EFFETS D’UNE RÉFORME FISCALE SUR L’OFFRE DE TRAVAIL DES MÉNAGES DANS UN CADRE COLLECTIF SIMULÉ*

Olivier BARGAIN
IZA, Bonn
Nicolas MOREAU
GREMAQ
LIRHE,
Université de Toulouse 1

RéSUMÉ — La littérature contient très peu de recherches empiriques concernant les effets distributifs du système sociofiscal à l’intérieur du ménage. Nous simulons cet effet dans le cadre du modèle collectif d’offre de travail lorsque l’on passe d’une taxation jointe à une taxation individuelle en France. Nous montrons que la contribution relative de l’épouse aux revenus familiaux aprèsimpôts est un déterminant significatif de la négociation au sein du couple, avec une très faible élasticité cependant. En conséquence, les réactions d’offre de travail dues à la réforme sont essentiellement induites par les effets traditionnels (substitution et revenu), tout comme dans un modèle unitaire. Une analyse de sensibilité montre que l’effet distributif capturé par le cadre collectif est significatif seulement dans le cas de réformes fiscales de grande ampleur et peu réalistes. Ce résultat suggère cependant d’améliorer les recherches sur le lien entre fiscalité, transferts et décision intrafamiliale. En particulier, il convient d’ajouter plus de structure que n’en permet le modèle collectif afin de caractériser plus précisément la façon dont la fiscalité pourrait jouer sur la négociation au sein du ménage.

ABSTRACT — Labor Supply Responses from a Tax Reform with a Simulated Collective Model.
The literature on household behavior contains hardly any empirical research on the within-household distributional effect of tax-benefit policies. We simulate this effect in the framework of a collective model of labor supply when shifting from a joint to an individual

taxation system in France. We show that the net financial contribution of the wife is a significant determinant of intrahousehold negotiation but with very low elasticity. Consequently, the labor supply responses to the reform are entirely driven by the traditional substitution and income effects as in a unitary model. A sensitivity analysis shows that the distribution effect captured by the collective model is significant only when tax reforms are unrealistically radical and of extended scope. This result suggests to investigate further the intricate link between taxation, redistribution and intrahousehold decisions. In particular, more structure should be added than is contained in the collective setting in order to characterize more precisely the way taxation could influence the intrahousehold negotiation.

INTRODUCTION

La première contribution du présent article est donc de proposer un cadre structurel simulé permettant d’analyser les impacts d’une réforme de la fiscalité sur le processus de décision et la distribution intrafamiliale. Précisément, nous nous demandons si une réforme modifiant le rapport des contributions nettes des époux influence significativement la négociation intrafamiliale et les décisions d’offre de travail. Il semble qu’une réforme de type « wallet to purse » comme celle étudiée par Lundberg, Pollak et Wales (1997) conduise à une modification du schéma de consommation. Nous cherchons donc à savoir si ce résultat reste valide dans le cas d’une décision de nature discrète comme peut l’être l’offre de travail (du moins dans le cadre du marché du travail français).

1. Voir dans ce numéro la synthèse de Chiappori et Donni sur la théorie des modèles non unitaire de comportement du ménage.

Laisney (2002) utilise la définition la plus générale de la Pareto-optimalité afin d’éviter les possibles non-convexités de l’ensemble des utilités possibles (dûes à la discrétisation de l’ensemble du budget et à des caractéristiques propres au système fiscal). Nous préférons supposer que les ménages maximisent une fonction de bien-être dans laquelle apparaissent explicitement les utilités individuelles et l’indice de pouvoir, c’est-à-dire une rationalité plus restrictive que la seule hypothèse de Pareto-éfficacité. Dans ce cas, les ménages ne choisissent jamais les zones non convexes de l’ensemble des utilités possibles. Une autre interprétation consiste à supposer que les ménages sont « globalement efficaces » et jouent des stratégies (collectives) mixtes de sorte que seule l’enveloppe convexe est considérée. La maximisation de la fonction de bien-être linéaire du ménage peut donc être utilisée et le poids relatif sur les utilités individuelles donne une mesure du pouvoir de négociation des époux (cf. Chiappori, 1992).

La calibration de l’indice de pouvoir et d’un terme de préférence propre à la vie en couple est menée sur les données françaises du panel européen (ECHP) pour

l'année 1995. L'indice de pouvoir calibré est estimé sur les salaires, le revenu hors travail et plusieurs facteurs de distribution, notamment une proxy de la contribution financière potentielle de l'épouse après impôt. Cette variable s'avère être un déterminant significatif de la négociation intrafamiliale, mais avec une faible élasticité cependant. Une analyse de sensibilité suggère que même dans le cas d'une réforme radicale et de grande ampleur de la fiscalité directe, l'effet de distribution à l'intérieur du ménage reste marginal comparé aux effets de revenu et de substitution traditionnels du modèle unitaire. Nous suggérons de poursuivre les efforts de recherche dans une direction permettant de caractériser plus précisément l'effet de distribution dans le cas de réformes de différentes natures et en ajoutant plus de structure que ne le permet le cadre collectif.

La structure de l'article est la suivante. La première section présente l'approche retenue pour simuler la rationalité collective. Dans la section 2, nous présentons la réforme fiscale et dans la section 3, nous analysons l'impact potentiel de la réforme sur l'offre de travail à travers les effets classiques et l'effet propre au cadre collectif retenu. La dernière section conclut le texte.

