,56)} = 1.78$, $P>0.05$) but a significant Group effect was found ($F_{(1,14)} = 1.82$, $P<0.05$), with sham animals (22.86±3.09%) spending significantly more time in direct behaviour than the hippocampal lesioned animals (16.17±1.62%). An interaction effect between day and group ($F_{(4,56)} = 5.8$, $P<0.001$) was also noted with further independent t-tests revealing differences between the groups on Days 3 ($t_{(14)} = 3.20$, $P<0.01$) and 5 of training ($t_{(14)} = 3.17$, $P=0.01$).

Second, as a result on not staying on a direct trajectory, we observed that lesioned animals turned away from the cues significantly more ($F_{(1,14)} = 10.05$, $P<0.01$, Fig. 6C) and headed back towards the uncued section when compared to shams. Fig. 6D, for example, shows that the sham group headed significantly towards the cued region
compared to the uncued region on Day 5 (t(7) = 7.17, P<0.001), whereas the DH group did not (t(7) = 1.12, P>0.05).

Third, the majority of turns, for the lesioned animals, were located at the pool periphery (Fig. 6F) rather than moving gradually closer to the platform as was observed for the sham animals (Fig. 6E). A 3 x 5 repeated measures ANOVA was initially conducted to assess the mean number of turns made in each zone, throughout training, for sham animals (Fig. 6E). No overall effect for Day was found (F(4,28) = 2.92, P>0.05). However, a main effect for Zone was revealed (F(2,14) = 50.19, P<0.001) with subsequent Bonferroni corrections illustrating the highest mean number of turns occurred in the far zone (9.07±1.24), which was significantly higher than both the near (3.33±0.54; P<0.001) and middle zones (5.57±0.96; P<0.01), overall. There was also a Day X Zone interaction effect (F(8,56) = 5.01, P<0.001). When studied in more detail, using daily one-way repeated measures ANOVAs, a significant difference between the zones on Day 1 (F(2,14) = 24.31, P<0.001), 2 (F(2,14) = 9.87, P<0.01), 3 (F(2,14) = 23.83, P<0.001) and 4 (F(2,14) = 6.57, P<0.05) was revealed. Importantly, no difference was noted between the zones by Day 5 (F(2,14) = 1.28, P>0.05), suggesting that sham animals were getting closer to the platform.

A 3 x 5 repeated measures ANOVA was also conducted for the lesioned animals (Fig. 6F) and this also revealed no overall effect for Day (F(4,28) = 2.37, P>0.05). However, a main effect for Zone (F(2,14) = 29.04, P<0.001) and Day X Zone interaction effect was found (F(8,56) = 3.26, P<0.01). Subsequent Bonferroni-corrected t-tests revealed that the highest mean number of turns were in the far zone (12.90±1.91), which was significantly higher than both the near (2.71±0.67; P<0.001) and middle zones (6.92±1.62;
P<0.05), overall. Further comparisons using a one-way repeated measures ANOVA revealed differences between zones on Day 1 (F(2,14) = 26.86, P<0.001), 2 (F(2,14) = 42.35, P<0.001), 3 (F(2,14) = 8.26, P<0.01), 4 (F(2,14) = 11.31, P<0.001), and Day 5 (F(2,14) = 8.77, P<0.01), suggesting that the DH group did not turn closer to the platform, despite continued training in the maze. We note that these findings were irrespective cue location (Supplementary Fig. 4).

