<table>
<thead>
<tr>
<th>Title</th>
<th>Reproducing kernels for polyharmonic polynomials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors(s)</td>
<td>Render, Hermann</td>
</tr>
<tr>
<td>Publication date</td>
<td>2008-10</td>
</tr>
<tr>
<td>Publication information</td>
<td>Archiv der Mathematik, 91 (2): 136-144</td>
</tr>
<tr>
<td>Publisher</td>
<td>Springer</td>
</tr>
<tr>
<td>Item record/more information</td>
<td>http://hdl.handle.net/10197/5499</td>
</tr>
<tr>
<td>Publisher's statement</td>
<td>The final publication is available at www.springerlink.com</td>
</tr>
<tr>
<td>Publisher's version (DOI)</td>
<td>10.1007/s00013-008-2447-9</td>
</tr>
</tbody>
</table>
Reproducing kernels for polyharmonic polynomials

H. Render

Abstract. The reproducing kernel of the space of all homogeneous polynomials of degree k and polyharmonic order m is computed explicitly, solving a question of A. Fryant and M.K. Vemuri.

Mathematics Subject Classification (2000). Primary 31B30, Secondary 33C55.

Keywords. Polyharmonic function, reproducing kernel, zonal harmonic, pythagorean identity.

1. Introduction

Let U be an open set in the euclidean space \mathbb{R}^d. A function $f : U \rightarrow \mathbb{C}$ is called polyharmonic of order m if f is $2m$-times differentiable and $\Delta^m f (x) = 0$ for all $x \in U$, where

$$\Delta = \frac{\partial^2}{\partial x_1^2} + \ldots + \frac{\partial^2}{\partial x_d^2}$$

is the Laplace operator and Δ^m is its m-th iterate. For $m = 1$ this class of functions is just the class of all harmonic functions, while for $m = 2$ the term biharmonic function is used which is important in elasticity theory. Polyharmonic functions have been studied by several mathematicians, see e.g. [20], [21], [22], [23], [31], [35], and classical work is due to E. Almansi [1], M. Nicolesco [33] and N. Aronszajn [4]. Polyharmonicity is an important tool in several areas of mathematics, e.g. in approximation theory, radial basis functions and wavelet analysis, see [6], [24], [25], [26], [28], [32].

In this paper we shall be concerned with a problem posed by A. Fryant and M.K. Vemuri in [18]. Let $\mathcal{P} (\mathbb{R}^d)$ be the space of all polynomials endowed with the scalar product

$$(P, Q) := \sum_{|\alpha| \leq N} a^\alpha \overline{b^\alpha}$$

(1.1)

The author is partially supported by Grant MTM2006-13000-C03-03 of the D.G.I. of Spain.
for polynomials \(P(x) = \sum_{|\alpha| \leq N} c_\alpha x^\alpha \) and \(Q(x) = \sum_{|\alpha| \leq N} d_\alpha x^\alpha \). An alternative way to define the scalar product (1.1) is the following:

\[
\langle P, Q \rangle_F = \left[P \left(\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_d} \right) Q \right](0).
\]

Let \(\mathcal{P}_k(\mathbb{R}^d) \) be the space of all homogeneous polynomials of degree \(k \). Define the Hilbert space of all homogeneous polynomials of degree \(k \) which are polyharmonic of order at most \(m \), so we define

\[
\mathcal{H}^m_k(\mathbb{R}^d) := \{ h \in \mathcal{P}_k(\mathbb{R}^d) : \Delta^m h = 0 \}.
\]

Let \(Q_j^k(x) \) with \(j = 1, \ldots, b^{k,m}_d \) be an orthonormal basis of \(\mathcal{H}^m_k(\mathbb{R}^d) \) with respect to the inner product (1.1) and define the reproducing kernel \(Z^m_k(x, y) \) of \(\mathcal{H}^m_k(\mathbb{R}^d) \) by

\[
Z^m_k(x, y) := \sum_{j=1}^{b^{k,m}_d} Q_j^k(x) Q_j^k(y).
\]

In [18] it was proved that there exists a constant \(\gamma^k_d(m) \), depending only on the dimension \(d \), the integer \(m \) and the degree \(k \), such that

\[
\sum_{j=1}^{b^{k,m}_d} \left| Q_j^k(x) \right|^2 = \gamma^k_d(m) \quad \text{for all } x \in \mathbb{S}^{d-1},
\]