1. Simulation d'un modèle collectif d'offre de travail avec fiscalité

Les modèles collectifs initiés par Chiappori (1988, 1992) permettent une meilleure compréhension de la prise de décision au sein du ménage. Ainsi, à la différence du modèle unitaire, l'allocation des ressources entre les membres de la famille est supposée dépendre de l'environnement du ménage et donc de l'ensemble des variables exogènes que sont les prix, les taux de salaire, le revenu non salarial et un ensemble de variables diverses appelées facteurs de distribution.

Ensuite, si la prise de décision est supposée coopérative, le mode de négociation n'est pas spécifique de sorte que l'approche collective inclut le cadre unitaire et les modèles de négociation tels que Manser et Brown (1980) et McElroy et Horney (1981) comme cas particuliers. Enfin, de nombreuses études ont montré que les restrictions provenant du cadre collectif ne sont pas rejetées par les données de couples tandis que celles associées au modèle unitaire le sont le plus souvent.

Dans la littérature, la manière la plus courante d'évaluer les effets d'une réforme fiscale passe par l'estimation d'un modèle à partir de l'observation des offres de travail. Cependant, dans le cadre collectif, il n'existe ni modèle ni méthode économétrique simples permettant de prendre en compte à la fois les choix de participation et les heures de travail (voir Blundell et al., 2001) et la non-linéarité des ensembles de budget (voir Moreau et Donni, 2002).

5. Les facteurs de distribution sont des variables socio-économiques qui influencent le processus de négociation sans influer directement sur les préférences individuelles, ni sur la contrainte de budget. Voir Bourguignon et al. (1995) pour une discussion complète sur ce thème, ou McElroy (1990) pour la notion proche de paramètres extrahéritaires (« extra-household environmental parameters »).

Nous choisissons une approche différente. Elle repose sur la simulation d'un modèle collectif et permet d'incorporer (i) des préférences individuelles qui autorisent l'altruisme et pas seulement l'égoïsme ou l'altruisme à la Becker comme c'est le cas dans la plupart des applications empiriques, (ii) des ensembles de budget non linéaires, (iii) la décision de participation, (iv) une représentation discrète et non pas continue de l'offre de travail afin de mieux correspondre aux spécificités du marché du travail français.

Nous introduisons de l'hétérogénéité entre ménages à l'aide, d'une part, d'un paramètre de préférence δ (commun à l'homme et la femme) et, d'autre part, d'une règle de négociation entre conjoints. L'identification empirique du modèle est complétée par des hypothèses supplémentaires sur les préférences.

1.1 Un modèle collectif à choix discrets avec fiscalité

1.1.1 La rationalité collective

Nous optons pour la définition de la rationalité collective donnée par Chiappori (1992), à savoir la maximisation par le ménage d'une fonction de bien-être familial :

$$\max_{c_i, c_m, h_i, h_m} \mu(\Theta) U_i(c_i, h_i, h_m) + (1 - \mu(\Theta)) U_m(c_m, h_m, h_i)$$

s.t. $c = c_i + c_m \leq g(w_i h_i, w_m h_m, y, \xi)$

où c_i représente la consommation privée individuelle et h_i l'offre de travail de l'individu $i = f, m$. La consommation totale, qui, dans ce cadre statique, correspond au revenu disponible du ménage, dépend des gains salariaux individuels $w_i h_i$ du revenu hors travail y, des caractéristiques socio-démographiques du ménage ξ (qui influencent notamment le montant de l'impôt à payer) et du système d'imposition et de redistribution $g()$. Nous supposons la contrainte de budget à l'égalité. Les poids alloués aux utilités individuelles dans la fonction de bien-être familial sont une forme réduite du processus de négociation. Ils sont supposés dépendre d'un ensemble Θ de facteurs susceptibles d'influencer la négociation au sein du ménage (facteurs de distribution, prix et revenu hors travail). Par la suite, nous identifierons le paramètre μ à l'indice de pouvoir de la femme dans le couple.

1.1.2 Discrétisation et non-convexités

La discrétisation retenue reflète la distribution réelle de l'offre de travail en France. Les hommes inactifs, très peu nombreux, ont été enlevés de l'échantillon (voir annexes). Pour la même raison, nous n'avons pas retenu le travail à mi-temps comme choix possible pour les hommes mariés. La discrétisation retenue consiste alors en $h_i = 0, 20, 30, 40, 50$ heures hebdomadaires de travail pour les femmes célibataires et mariées et en $h_m = 20, 40, 45, 50, 60$ (resp. $40, 45, 50, 60$) heures pour les hommes célibataires (resp. mariés).
L’approche à choix discrets retenue conduit à des ensembles de budget non convexes, ceux-ci étant constitués de points\(^7\). Ces non-convexités peuvent à leur tour conduire à des ensembles d’utilité non convexes. Face à cette difficulté, Laisney (2002) choisit une définition plus générale de la rationalité collective que celle utilisée ici, à savoir la maximisation de l’utilité de la femme sous la contrainte que l’utilité de son conjoint atteigne le niveau négocié requis. Il en résulte cependant une définition totalement \textit{ad hoc} de l’indice de pouvoir.