Discussion

Overall our results suggest that animals use distal cues in a visual-dependent guidance manner. This is a gradual process, whereby animals initially swim at the cues, but with training animals make very precise cue-dependent turns closer to the platform, while attempting to keep the cues within their visual field. Note that despite the wide visual field that rats can see (de Araujo et al., 2001), due to their poor acuity (Prusky et al. 2002) and poor depth perception (Heffner and Heffner, 1992), animals may still need the cues to fall on the central visual field. If it is not possible to keep the cues directly within the visual field (as with the Far group), animals can turn, (using the cue) and head in the correct direction, and then maintain this direction for a certain distance, possibly by path integration (Collett and Graham, 2004). The use of path integration is, however, limited by the reduction in the animals need to approach the cues (i.e. turns away from cues getting closer to the platform) and their increased use of cues as a guide (turning in locations where cues fall on their visual field). This strategy, combined with increased distance and directional accuracy (both of which may not contribute equally) allows an
animal to rapidly learn the task. The idea of cue visualisation to evoke directional and distance information is similar to that suggested by the vector model (Collett et al. 1986). Although rarely applied to mammalian navigation, this model suggests that animals can use multiple cues in the form of vectors to guide them to a goal. A vector, in this instance, incorporates both distance and direction information of the landmark’s location to a goal, and will enable shortcuts to be made once a vector/s are established. The idea of multiple heading-vectors rather than a single map provides a more comprehensive account of learning in the MWM, as it takes into consideration the fact that navigating animals are likely going to use some landmarks on certain trials and others on other trials (Pearce et al 2004), as well as, allowing some cues to become more dominant than others (cue competition, Sanchez-Moreno et al. 1999).

While the hippocampus has been the centre of cognitive mapping theory, our behavioural findings do not fit with the proposal that when the hippocampus is destroyed all exploratory behaviours should disappear (O’Keefe and Nadel, 1978; Morris, 1984). We have observed in the lesioned animals that the cues still hold a value (thigmotaxis at the cues) and that they may provide some cue directional information (turns towards the cues at the periphery were at similar locations to the shams). But these animals are clearly impaired—what is the nature of this impairment? Our data indicate that the hippocampus is involved in reducing thigmotactic behaviour, as well as, using the cues as a visual guiding mechanism, i.e. as a guide towards the platform and not the cues, thereby requiring precise directional and distance information. Thus, the debate surrounding the function of the hippocampus, implicating it in the monitoring of navigation behaviour, fits with our suggestion of the use of a heading-vector in the MWM. Specifically, as
vectors are used to calculate distance and direction to a goal from landmarks, the understanding that the cues hold value, the inability to maintain a path, alongside the difficulty to use the cues effectively in appropriate locations, seen in our lesioned animals, supports this idea.

While the recording of place cells in the hippocampus originally, has been taken as evidence for the hippocampus as the centre of a cognitive map (Muller and Kubie, 1987; O’Keefe and Dostrovsky, 1971), it has, recently, been noted, that place cells may not fully account for, or represent an entire environment. Instead, they have been shown to fire and encode previous or, importantly, anticipated locations (Ainge et al. 2007; Bower et al., 2005). This may highlight the need for the hippocampus in the planning of future situations, which also corresponds with Collett et al.’s (1986) idea that animals, when navigating, plan their path trajectory from a start point by using heading-vectors. The current data is also in accordance with the idea that the animal can learn to associate its current position with its next choice of goal-directed behaviour. For example, once an intact animal perceives the cues in a particular part of the environment, where they know their relation to the platform’s position, the goal can be found; a strategy that the lesioned animals are clearly unable to effectively use. An extended vector model proposed by Kubie and Fenton (2009), that emphasises the use of head-direction cells as a guide during route execution rather than place cells, may also be consistent with our findings. The authors suggestions that optimal routes are straight line paths, that a naive animal moves along walls between prominent landmarks, and that animals do not need to constantly track their current location but only require directional and distance information at key locations, are also consistent with our behavioural and computational
findings. Overall, our findings contribute to the current theoretical debate on spatial learning, and may go towards the development of a model of hippocampal-dependent navigation that is based on a cue guidance mechanism that is consistent with the heading vector model.