(1.3)

where \(\mathbb{S}^{d-1} = \{ x \in \mathbb{R}^d : |x| = 1 \} \) is the unit sphere and \(|x|^2 = x_1^2 + \ldots + x_d^2 \) for \(x = (x_1, \ldots, x_d) \in \mathbb{R}^d \). However, the nature of this constant was not further explored. We shall show that

\[
\gamma^k_d(m) = \min \left(k/2, m-1 \right) \frac{a_{k-2s}}{2^s s! d (d+2) \ldots (d+2 (k-s-1))}
\]

(1.4)

where \(a_k \) is the dimension of \(\mathcal{H}^1_k(\mathbb{R}^d) \), the set of all homogeneous harmonic polynomials of degree \(k \), given by

\[
a_k := \dim \mathcal{H}^1_k(\mathbb{R}^d) = \frac{(2k + d - 2) (k + d - 3)!}{k! (d-2)!},
\]

(1.5)

see e.g. [2, p. 450]. Furthermore we shall show that the reproducing kernel \(Z^m_k(x, y) \) can be described explicitly:

\[
Z^m_k(x, y) = \omega_{d-1} \sum_{s=0}^{\min(\lfloor k/2 \rfloor, m-1)} \frac{|x|^{2s} |y|^{2s} Z_{k-2s}(x, y)}{2^s s! d (d+2) \ldots (d+2 (k-s-1))}
\]

where \(Z_k(x, y) \) is the zonal harmonic of degree \(k \) with pole \(y \) (for definition see Section 2). Formula (1.4) allows us to improve a criterion for the convergence of
the orthogonal series
\[\sum_{k=0}^{\infty} \sum_{j=1}^{b_{d,m}} a_{k,j} Q_k^j(x) \]
which will be presented in Section 3.

2. The reproducing kernel

The inner product defined in (1.1) is an important tool in the theory of spherical harmonics, see [3], [5], [12], [16], [24], [39]. We note that in [34] and [38] this inner product is called the Fischer inner product, in honour of the work of E. Fischer [14]; in [8], [9], [42] it is called the Bombieri inner product, and in [18] the Calderón inner product. However, it seems that is a classical tool in invariant theory (see [13], [36], [40]) and we shall refer to it as the apolar inner product.

The apolar inner product has the following property: for all polynomials \(f, g \)
\[\langle Q^* (D) f, g \rangle_F = \langle f, Q \cdot g \rangle_F \] (2.1)
where \(Q^* (x) \) is the polynomial obtained by conjugation the coefficients of the polynomial \(Q \), and \(Q^* (D) \) is the differential operator associated to \(Q^* (x) \). Equation (2.1) says that the adjoint of the multiplication operator \(g \mapsto Qg \) is just the differential operator \(Q^* (D) \). In passing, we note that the apolar inner product has an integral representation:
\[\langle f, g \rangle_F = \frac{1}{\pi^d} \int_{\mathbb{C}^d} f(z) \overline{g(z)} e^{-|z|^2} dz \]
where \(dz \) is Lebesgue measure on \(\mathbb{R}^{2d} \), see [7]. The space of all entire functions \(f : \mathbb{C}^n \to \mathbb{C} \) which satisfy
\[\|f\|^2_F := \frac{1}{\pi^d} \int_{\mathbb{C}^d} |f(z)|^2 e^{-|z|^2} dz < \infty \] (2.2)
is called the Bargmann space \(F_n \) (also called Fock or Fischer space, see [34]).

For homogeneous polynomials \(f, g \) we define the following well-known inner product
\[\langle f, g \rangle_{S^{d-1}} := \int_{S^{d-1}} f(\theta) \overline{g(\theta)} d\theta \] (2.3)
where \(S^{d-1} \) is the unit sphere and \(d\theta \) is the rotation-invariant measure on \(S^{d-1} \). The following result follows from Theorem 5.14 in [5]; the result seems to be due to Ü. Kuran [30]:

Theorem 2.1. For homogeneous harmonic polynomials \(f, g \) of degree \(k \) one has
\[\langle f, g \rangle_F = d(d+2) \cdots (d+2k-2) \frac{1}{\omega_{d-1}} \langle f, g \rangle_{S^{d-1}} . \]
It is well known and it follows by a quick computation that the following formula holds for any harmonic homogeneous polynomial shows that for

\[Z_k(x,y) := \sum_{l=1}^{\alpha_k} Y_{k,l}(x) \overline{Y_{k,l}(y)} \]