Nous avons choisi de ne considérer que les enveloppes convexes des ensembles d’utilité. Nous supposons que les utilités (cardinales) individuelles sont du type Von Neumann-Morgenstern (VNM). Sur le graphique 1, le point \(A\) qui se situe sur une partie non concave de la frontière parétiennne est un équilibre localement efficace (voir Friedman, 1990). Nous supposons que les couples sont globalement efficaces : ils jouent en stratégie mixte (collective) en considérant l’ensemble des loteries possibles sur les allocations déterministes. Ils négocient \textit{ex ante} les allocations finales pour tous les états de l’économie et pour toutes les périodes de vie commune\(^8\). Pour une période donnée, si l’indice de pouvoir \(\mu\) conduit à une pente \((BC)\) dans l’ensemble des utilités, le ménage, dans son ensemble, est indifférent entre n’importe quel des points de la combinaison convexe de \(B\) et de \(C\). Pour toutes les autres valeurs de l’indice de pouvoir (entre 0 et 1), les frontières de l’ensemble initial et de son enveloppe coïncident. À une valeur de l’indice correspond une allocation d’équilibre.

\(^7\) En France, d’autres non-convexités apparaissent pour les ménages à faibles revenus en raison du versement par l’État, sous conditions de ressources, d’un revenu minimum (Revenu minimum d’insertion), de prestations familiales et d’aides au logement. La condition de ressources porte sur le ménage. Ces non-convexités sont donc de moindre importance dans notre cas puisque nous restreignons notre analyse aux ménages avec au moins un actif occupé à plein temps.

\(^8\) Sous cette hypothèse, l’indice de pouvoir n’a pas à être fixé sur la durée de vie commune \((=\ \textit{full commitment} =\ \textit{pour Mazzocco, 2002})\). Nous ne spécifions pas un modèle collectif à choix inter-temporels (voir Mazzocco, 2002) mais essayons plutôt de retrouver le résultat du processus de négociation à un moment donné dans un état de l’économie donné.
1.1.3 Spécification des préférences individuelles

Nous supposons que les préférences individuelles des célibataires sont de type Stone-Geary, soit, pour \(i = f, m \) :

\[
U_i(c_i, l_i) = \gamma_i \ln(c_i - c_i^*) + \beta_i' \ln(l_i - l_i^*)
\]

où \(l_i = T - h_i \) est la demande de loisir de \(i = f, m \) et \(T \) le temps total disponible. Nous faisons l’hypothèse d’identification que les individus en couple possèdent le même type de préférences avec cependant un terme supplémentaire, spécifique à la vie en couple et traduisant une interaction possible entre les loisirs des partenaires, de sorte que pour chaque conjoint \(i = f, m \) :

\[
U_i(c_i, l_i, l_m) = \beta_i \ln(c_i - c_i^*) + \beta_i' \ln(l_i - l_i^*) + \delta \ln(l_i - l_f) \ln(l_m - l_m^*)
\]

Le loisir proprement dit est \(l_i - l_i^* \). Le terme \(l_i \) correspond au temps incompressible nécessaire à la régénération physiologique et à la réalisation des tâches domestiques de base. Il varie avec le sexe et la composition démographique du ménage. Le terme d’interaction \(\delta \) prend en compte les possibles complémentarité ou substituabilité des loisirs des conjoints ainsi que toute autre forme d’interaction entre les...

9. Par la suite, \(T = 7 \times 24 = 168 \) heures par semaine.
loisirs des époux. En introduisant ce terme, nous relâchons l’hypothèse restrictive de séparabilité des préférences individuelles entre les paires \((c_i, l_i)\) et \((c_m, l_m)\) habituellement faite dans les estimations de modèles collectifs.

Il existe plusieurs manières de rendre compte de l’impact de la composition démographique du ménage (voir Browning, 1992). Ici, les enfants n’ont pas de pouvoir de décision et leurs préférences sont intégrées dans celles des parents. En outre, suivant Deaton et Muellbauer (1980), les enfants sont considérés, pour chaque conjoint, comme une source additionnelle de consommation privée et de temps passé à la maison. Les montants incompressibles de consommation \(c_i\) et de « loisir » \(l_i\) dépendent donc du nombre et de l’âge des enfants présents dans le ménage. Une échelle d’équivalence a été utilisée pour \(c_i\) et des résultats d’enquête sur l’allocation du temps pour \(l_i\).

Un modèle collectif structuré d’offre de travail avec production domestique nécessiterait à coup sûr plus d’informations sur l’allocation du temps des conjoints que celles habituellement disponibles dans les enquêtes. En outre, un tel modèle n’irait pas sans poser un nombre important de problèmes théoriques. Néanmoins, les dépenses et le temps consacrés aux enfants sont des variables de décision qu’il faudra prendre en compte dans le futur.

1.1.4 Identification des paramètres structurels

Les cinq paramètres de préférence \((\beta_i^f, \beta_i^m, \beta_m^f, \beta_m^m\) et \(\delta\)) doivent être identifiés ainsi que l’indice de pouvoir \(\mu\). Tout d’abord, nous supposons la comparabilité des utilités des époux et adoptons pour ce faire la normalisation suivante :

\[
\beta_i^f + \beta_i^m + \delta = 1 ~~~ i = f, m.
\]

10. La distinction théorique, dans un cadre collectif, entre loisir individuel et loisir partagé entre époux est abordée par Fong et Zhang (2001).