Materials and Methods

Subjects

Seventy-two male Wistar rats (250-350g, Harlan UK), aged approximately 3 months old, were used as subjects in all experiments. Animals were housed 3 per cage in a temperature-controlled environment (21±1°C), which was maintained on a fixed 12:12 hr light-dark cycle (0700-1900hr). The rats had no prior exposure to the maze and were experimentally naïve. Guidelines for the maintenance and experimentation of animals conformed to the Department of Health and Children (Ireland) guidelines and European directive 86/609/EC.

Apparatus

The Morris water maze was used in all behavioural experiments. It was a uniformly black, circular, fibreglass pool (170cm in diameter; 36cm deep). The maze was filled with water to a depth of approximately 21cm and kept at a temperature of 20±1°C. A removable black concrete platform (11cm diameter, 19cm height) located in the North East quadrant of the pool, for all conditions, was used by animals to escape the water. The platform was submerged 2cm below the water surface, rendering it invisible to the rats when swimming. The pool was surrounded by a black curtain which was located approximately
50cm from the pool wall. This provided a uniform background around the entire pool. Three distal cues were located at fixed positions around the maze. The distal cues included two 25W light bulbs suspended from the ceiling. Both lights were located on the inside of the surrounding curtain at a distance of 75cm from the pool at an angle of approximately 60°. A rectangular sheet of white paper (55cm x 81cm) was also attached to the curtain for use as a cue. The position of the distal cues, as well as the hidden platform, remained fixed throughout acquisition of the task. Two cue positions were used throughout training. The Near training condition had three distal cues located around the pool, including a light cue positioned in the North West (NW) quadrant and the North East (NE) quadrant and a white sheet of card at the East (E) of the pool. The nearest cue (NE light cue) positioned 120cm from the platform. The Far training condition involved the distal cues being placed in a location further away from the hidden platform. In this condition a light cue was position in the South West (SW) quadrant, and in the South East (SE) quadrant, and a white sheet of card was located to the West (W) of the pool. The furthest cue (SW light cue) in this condition was positioned 220cm from the hidden platform. EthoVision (Noldus Information Technologies, Wageningen, Netherlands) digital tracking system recorded escape latencies, distance travelled and swimming velocity of each animal on all trials.

Training and Retention Procedure

Animals were trained for 5 consecutive days (4 trials/day). Each acquisition trial consisted of the animal being placed into the watermaze for 60 seconds, at one of four pseudo-random points around the pool (N, S, E and W). If, after the maximum allocated
time, the animal had not found the escape platform they were guided to its position by the experimenter. The rat was allowed to remain on the platform for 15 seconds followed by an inter-trial interval of 10 seconds, where they were placed in an open topped container outside the pool’s vicinity. The three distal cues, for both groups, were visible throughout all of the acquisition trials and platform intervals. Throughout training gross measures of performance were recorded, such as escape latency and distance moved. In addition, the swimming behaviour of the animals were also recorded for later analysis. This was achieved using a second camera (Sanyo hi-resolution b/w CCD camera 1-1.3, 5-50mm) placed directly above the pool in the laboratory ceiling. If retention was assessed, a retention trial was carried out 7 days post-acquisition during which the platform was removed from the pool and all animals were placed in the maze from the NW quadrant and allowed swim for 60 seconds. Measures of retention included mean percentage time (of the 60 s) spent swimming by groups in each of the four quadrants of the pool. While a 24 hour retention test has been used by many research groups, we have traditionally found the use a 7 day probe test to be a more robust measure of retention over years of testing (e.g Commins et al., 2003; McGauran et al. 2004; McGauran et al., 2005; Harvey et al., 2008).