(2.4)
is the reproducing kernel of \(\mathcal{H}_k^*(\mathbb{R}^d) \) with respect to (2.3); the function \(x \mapsto Z_k(x,y) \) is also called the zonal harmonic of degree \(k \) with pole \(y \). The addition theorem says that

\[Z_k(x,y) = \frac{\alpha_k}{\omega_{d-1}} |x|^k |y|^k P_k\left(\frac{\langle x,y \rangle}{|x| |y|}\right) \]

(2.5)

where \(P_k \) is a polynomial of degree \(k \) with \(P_k(1) = 1 \) (see [2, p. 455]) and \(\omega_{d-1} \) is the surface area of \(S^{d-1} \). The polynomial \(P_k \) is up to a factor equal to the ultraspherical polynomial \(C_k^{(d-2)/2}(t) \), (see [2, p. 456]). Since \(P_k(1) = 1 \) one has

\[P_k(t) = \frac{C_k^{(d-2)/2}(t)}{C_k^{(d-2)/2}(1)} \]

Observe that the property \(P_k(1) = 1 \) also implies that

\[Z_k(x,x) = \frac{\alpha_k}{\omega_{d-1}} |x|^{2k}. \]

(2.6)

We now prove

Theorem 2.2. Let \(Y_{k,l}(x) \) , \(l = 1, ..., a_k \), be an orthonormal basis of \(\mathcal{H}_k^*(\mathbb{R}^d) \) with respect to the scalar product (2.3). Then the polynomials \(|x|^{2s} Y_{k,l}(x) \) for \(s,k \in \mathbb{N}_0 \) and \(l = 1, ..., a_k \) are orthogonal with respect to the apolar inner product and

\[\omega_{d-1} \left\| |x|^{2s} Y_{k,l}(x) \right\|_F^2 = 2^s s! d (d + 2) \cdots (d + 2 (k + s - 1)). \]

(2.7)

Proof. Let \(|x|^{2s} Y_{k,l} \) and \(|x|^{2s_1} Y_{k_1,l_1} \) be two basis functions. Without loss of generality we may assume that \(s \leq s_1 \). By property (2.1) we obtain

\[\left\langle |x|^{2s} Y_{k,l}, |x|^{2s_1} Y_{k_1,l_1} \right\rangle_F = \left\langle \Delta^s \left[|x|^{2s} Y_{k,l} \right], |x|^{2s_1-2s} Y_{k_1,l_1} \right\rangle_F. \]

It is well known and it follows by a quick computation that the following formula

\[\Delta^m \left[|x|^{2s} h \right] = 2^s [2s + d - 2 + 2 \text{ deg } h] \cdot |x|^{2s-2m} h \]

(2.8)

holds for any harmonic homogeneous polynomial \(h \). A simple induction argument shows that for \(m \leq 2s \)

\[\Delta^m \left[|x|^{2s} h \right] = |x|^{2s-2m} \cdot h \cdot (2s) \cdots (2s - 2 (m - 1)) \cdot [2s + d - 2 + 2 \text{ deg } h] \cdots [2s - 2 (m - 1) + d - 2 + 2 \text{ deg } h]. \]

(2.9)
In particular, for \(m = s \) we obtain that \(\Delta^s \left(|x|^{2s} f \right) = d_s (\deg h) f \) where \(d_s (\deg h) \) is the number
\[
2^s! \cdot (2s + d - 2 + 2 \deg h) \cdot (2s - 2 + d - 2 + 2 \deg h) \cdots (d + 2 \deg h).
\]
Thus we have
\[
\left\langle |x|^{2s} Y_{k,l} , |x|^{2s_1} Y_{k_1,l_1} \right\rangle_f = d_s (k) \cdot \left\langle Y_{k,l} , |x|^{2s_1-2s} Y_{k_1,l_1} \right\rangle_f .
\]
(2.11)
If \(s_1 > s \) we can use again (2.1) and we see that
\[
\left\langle |x|^{2s} Y_{k,l} , |x|^{2s_1} Y_{k_1,l_1} \right\rangle_f = d_s (k) \cdot \left\langle \Delta Y_{k,l} , |x|^{2s_1-2s-2} Y_{k_1,l_1} \right\rangle_f = 0.
\]
If \(s_1 = s \), and \(k \neq k_1 \) or \(l \neq l_1 \), we see from (2.11) that \(\left\langle |x|^{2s} Y_{k,l} , |x|^{2s_1} Y_{k_1,l_1} \right\rangle_f = 0 \) since \(Y_{k,l} \) and \(Y_{k_1,l_1} \) are orthogonal according to Theorem 2.1.