12. Le montage minimum de consommation individuelle \(c(z)\) est égal à \(c(z)/2 - 1\). La consommation minimum du ménage \(c(z)\) est définie, pour chaque taille de ménage, comme le revenu disponible le plus bas parmi toutes les combinaisons d’offre de travail des hommes et des femmes.

Pour les couples sans enfant, le loisir minimum \(l_i\) est fixé arbitrairement à 92 (resp. 95) heures par semaine pour les hommes (resp. pour les femmes). Pour les ménages avec enfants, nous ajoutons aux valeurs précédentes un montant qui dépend de l’âge du plus jeune enfant. Pour ce faire nous utilisons les résultats de l’enquête Emploi du temps de 1998 (INSEE). Pour la femme (resp. le mari) le montant est de : 14 (7) heures pour un enfant de 5 ans et moins, 6 (3) heures pour un enfant entre 6 et 11 ans, 5 (2) heures pour un enfant de 12 ans et plus.

Ensuite, l’hypothèse d’identification que les individus en couple gardent les mêmes préférences relatives envers la consommation et le loisir après mariage implique:

\[
\frac{\beta_i^j}{\beta_i^j} = \frac{\gamma_i^j}{\gamma_i^j} = \alpha_i, \quad i = f, m. \tag{6}
\]

Les coefficients \(\gamma \) sont estimés séparément sur deux échantillons d’hommes et de femmes célibataires (voir ci-dessous). À ce stade, nous savons que \(\beta_i = \frac{1 - \delta}{1 + 1 / \alpha_i} \) et que \(\beta_i^j = \frac{1 - \delta}{1 + \alpha_i} \).

Enfin, l’hétérogénéité internéguages est prise en compte par le terme d’interaction \(\delta \) et l’indice de pouvoir \(\mu \). Pour chaque couple, ces deux degrés de liberté sont calibrés sur les deux offres de travail observées.

En utilisant (5) et (6), on montre facilement que les conditions de concavité sur les utilisés individuelles impliquent que \(\delta \in]0_{\min}, \delta_{\max} [\) avec:

\[
\delta_{\min} = \frac{1}{(1 + \alpha_i) \ln(l_j - l_i) - 1} \quad \text{pour } i, j = f, m
\]

\[
\delta_{\max} = 1.
\]

1.2 Estimation des préférences relatives pour le loisir et la consommation sur les célibataires

Les estimations des paramètres de préférence ont été effectuées séparément pour les hommes et les femmes sur des échantillons de célibataires sans enfant dans le ménage. Ceci se justifie par le fait que des parents célibataires peuvent avoir des caractéristiques inobservées qui changent de manière significative les estimations. Cependant, les célibataires peuvent avoir des enfants qui ne vivent pas avec eux.

Nous supposons que l’utilité de l’individu \(k \), pour le choix \(j \) d’offre de travail et le niveau de consommation qui en découle, est une fonction aléatoire:

\[
U(c_i, h_j) = \gamma_i \ln(c_i - c_i) + \gamma_j \ln(T - h_j - l_j) + \varepsilon_i, \tag{7}
\]

où ε, est un aléa de moyenne nulle et suivant une Weibull. Nous faisons l'hypothèse supplémentaire que, conditionnellement aux caractéristiques observées, ce niveau d'utilité est indépendant des niveaux d'utilité des autres options. Il est alors possible d'estimer les paramètres γ par un modèle logit conditionnel. Afin de prendre en compte une certaine hétérogénéité observée des préférences, nous faisons dépendre linéairement les coefficients γ des caractéristiques individuelles que sont l'âge et le niveau d'étude. L'hétérogénéité inobservée est introduite par l'intermédiaire de points de masse dans les paramètres. Plusieurs régimes sont autorisés. Cette méthodologie, suggérée par Hoyes (1996), s'est avérée plus efficace, en termes de vraisemblance et de pouvoir explicatif, que l'utilisation d'un modèle à hétérogénéité inobservée continue tel Van Soest (1995) ou McFadden et Train (2000).

Conditionnellement aux caractéristiques observées, les individus sont tirés dans une mixture de R régimes, le régime r correspondant à une paire donnée de points de masse (θ, θ) pour les coefficients de la consommation et du loisir. Chaque paire est observée avec une probabilité π r = Pr(θ = θ, θ = θ), avec ∑ r π r = 1. Les points de masse et leur probabilités associées sont des paramètres estimés du modèle. La contribution marginale à la vraisemblance d'une personne célibataire choisissant l'alternative j s'écrit :

\[EP_j = \sum_{r=1}^{R} \pi_r \frac{\exp U(c_{i,j}, h_j)}{\sum_{r=1}^{R} \exp U(c_{i,r}, h_r)} \]

Les résultats figurent en annexes. Enfin, nous utilisons les résultats des estimations sur les célibataires et la relation (6) pour calculer les paramètres α de préférence relative pour le loisir et la consommation des hommes et des femmes vivant en couple.