Behavioural Analysis

Measurement of searching strategies used during in-trial locomotion

The swimming behaviours of all rats were also examined for each training trial. EthoVision provided x, y coordinates (0.2 s increments apart) for the animals position throughout each trial. From visual inspection of recorded video files and detailed analysis,
a number of distinct behaviours emerged. These observed behaviours were analysed for every training trial, under a number of categories including: percentage time spent (of total time in the pool) of each behaviour, and the frequency of each behaviour at individual locations in the maze (i.e. 0-360°). Examples of such behaviours included thigmotaxis, direct movement, turns towards and away from the cues (see Harvey et al. 2008 for more details). Thigmotaxis, was characterised by the animal moving almost exclusively at the periphery of the maze. Within this category two sub-classes were evident: parallel thigmotaxis and vertical thigmotaxis. Parallel thigmotaxis referred to animal movements alongside the maze wall, with the animal remaining within 10 cm of the pool’s edge. Vertical thigmotaxis was characterised by animal movements facing the pool wall; the animal makes direct contact with the wall of the arena while continuing to move around the periphery of the maze. Direct behaviour, was characterised by animal movements in a straight, definite direction over a minimum period of 1 second. A turn was considered a whole body turn and not just the animal’s head. For this, the animal moved in one direction followed by an obvious change in orientation (>50°) and movement in a second direction. Therefore, turning is the incident of observable angular change between two periods of movement in different directions. Turns were divided into a number of categories; turns towards the cues and turns-away from the cues. Turn-towards the cues included an animal moving in one direction and turning (change in direction >50°) and heading in a different direction towards a distal cue (range ±30° either side of the cue). A turn-away typically involves an animal performing a whole body turn and change in direction (>50°), that is not towards a distal cue, rather the animals perform turns in a direction away from the distal cues. In order to fully examine turning behaviour,
each external distal cue was colour-coded either blue, red or green, in the results for ease of analysis.

Zones of the pool

To examine the location of turns made in the maze, the pool was divided into three zones of equal area. For each turn point, a line was drawn between the centre of the platform, the turn position and the pool edge using Adobe Photoshop 5.0. This program measured the length of each line and then normalised the location of the turn on each respective line, giving a percentage position on that line of where each turn point lay (i.e. pool wall was at 100% and platform edge was at 0%). This accounted for unequal distances from the platform to the side of the pool. Three zones were used in order to categorise the location of turn positions in the pool; turns within 0-33% were in the “near” zone. Turns within 34-66% were in the “middle” zone. Turns within 67-100% were in the “far” zones. The mean number and location of turns for each animal was then assessed (adapted from Harvey et al. 2008).

Surgery

Rats were anaesthetised with isoflurane gas (1.8-3.0% isoflurane delivered in O₂ at 1 l/min). The animal’s head was then placed in a Kopf stereotaxic frame and the incisor bar was adjusted so that bregma was level with lambda. For dorsal hippocampal lesioned animals, a small burr hole was made in the skull, with a small hand-held drill, at each marked coordinate. N-methyl-D-aspartate dissolved in 0.1 M sterile PBS, pH 7.4 (NMDA; Sigma-Aldrich, 10mg/ml) was injected bilaterally along the longitudinal axis of
the hippocampus (following Bardgett et al. 2006 and Paxinos and Watson, 2005). Solutions were infused with a 5µl Hamilton syringe over approximately 30-60 seconds. The needle was left in place for one minute after each infusion. Buprenorphine (0.3 mg/kg, s.c; Temgesic) was given as an analgesic, prior to the cessation of anaesthesia. Sham-operated rats were anaesthetised in the same manner as above, had their skin and muscles cut and had two small holes burred in the skull. They were then sutured and administered buprenorphine (0.3 mg/kg, s.c.; Temgesic); they received no damage to the cortex. Following surgery, animals were placed in an individual recovery cage until they regained mobility. Animals were housed in individual cages for the duration of the experiment. All animals were allowed to recover for 7 days before behavioural testing.