For \((s, k, l) = (s_1, k_1, l_1) \) Theorem 2.1 and (2.11) show that \(\omega_{d-1} \sum_{s=0}^{\min \{k/2, m-1\}} \| |x|^{2s} Y_{k,l} \|_f^2 \) is equal to the product of \(d (d + 2) \cdots (d + 2k - 2) \) and \(d_s (k) \) (so (2.10) for \(\deg h = k \)). This product is equal to
\[
2^s s! d (d + 2) \cdots (d + 2 (k + s - 1)).
\]

\(\square \)

Proposition 2.3. The system \(|x|^{2s} Y_{k-2s,l} (x) \) for \(s = 0, 1, \ldots, \min \{k/2, m-1\} \) and \(l = 1, \ldots, a_{k-2s} \) is an orthogonal basis for \(\mathcal{H}_k^m (\mathbb{R}^d) \).

Proof. The polynomial \(f (x) = |x|^{2s} Y_{k,l} (x) \) satisfies \(\Delta^m f = 0 \) if and only if \(s \leq m - 1 \). Hence \(|x|^{2s} Y_{k-2s,l} (x) \) is a homogeneous polynomial of degree \(k \) which satisfies \(\Delta^m f = 0 \), and by Theorem 2.2 these functions are orthogonal. In order to see that it is basis, let \(f \in \mathcal{H}_k^m (\mathbb{R}^d) \).

Then \(f \) can be written uniquely in the form
\[
f = \sum_{k=0}^{\min \{k/2, m-1\}} |x|^{2s} h_{k-2s} \text{ with harmonic homogeneous polynomials } h_{k-2s} \text{ of degree } k - 2s,
\]
see [5]. Formula (2.9) shows that \(\Delta^m |x|^{2s} h_{k-2s} = C_{m,k,s} |x|^{2s-2m} h_{k-2s} \) for \(m \leq s \) and for some nonzero constant \(C_{m,k,s} \). The condition \(\Delta^m f = 0 \) implies that the summation in the last sum ranges only over indices \(s \) with \(s \leq m - 1 \). So \(f \) is a linear combination of the above basis functions.

\(\square \)

Theorem 2.4. The reproducing kernel \(Z_k^m (x, y) \) for the Hilbert space \(\mathcal{H}_k^m (\mathbb{R}^d) \) endowed with the apolar inner product is given by
\[
Z_k^m (x, y) = \sum_{s=0}^{\min \{k/2, m-1\}} \frac{|x|^{2s} |y|^{2s} Z_{k-2s} (x, y)}{2^s s! d (d + 2) \cdots (d + 2 (k + s - 1))}.
\]

(2.12)

Proof. We use formula (1.2) for the system \(|x|^{2s} Y_{k-2s,l} (x) \), \(l = 1, \ldots, a_{k-2s}, s = 0, 1, \ldots, \min \{k/2, m-1\} \), by taking into account the normalization constants.
given in (2.7). This gives

\[
Z_m^k (x, y) = \omega_{d-1} \sum_{s=0}^{\min\{[k/2], m-1\}} \frac{a_{k-2s}}{2^{s}s!d^2 (d + 2) \ldots (d + 2(k - s - 1))}. \]

Now (2.4) completes the proof. \(\square\)

Corollary 2.5. The values \(Z_m^k (x, x)\) for \(|x| = 1\) of the reproducing kernel \(Z_m^k\) of \(H_m^k (\mathbb{R}^d)\) are constant equal to

\[
\gamma_k^d (m) := \min\{[k/2], m-1\} \sum_{s=0}^{a_{k-2s}} \frac{1}{2^{s}s!d^2 (d + 2) \ldots (d + 2(k - s - 1))}. \quad (2.13)
\]

Proof. Insert \(y = x\) in formula (2.12) and use (2.6). \(\square\)