1.3 Calibration de l’indice de pouvoir et du terme d’interaction sur le loisir

La calibration du modèle s’effectue à partir du programme (1) ainsi que d’un programme informatique de microsimulation de la contrainte de budget (2). Pour chaque combinaison d’offres de travail discrétisées (h, h), nous calculons la fonction g() et fournissons le revenu disponible du ménage correspondant. Le modèle est discret pour l’offre de travail mais continu en la consommation individuelle de sorte que les conditions du premier ordre relatives à c et c (ajoutées à la contrainte budgétaire) donnent, pour la spécification retenue :

\[c = c + p(c - c) \]
\[c = c + (1 - p)(c - c) \]

avec la part de consommation « négociable » (c’est-à-dire hors consommation incompressible) revenant à l’épouse notée :
\[p = \frac{\mu \beta'_j}{\mu \beta'_j + (1 - \mu) \beta'_m}. \]

La part de consommation est croissante avec l’indice de pouvoir et ne dépend que de celui-ci et des propensions à consommer. Le niveau de consommation totale est donné par la contrainte budgétaire de sorte que :

\[c_j = c_0 + p(\mu)[g(w_j h_j, w_m h_m, y_{it}, \zeta) - \zeta], \]
\[c_m = c_0 + [1 - p(\mu)]\left[g(w_i h_j, w_m h_m, y_{it}, \zeta) - \zeta \right]. \tag{10} \]

On substitue (10) et (11) dans le programme collectif et ce dernier s’exprime alors en fonction des seules offres de travail, conditionnellement aux paramètres \(\mu \) et \(\delta \) à calibrer :

\[\max_{h_j, h_m} \mu U_j(h_j, h_m / \delta, \mu) + (1 - \mu) U_m(h_m, h_j / \delta, \mu). \tag{12} \]

Nous donnons 30 valeurs à \(\delta \) dans l’intervalle \([\delta_{\min}, \delta_{\max}]\) et 30 valeurs à \(\mu \) dans l’intervalle \([0, 1]\) pour obtenir 900 combinaisons \((\mu, \delta)\). Pour chaque paire, l’allocation optimale \((h_j(\mu, \delta), h_m(\mu, \delta))\) est donnée par le programme (12)\(^{16}\). En supposant que les couples suivent la rationalité collective, la calibration consiste à inverser numériquement le système :

\[h_j(\mu, \delta) = h_j^{obs}, \]
\[h_m(\mu, \delta) = h_m^{obs}, \]

où \(h_j^{obs} \) et \(h_m^{obs} \) sont les offres de travail observées\(^{17}\). À titre d’illustration, plaçons-nous dans le cadre continu correspondant, en supposant pouvoir linéariser localement la contrainte budgétaire exprimée alors en termes de salaires et de revenu hors travail virtuels :

\[c = c_j + c_m = \widetilde{w}_j h_j + \widetilde{w}_m h_m + \widetilde{y}_{it}. \]

Dans ce cas et en simplifiant le modèle \((\delta = 0)\) pour n’en garder que les intuitions principales, on obtiendrait les offres de travail marshalliennes suivantes :

\(^{16}\) Pour un \(\delta \) donné, le programme considère seulement les allocations sur la frontière de l’enveloppe convexe quand \(\mu \) varie sur \([0, 1]\). Les ménages sont ainsi globalement efficaces comme nous l’avons supposé.

\(^{17}\) En pratique, pour chaque ménage, la paire calibrée \((\mu', \delta')\) est déterminée par le critère de maximisation : \((\mu', \delta') \in \operatorname{arg\ min}_{\mu, \delta} \left[h_j^{obs} - h_j(\mu, \delta) \right]^2 + \left[h_m^{obs} - h_m(\mu, \delta) \right]^2 \). En cas de solutions multiples, nous choisissons la moyenne des \((\mu, \delta)\) vérifiant la condition.

\[h_f(\mu) = T_f - \frac{p(\mu)}{2} \frac{F - c}{\bar{w}_f}, \]

\[h_m(\mu) = T_m - \frac{1 - p(\mu)}{2} \frac{F - c}{\bar{w}_m}, \]

avec \(F = \bar{w} T_f + \bar{w}_m T_m + \bar{y}_m \).

Une hausse du salaire implicite au dénominateur du deuxième membre de droite entraîne une baisse d’activité (effet substitution) atténuée par la hausse du revenu total (full income) \(F \) au numérateur (effet de revenu). Le partage de la consommation \(p \) étant croissant avec \(\mu \), une augmentation du pouvoir de négociation de l’épouse contribue à une hausse de son loisir (effet distribution)\(^{18}\).

Le tableau 1 présente les résultats de la calibration. Les parts médiane et moyenne de consommation des femmes oscillent autour de 60% tandis que l’indice de pouvoir de la femme est proche de 51% en moyenne. Le graphique 2 représente la distribution de l’indice de pouvoir calibré sur l’ensemble des couples sélectionnés.