Histological Analysis

At the completion of behavioural testing, animals were administered a lethal overdose of sodium pentobarbital (100mg/kg i.p.; Euthatal). The brains were then removed and stored in 4% paraformaldehyde dissolved in 0.1M phosphate buffer (PFA) and later transferred to a 30% sucrose solution and stored at 4°C. Coronal 40µm thick sections were then cut on a freezing microtome (Leica SM2010R, Leica Microsystems, Germany). Every fourth section was mounted on gelatin-coated slides and stained with cresyl violet (Sigma-Aldrich). Images of the stained slices were taken and then transferred to a PC where they were analysed using a specifically designed Matlab R2008a programme. Six sections rostrocaudally, which included 2 rostral sections at bregma -2.16, 2 mid sections at bregma -3.12 and 2 caudal sections at bregma -4.08, were examined for each animal. The area of total dorsal hippocampus along with the area of damaged dorsomed and damage
presented as a percentage of the total area. The size of the lesion to each of the subregions within the dorsal hippocampus was also assessed. The size of the area of the intact regions (DG, CA1 and CA3) was calculated at each level for each animal in the sham groups and the area of damage was, similarly, calculated at each level for each animal in both of the DH groups. The extent of subregional damage in each of the DH animals was then presented as a percentage of the intact area for each of the animals in the sham group. Lesions were reconstructed using Paxinos and Watson (2005).

Computational modelling

The effectiveness of different learning strategies was examined using a dynamic model of swimming behaviour that we developed recently (Fey et al. 2011). From this, the mean escape latencies and % unsuccessful trials of seven groups were tested: a random swim group (RND), an Approach group (CA), whereby animals swam towards a random cue (cues were located in either Near (N) or Far (F) position). For a fourth group, simulated animals approached a random cue (located in a Far position) and then turned away from the cue into a random direction (F CA-RND). Here we allowed $\alpha_{desired}$ be the direction to the cue + a normally distributed with mean of 120° and standard deviation of 180°. For a fifth group simulated animals approached a random cue (again, located in a Far position) and then turned away at exactly 180° (F CA-180). Here we allowed $\alpha_{desired}$ be the direction to the cue + 180°. A sixth group (CA-DC), simulated animals approached a random cue (in the Far position) and turn away with directional error using steps 1-4 strategy (below) for each trial. The final group (direct control: DC) approached cues in
Far position and turned away from them with directional error but omitting step 1 for iteration 2 and subsequent ones.

1. Swim towards a random cue for a certain amount of steps n_{cue}. Let $n_{\text{cue}} = 6$ for trial 1 (the number of approach steps can be varied see Figure 3C).
2. Turn away into direction of the platform + directional error, i.e. the heading is described by
 \[\alpha_{\text{desired}} = \alpha_{\text{correct}} + \epsilon_{\text{direction}}, \]
 where $\epsilon_{\text{direction}}$ is a normally distributed random number with mean $\mu = 0$ and standard deviation $\sigma_{\text{direction}}$. The standard deviation $\sigma_{\text{direction}}$ can be interpreted as the directional uncertainty of the learning process (which can also be manipulated, see Fig. 5B).
3. Swim the distance to the platform + distance error, i.e. the number of steps (into direction α_{desired} as determined in 2) is described by $n = n_{\text{correct}} + \epsilon_{\text{steps}}$, where ϵ_{steps} is the nearest integer of a normal distributed random number with zero mean and standard deviation σ_{steps}. The standard deviation σ_{steps} can be interpreted as the distance uncertainty of the learning process (again see Fig 5A).
4. Two possible strategies: Start again with 1 (CA-DC strategy) or Start again with 2 (DC strategy).

Statistics

All linear statistical analysis was carried out using SPSS (version 17). Circular statistical analysis was carried out using Oriana (Version 2.0, Kovach Computing Services, UK). Statistics used included analysis of variance with appropriate Bonferroni pairwise comparisons and independent, dependent and one-sample t-tests, where appropriate. Rayleigh Uniformity tests ($p<0.05$) and Watson-William F-tests were also employed to assess circular data. The symbol \pm was employed throughout to indicate standard mean error. Error bars, where present, show standard error of the mean (S.E.M.). A star-based system for significance representing p-values of *<0.05, **<0.01, ***<0.001, respectively, was used throughout.
References

Day, L. B., Weisand, M., Sutherland, R. J., & Schallert, T. 1999. The hippocampus is not necessary for a place response but may be necessary for pliancy. *Behav Neurosci.,* **113**, 914-924.