3. Convergence of orthogonal series

Suppose that \(Q_j^k (x), j = 1, \ldots, b_{d,k}^m\) is an orthonormal basis of \(H_m^k (\mathbb{R}^d)\) for each \(k = 0, 1, 2, \ldots\), and let \(a_{k,j}, j = 1, \ldots, b_{d,k}^m\) be complex numbers. A. Fryant and M.K. Vemuri discuss in [18] conditions for the numbers \(a_{k,j}, j = 1, \ldots, b_{d,k}^m\) such that the series

\[
f(x) = \sum_{k=0}^{\infty} \sum_{j=1}^{b_{d,k}^m} a_{k,j} Q_j^k (x) \quad (3.1)
\]

converges absolutely and uniformly on compact subsets of the open ball \(B_R\) with radius \(R\) and center 0. It is shown in [18] that the series (3.1) converges compactly in \(B_R\) for

\[
R^{-1} = \lim_{k \to \infty} \sup_{k} \left(\sqrt{\gamma_k^d (m)} \|a_k\| \right)^{1/k} \text{ and } \|a_k\|^2 := \sum_{j=1}^{b_{d,k}^m} |a_{k,j}|^2.
\]

By the next Theorem we obtain the more precise description

\[
R^{-1} = \frac{1}{\sqrt{2}} \lim_{k \to \infty} \sup_{k} \left(\frac{\|a_k\|}{\sqrt{k!}} \right)^{1/k}
\]

improving the upper bound for \(R^{-1}\) in [18] by a factor \(1/\sqrt{2}\).

Theorem 3.1. Let \(M_k, k \in \mathbb{N}_0\), be positive numbers and \(\gamma_k^d (m)\) as in (2.13). Then

\[
\lim_{k \to \infty} \sup_{k} \left(\sqrt{\gamma_k^d (m)} M_k \right)^{1/k} = \frac{1}{\sqrt{2}} \lim_{k \to \infty} \sup_{k} \left(\frac{M_k}{\sqrt{k!}} \right)^{1/k}. \quad (3.2)
\]

Proof. Let us define \(D_k (d, s) := d(d + 2) \ldots (d + 2(k - s - 1))\). From the identity

\[
D_k (d, s) = 2^{k-s} \left(\frac{d}{2} + 1 \right) \ldots \left(\frac{d}{2} + (k - s - 1) \right) \quad (3.3)
\]
we see that
\[D_k (d, s) \geq 2^{k-s-1} (k-s-1)! \geq 2^{k-s-1}k! \frac{1}{(k+1)^{s+1}}. \] (3.4)

Observe that the inequality \(a_{k-2s} \leq a_k \leq 2 (k+1)^{d-2} \) is obtained from rewriting the formula (1.5) for \(a_k \) as
\[a_k = 2 (k+1) \left(\frac{k}{2} + 1 \right) \ldots \left(\frac{k}{d-3} + 1 \right) \left(\frac{k}{d-2} + \frac{1}{2} \right) \]
for \(d > 2 \); for \(d = 2 \) it is well known that \(a_k = 2 \) for all \(k \in \mathbb{N} \). Thus we obtain
\[\gamma^k_d (m) \leq \sum_{s=0}^{m-1} \frac{2 (k+1)^{d-1+s}}{s! 2^{k-1}k!} \leq \frac{(k+1)^{d-2+m}}{2^{k-2}k!} \sum_{s=0}^{\infty} \frac{1}{s!}. \]

Now take the square root, multiply the inequality with \(M_k \), take the \(k \)-th root and then the limes superior. Hence the \(\leq \) in (3.2) is proved.

For the other inequality we estimate \(\gamma^k_d (m) \) below by taking only the summand for \(s = 0 \), so
\[\gamma^k_d (m) \geq \frac{a_k}{d (d+2) \ldots (d+2 (k-1))}. \]

Now (3.3) yields \(D_k (d, 0) \leq 2^k (d+k)! \leq 2^{k+1}k! (d+k)^d \). Using that \(a_k \geq 1 \) we obtain
\[\gamma^k_d (m) \geq \frac{1}{2^{k+1}k! (d+k)^d}. \]

Again, take the square root, multiply the inequality with \(M_k \), take the \(k \)-th root and then the limes superior. \(\square \)

References

Reproducing kernels for polyharmonic polynomials

H. Render
Departamento de Matemáticas y Computación
Universidad de La Rioja
Edificio Vives, Luis de Ulloa s/n.
26004 Logroño
e-mail: render@gmx.de