TABLEAU 1

<table>
<thead>
<tr>
<th>Variable</th>
<th>Moyenne</th>
<th>Écart-type</th>
<th>Minimum</th>
<th>10%</th>
<th>Médiane</th>
<th>90%</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_r)</td>
<td>0,432</td>
<td>0,049</td>
<td>0,280</td>
<td>0,365</td>
<td>0,435</td>
<td>0,497</td>
<td>0,553</td>
</tr>
<tr>
<td>(\beta_i)</td>
<td>0,554</td>
<td>0,060</td>
<td>0,319</td>
<td>0,480</td>
<td>0,552</td>
<td>0,635</td>
<td>0,706</td>
</tr>
<tr>
<td>(\delta)</td>
<td>0,014</td>
<td>0,058</td>
<td>-0,137</td>
<td>-0,040</td>
<td>0,003</td>
<td>0,085</td>
<td>0,345</td>
</tr>
<tr>
<td>(\beta_m)</td>
<td>0,601</td>
<td>0,043</td>
<td>0,378</td>
<td>0,537</td>
<td>0,615</td>
<td>0,638</td>
<td>0,705</td>
</tr>
<tr>
<td>(\beta_n)</td>
<td>0,385</td>
<td>0,036</td>
<td>0,251</td>
<td>0,348</td>
<td>0,381</td>
<td>0,438</td>
<td>0,535</td>
</tr>
<tr>
<td>(\mu)</td>
<td>0,511</td>
<td>0,078</td>
<td>0,167</td>
<td>0,467</td>
<td>0,5</td>
<td>0,6</td>
<td>0,867</td>
</tr>
<tr>
<td>(p)</td>
<td>0,598</td>
<td>0,078</td>
<td>0,105</td>
<td>0,535</td>
<td>0,591</td>
<td>0,682</td>
<td>0,895</td>
</tr>
</tbody>
</table>

\(^{18}\) Dans un cadre très simple avec fiscalité linéaire (donc des salaires exogènes), il serait possible d’estimer simultanément ces deux offres de travail sur un échantillon de couples doublement actif (ou une seule équation correspondant à un couple matrimonial) afin d’estimer \(p \). L’indice de pouvoir ne serait alors identité qu’à condition de connaître les paramètres \(\beta \). À nouveau, l’hypothèse de persistance de certains aspects des préférences après mariage est nécessaire afin d’estimer ces \(\beta \). C’est le cadre de travail de Barmby et Smith (2001).
Comme illustré dans le tableau 2, le terme d’interaction δ est positif en moyenne et augmente avec le nombre d’enfants après le premier, ce qui suggère une complémentarité des loisirs des conjoints. Cependant, pour près de 47 % des couples, ce terme est négatif. Le fait que les loisirs puissent être des substituts pour tant de ménages est surprenant\(^{19}\). Une explication possible réside dans l’utilisation de valeurs estimées sur des célibataires et imputées ensuite dans les préférences des conjoints\(^{20}\). Notons cependant qu’il est assez cohérent que la plupart des ménages avec un δ négatif soient des couples où l’homme et la femme travaillent. Leur temps de travail hebdomadaire est, en moyenne, de 38,0 pour les femmes et de 43,9 pour les hommes, contre respectivement 15,6 et 41,4 pour les ménages avec un terme d’interaction positif.

La grille de calibration utilisée étant relativement fine, il existe peu de différence entre les heures calibrées et observées. Les valeurs sont identiques pour 94,7 % des hommes et pour 99,0 % des femmes. Les heures calibrées fournissent la situation de référence avant réforme.

20. Cela peut aussi venir du fait que toute la production domestique n’a pas été prise en compte dans le calcul de \(f \). Ce point mérite d’être approfondi.
TABLEAU 2
PARAMÈTRES DE PRÉFÉRENCE ET NOMBRE D’ENFANTS

<table>
<thead>
<tr>
<th>Variable / nombre d’enfants</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>β'_i</td>
<td>0.433</td>
<td>0.429</td>
<td>0.431</td>
<td>0.439</td>
</tr>
<tr>
<td>β_i</td>
<td>0.550</td>
<td>0.561</td>
<td>0.554</td>
<td>0.544</td>
</tr>
<tr>
<td>δ</td>
<td>0.016</td>
<td>0.010</td>
<td>0.015</td>
<td>0.017</td>
</tr>
<tr>
<td>β'_m</td>
<td>0.602</td>
<td>0.603</td>
<td>0.599</td>
<td>0.598</td>
</tr>
<tr>
<td>β_m</td>
<td>0.382</td>
<td>0.386</td>
<td>0.385</td>
<td>0.384</td>
</tr>
</tbody>
</table>

1.4 Estimation de l’indice de pouvoir

Si on interprète le modèle *stricto sensu* et qu’on ne rejette pas les hypothèses préalables, l’indice μ peut être interprété comme un indice local du poids de l’épouse dans la négociation infragénérationnelle. En toute généralité, nous l’autorisons à dépendre de l’environnement ou circonstances dans lesquelles s’opère la négociation. Suivant Browning et Chiappori (1998), cet environnement (noté θ précédemment) est constitué des prix (salaires horaires), du revenu hors travail et des facteurs de distribution.

1.4.1 Facteurs de distribution

L’hypothèse d’agrégation des ressources (« income pooling ») est une critique majeure apportée à l’approche unitaire. Dans notre modèle, nous souhaitons incorporer une variable relative aux capacités respectives de chacun des conjoints à contribuer aux ressources familiales. En présence d’un système d’imposition non linéaire, les salaires nets sont endogènes aux décisions d’offre de travail et ne peuvent être utilisés directement. À la place, nous suggérons un indicateur de la contribution salariale relative et potentielle, CRP, de la femme aux ressources familiales quand elle passe de l’inactivité au temps plein. Notons R_{y_i, h_i} le revenu familial après impôts quand la femme travaille h_i et que son conjoint effectue h_m heures hebdomadaires. Nous définissons la contribution relative potentielle de la femme aux revenus nets du ménage comme :

$$ CRP = \frac{R_{y_i, h_i} - R_{y_i, 0}}{R_{y_i, 0}} $$
Il s'agit d'un indicateur simple permettant de mesurer les effets d'une réforme fiscale sur la contribution relative de l'épouse aux ressources du ménage. Cet indicateur jouera un rôle important par la suite.