32

Maurer, R., & Derivaz, V. 2000. Rats in a transparent Morris water maze use elemental and configural geometry of landmarks as well as distance to the pool wall. Spatial Cognit Comput, 2, 135-156.

Acknowledgements

Thanks to J.P. Lowry, F. Bolger and J. Kealy for technical assistance and A. Coogan and R. Roche for advice and comments. Thanks also to C. Hasting, A. Stiobhairt and S. Tomas for help in collecting some of the initial data. The research was supported by the Department of Psychology, NUIM and the John and Pat Hume scholarship awarded to M. Diviney.
Figure legends

Figure 1: Animals rely on distal cues irrespective of cue location. **Figure 1A** shows the decrease in mean escape latency for both the Near and Far-trained groups. **Figure 1B** demonstrates the mean percentage time spent in each of the four quadrants of the watermaze during the 60 second retention trial for the Near-control (CT) and Near cue-rotated groups (CR). **Figure 1C** highlights the mean percentage time in each quadrant of the maze during the retention trial for the Far control (CT) and Far cue-rotated groups (CR). Note, in all conditions animals were put in at the NW accounting for the high percentage time spent in this quadrant.

Figure 2: Animals show cue-dependent learning. **Figure 2A** illustrates the mean frequency (+/- S.E.M.) spent in vertical thigmotaxis behaviour at each location (degrees) around the water maze for the Near (black) and Far (grey) groups for each day. Location of cues for both conditions is also illustrated. Note the change in scales on the graphs, reflecting that the time spent in thigmotaxis decreased with learning. **Figure 2B** shows the mean percentage time spent along a straight path across the 5 days of training for the Near and Far groups with **Figure 2C** highlighting the increase in direct heading towards the cued area (60-240°) in the Near group but not the Far group (240-60°) on Day 5. **Figure 2D** shows the distribution of Near and Far turns away from the cues throughout training, with **Figure 2E** illustrating the mean number of turns away from the cues for both groups on each training day.
Figure 3A: Schematic overview of the model describing the rat’s swimming dynamics in the Morris Water maze. \(x, y\) is the rat’s location, \(\alpha\) is the rat’s actual heading, \(\alpha_{\text{desired}}\) the rats desired heading, \(e\) the heading error, \(\hat{e}\) the rats estimate of the heading error, \(\eta\) and \(\Delta r_t\) Gaussian and Rayleigh distributed random variables, respectively. The variable \(z\) arises from the \(z\)-Transform of the system, and can be understood as a time shift operator, i.e. \(z^{-1}x(t) = x(t - i \Delta t)\). The model parameters \(F, K, A_1, A_2\) and the distributions of \(\eta\) and \(\Delta r_t\) have been identified earlier (see Fey et al. 2011 for further details).

Figure 3B: Using the dynamic model to analyse the effectiveness of different strategies. Distribution of mean (number) and median (line) escape latencies and \% unsuccessful trials in various groups: N RND: Random swimming movements, CA: Approach a cue in Near (N) or Far position (F), F CA-RND: Approach a cue in Far position and turn away into a random direction. F CA-180: Approach a cue in Far position and turn away at \(180^\circ\), CA-DC: Approach cues in Far position and turn away with directional error, DC: Approach cues in Far position on first trial only and turn away from cues with directional error. See Methods for details on all groups.

Figure 3C: Modelling the effect of decreasing the number of steps that an animal swims towards the cues \(n_{\text{cue}}\) (for 30 degrees directional uncertainty and zero distance uncertainty) on escape latency. Therefore, as an animal learns the location of the platform relative to the cues, it does not need to keep approaching the cues rather it can start moving directly towards the platform location. The figure shows this idea. Animals alternate between swimming towards the cues (in order to orientate-this parameter changes from 25 steps to 0 steps) and swimming into the direction of the platform (in order to escape-this parameter remains constant). Note, a
step of 25 indicates an animals swimming towards the cue, while 0 indicates a minimum movement towards the cues.

Figure 4: Distribution of an animal’s turns towards the cues (colour-coded, see inset) in the Near condition (4A) and in the Far condition (4B). The mean turn location tended to be opposite the cue itself. For example, the blue cue in the Near condition is at 240° relative to the platform but the mean location (blue block arrows) of turns towards this cue occurred around 20-40°. Note also the increasing cluster of turns closer to the platform as learning progresses (especially on Day 5). **Fig 4C:** the mean number of turns (± S.E.M.) in the near, middle and far zones during acquisition training for the Near group. Inset; Schematic representation of the three zones used for analysis. **Figure 4D:** Mean number of turns (± S.E.M.) in the near, middle and far zones during acquisition training for the Far group.

Figure 5A. Distributions of escape latencies in response to decreasing distance uncertainty (for 30 degrees directional uncertainty and rats approach cues in the first swimming episode only: \(n_{\text{cue}} = 0 \)). **Figure 5B** Distributions of escape latencies in response to decreasing directional uncertainty \(\sigma_{\text{direction}} \) (for zero distance uncertainty and rats approach cues during the first swimming episode only \(n_{\text{cue}} = 0 \)). **Figure 5C** Escape latencies resulting from different combinations of directional and distance uncertainties. Black dots indicate the mean escape latencies of 2500 simulated trials (see table); the surface of Figure 5C represents a smooth fit to these data; the solid lines (isoclines) mark equal escape latencies; the dashed lines represent two possible learning curves.
Figure 6: Contribution of the dorsal hippocampus to cue guidance. Figure 6A illustrates the mean escape latency for the sham and DH lesioned animals throughout 5 training days (in Near condition). Figure 6B illustrates the mean percentage time spent in direct behaviour throughout training for the sham and DH animals. Figure 6C indicates the position of turns away from the cues throughout training for the sham and DH lesioned animals (upper), and the mean number of turns away from the cues across the 5 days for both groups (lower). Figure 6D indicates the mean number of direct behaviours towards either the cued (60-240°) or uncued portion (240-60°) of the water maze for the sham (upper) and DH lesioned (lower). Figure 6E indicates the mean number of turns (± S.E.M.) in the near, middle and far zones during acquisition training in the sham group with a reduction of turns in the far zone and an increase of turns in the near zone as animals learned the task. Inset; schematic representation of the three zones used for analysis. Figure 6F shows the mean number of turns (± S.E.M.) in the near, middle and far zones during acquisition training for the DH lesioned group.
5A

Knowing the direction (σ = 30 degree) and learning the distance (σ > 0 steps)

<table>
<thead>
<tr>
<th>Distance uncertainty (steps)</th>
<th>25</th>
<th>12</th>
<th>6</th>
<th>3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1%</td>
<td>1.5%</td>
<td>0.9%</td>
<td>0.2%</td>
<td>0.0%</td>
<td></td>
</tr>
<tr>
<td>Escape latency (s)</td>
<td>19.7</td>
<td>17.6</td>
<td>15.9</td>
<td>14.4</td>
<td>13.4</td>
</tr>
</tbody>
</table>

(for constant directional uncertainty n = 30)

5B

Knowing the distance (σ = 0 steps) and learning the direction (σ > 0 degree)