À notre connaissance, peu a été fait dans un cadre structurel pour analyser la redistribution intrafamiliale au sein du ménage à la suite d'une réforme fiscale. Étant donné que la présente tentative est un pur exercice de simulation, il peut sembler utile d'introduire plus de structure au modèle que n'en permet le cadre collectif. Une solution consisterait à spécifier un modèle de négociation avec points de menace internes (situation non coopérative au sein du ménage), suivant Lundberg et Pollak (1993), ou externes (divorce), suivant Manser et Brown (1980) ou McElroy et Horney (1981). Les options de sortie peuvent en effet caractériser de façon plus convaincante de quelle manière la fiscalité joue sur la négociation dans le ménage, qu'il s'agisse de la fiscalité des couples ou de celle d'un célibataire dans le cas du divorce. Ce serait aller au-delà de la tâche que nous nous sommes assignée ici, à savoir la simulation de comportements collectifs d'offre de travail avec participation et fiscalité.

En plus de la variable CRP (exogène aux choix d'offre de travail du ménage), nous ajoutons plusieurs facteurs de distribution. Il s'agit des différences d'âge, de niveau d'étude (sous l'hypothèse d'exogénéité du capital humain) et de taux de chômage entre époux. Le tableau 3 détaille les statistiques descriptives des différentes variables explicatives dans l'estimation de l'indice de pouvoir.

TABLEAU 3
STATISTIQUES DESCRIPTIVES POUR LES FACTEURS DE DISTRIBUTION,
LES SALAIRES ET LE REVENU HORS TRAVAIL

<table>
<thead>
<tr>
<th>Variable</th>
<th>Moyenne</th>
<th>Médiane</th>
<th>Écart-type</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRP</td>
<td>0.749</td>
<td>0.67</td>
<td>0.39</td>
</tr>
<tr>
<td>(w_f)</td>
<td>7.56</td>
<td>6.53</td>
<td>4.05</td>
</tr>
<tr>
<td>(w_m)</td>
<td>10.27</td>
<td>8.72</td>
<td>6.01</td>
</tr>
<tr>
<td>(y_0)</td>
<td>873</td>
<td>277</td>
<td>1762</td>
</tr>
<tr>
<td>dace</td>
<td>-1.90</td>
<td>-2</td>
<td>3.68</td>
</tr>
<tr>
<td>dedu</td>
<td>-0.26</td>
<td>0</td>
<td>3.09</td>
</tr>
<tr>
<td>durate</td>
<td>-4.31</td>
<td>-4.8</td>
<td>4.44</td>
</tr>
</tbody>
</table>

Note : CRP : contribution relative potentielle de l'épouse telle que définie dans le texte ; \(w_f \) : salaire horaire de la femme (euro) ; \(w_m \) : salaire horaire de l'homme (euro) ; \(y_0 \) : revenu du capital annuel (euro) ; dace : différence entre les âges de la femme et de l'homme ; dedu : différence entre les niveaux d'étude de la femme et de l'homme ; durate : différence entre les taux de chômage (par âge et niveau d'étude) de l'homme et de la femme.

1.4.2 Résultats de l'estimation

Tout d'abord, nous utilisons la même forme fonctionnelle pour le poids \(\mu \), que les individus participent ou non au marché du travail. Ensuite, nous utilisons l'équation logistique suivante :

\[
\ln \left(\frac{\mu}{1-\mu} \right) = \theta \eta + u,
\]

car l'indice doit se trouver dans l'intervalle \([0, 1]\). La régression, conduite par moindres carrés ordinaires, est présentée dans le tableau 4.
TABLEAU 4

ÉTImATION DE L’INDICE DE POUVOIR

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Variable</th>
<th>Valeur du coefficient</th>
<th>Écart-type asymptotique</th>
</tr>
</thead>
<tbody>
<tr>
<td>η_0</td>
<td>constant</td>
<td>-0.083</td>
<td>(0.056)</td>
</tr>
<tr>
<td>η_1</td>
<td>CRP</td>
<td>0.391 **</td>
<td>(0.081)</td>
</tr>
<tr>
<td>η_2</td>
<td>$(CRP)^2$</td>
<td>-0.091 **</td>
<td>(0.018)</td>
</tr>
<tr>
<td>η_3</td>
<td>w_i</td>
<td>-0.001</td>
<td>(0.004)</td>
</tr>
<tr>
<td>η_4</td>
<td>w_m</td>
<td>-0.009 **</td>
<td>(0.003)</td>
</tr>
<tr>
<td>η_5</td>
<td>$y_{i2}/100$</td>
<td>0.002 **</td>
<td>(0.000)</td>
</tr>
<tr>
<td>η_6</td>
<td>dage</td>
<td>-0.003</td>
<td>(0.002)</td>
</tr>
<tr>
<td>η_7</td>
<td>dedu</td>
<td>-0.007 **</td>
<td>(0.003)</td>
</tr>
<tr>
<td>η_8</td>
<td>durate</td>
<td>0.006 **</td>
<td>(0.002)</td>
</tr>
</tbody>
</table>

R^2 ajusté 0.11

Note : Seuls de significativité à 5 % et 1 % notés * et ** respectivement. La matrice de variance-covariance est robuste à l’hétéroschéasicité de forme inconnue.