<table>
<thead>
<tr>
<th>Directional uncertainty (degrees)</th>
<th>180</th>
<th>120</th>
<th>90</th>
<th>60</th>
<th>30</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.8%</td>
<td>17.3%</td>
<td>8.3%</td>
<td>1.5%</td>
<td>0.0%</td>
<td>0.6%</td>
<td></td>
</tr>
<tr>
<td>Escape latency (s)</td>
<td>36.1</td>
<td>31.3</td>
<td>26.1</td>
<td>12.2</td>
<td>13.4</td>
<td>14.0</td>
</tr>
</tbody>
</table>

(for constant distance uncertainty n = 0)

5C

<table>
<thead>
<tr>
<th>mean escape latencies (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>
Supplementary Information
To rule out the possibility that animals had a natural tendency to swim at the side of the pool where the cues were located, we performed another experiment. Here, animals were allowed 4 trials/day for 5 days to swim in the watermaze without a platform present. Two groups were used; one group was allowed to swim with the cues positioned in a comparable arrangement to the Near learning group. This group we termed as Near-Control (n=7, Figures S1A) and the second group was allowed to swim with cues in an arrangement equivalent to the Far group. This group we termed as Far-Control (n=7, Figure S1B). The time spent swimming in the pool for these control groups was matched exactly to equivalent Near and Far trained groups. As the pool contained no platform, both groups spent a significant amount of time swimming at the side of the pool for each of the five days (mean of 80.23 +/- 2% for Near-controls and 85.1 +/-3% for the Far-control group). To examine whether animals spent time swimming at the cues, we divided the pool’s outer corridor (a corridor 20cm from the pool edge) into two equal parts, a section containing the cues and a section without. We then compared the % time of total time spent swimming by both the Near-Control and the Far-Control in the both Northeast and Southwest regions. If animals were naturally attracted to the cues, the Near-Control group would spend significantly more time swimming in the Northeast compared to the Southwest region and the Far-control group would spend significantly more time in the Southwest region. We did not find this but rather we found that both groups spent equivalent time in both the Northeast and Southwest region, on all five days. We found no significant differences between the Northeast and Southwest area for the Near-control group (F(1,12)=1.69, P>0.05) or the Far-control group (F(1,12)= 0.07, P<0.05), suggesting that animals are not attracted by the presence of cues alone.

Supplementary Figure 1A shows the mean percentage time spent in the Northeast and Southwest outer corridor on all training days for the Near-control group. **S1B** illustrates the mean percentage time spent in the North and South outer corridors for the Far-control.
Supplementary Figure 2: A bar chart depicting the mean extent of hippocampal damage for both the Near and Far groups. Inset shows representative samples of damage taken from each group across three coronal levels. An independent samples t-test revealed no significant difference in the extent of damage between the two groups (t(13) = 1.54, P>0.05). Scale bar = 500µm.
Supplementary Figure 3A shows the location at which sham (left) and DH lesioned animals (right) performed vertical thigmotaxis at each degree position around the maze during the 5 acquisition days for Near group. **S3B** shows the location at which sham (left) and DH lesioned animals (right) performed vertical thigmotaxis at each degree position around the maze during the 5 acquisition days for Far group.
Supplementary Figure 4A shows the mean escape latencies (±S.E.M.) for the Far sham and Far DH animals with the DH animals significantly slower at locating the hidden platform ($F_{(1,13)} = 17.92, P=0.001$). **Figure 4B** illustrates the mean percentage time (± S.E.M.), of total time in the maze, spent in direct behaviour, on all training days. The shams spent a significantly higher percentage of time in this behaviour compared to Far DH animals ($F_{(1,13)} = 15.80, P<0.01$). **Figure 4C** illustrates the location of turns towards the cues for both groups. **Figure 4D** and **4E** indicate the mean number (± S.E.M.) of turns in the near, middle and far zones for the Far sham and Far DH groups, respectively, over 5 days of training. The sham animals displayed a reduction in turns in the outer far zone. In contrast, DH, however, had the highest number of turns in the outer zone of the maze ($F_{(2,12)} = 30.33, P<0.001$), even by Day 5.