Le salaire de l’homme influence significativement et négativement le pouvoir de négociation de son épouse. Le salaire de la femme n’a pas d’impact. En outre, plus les chances de la femme de trouver un travail sont fortes par rapport à celles de son mari (c.-à-d. plus *durate* est élevé), plus son pouvoir de négociation est important. Le signe négatif du différentiel d’éducation est inattendu. Enfin, la différence d’âge n’affecte pas significativement l’indice de pouvoir.

22. Ce résultat était attendu à la suite d’une régression non paramétrique de $\ln\left(\frac{\mu}{1-\mu}\right)$ sur *CRP*. Aucune relation n’apparaît entre ces deux variables.

23. Suivant la suggestion du rapporteur, nous avons essayé de faire interagir le *CRP* avec d’autres variables disponibles pouvant représenter la force d’attachement au marché du travail de chaque membre du couple ou l’incertitude par rapport à la stabilité de son emploi. Nous avons ajouté à la régression initiale une première interaction entre les variables *CRP* et *dedu*, et une seconde entre les variables *CRP* et *durate*. L’introduction des deux termes d’interaction conduit les coefficients η_1 et η_2 à ne plus être significativement différents de zéro, en raison de fortes corrélations entre ces termes d’interaction et les variables initiales. Nous n’avons donc pas retenu ces termes.

24. Il faut interpréter ces résultats avec prudence. La plupart des paramètres qui ne sont pas strictement des facteurs de distribution posent certainement des problèmes d’identification. Ensuite, il manque sûrement des facteurs de distribution pertinents dans la régression. Notre objectif, cependant, n’est pas de prédire l’indice de pouvoir mais plutôt d’analyser sa variation en fonction d’une modification de *CRP* due à un changement fiscal.
Un résultat important est que l’indicateur CRP est un déterminant significatif de l’indice de pouvoir, avec le signe attendu. Dans l’ensemble, plus la contribution salariale potentielle de la femme est élevée, plus son pouvoir de négociation est important. Cependant, l’effet marginal de CRP décroît avec son niveau25.

Comme le montre le tableau 5, l’élasticité de l’indice de pouvoir à l’indicateur CRP est très faible. À la valeur médiane de la contribution relative de la femme, une augmentation de 10 % de CRP conduit à une hausse de 0,89 % de l’indice de pouvoir. Une analyse de sensibilité confirme ce résultat en montrant qu’il n’est pas dû à l’utilisation des préférences des célibataires comme hypothèse d’identification26. Nous repétons en effet l’exercice de calibration en faisant varier les paramètres du modèle dans le voisinage des valeurs estimées sur les échantillons de célibataires puis nous estimons l’indice de pouvoir calibré dans chaque cas. Le tableau 6 présente les résultats en termes d’élasticité : il apparaît que l’effet de CRP sur μ est encore plus faible dans les variantes proposées.

Dans la suite de l’article, nous utilisons les valeurs estimées de l’indice de pouvoir en conservant les résidus \tilde{u} de l’estimation (hétérogénéité inobservée spécifique à chaque ménage).

<table>
<thead>
<tr>
<th>TABLEAU 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ÉLASTICITÉ DE L’INDICE DE POUVOIR EN FONCTION DE CRP</td>
</tr>
<tr>
<td>Percentile</td>
</tr>
<tr>
<td>Élasticité</td>
</tr>
</tbody>
</table>

Note : L’élasticité est évaluée aux différents percentiles de CRP, les autres variables étant fixées à leur valeur médiane.

25 Cette relation concave corrobore d’ailleurs les résultats de la régression non paramétrique de $\ln\left(\frac{\mu}{1-\mu}\right)$ sur CRP et est robuste aux différentes spécifications testées.

26 Suite à une remarque du rapporteur, nous avons également regressing la variable dépendante sur CRP et les autres régresseurs, en omettant les salaires individuels. Il ressort que l’élasticité est supérieure, en restant très faible toutefois. Il nous paraît légitime et important de contrôler pour les salaires individuels car nous cherchons à construire un facteur de distribution relié principalement (i) au niveau relatif des salaires hommes/femmes et (ii) à la fiscalité.
<table>
<thead>
<tr>
<th>Percentile</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>25</th>
<th>50</th>
<th>75</th>
<th>90</th>
<th>95</th>
<th>99</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma'_i + a, \gamma'_i - a, \gamma'_m + a, \gamma'_m - a$</td>
<td>0.013</td>
<td>0.022</td>
<td>0.025</td>
<td>0.033</td>
<td>0.041</td>
<td>0.049</td>
<td>0.055</td>
<td>0.057</td>
<td>0.053</td>
</tr>
<tr>
<td>$\gamma'_i + a, \gamma'_i - a, \gamma'_m - a, \gamma'_m + a$</td>
<td>0.014</td>
<td>0.021</td>
<td>0.025</td>
<td>0.031</td>
<td>0.036</td>
<td>0.038</td>
<td>0.034</td>
<td>0.027</td>
<td>-0.010</td>
</tr>
<tr>
<td>$\gamma'_i - a, \gamma'_i + a, \gamma'_m + a, \gamma'_m - a$</td>
<td>0.017</td>
<td>0.028</td>
<td>0.033</td>
<td>0.045</td>
<td>0.057</td>
<td>0.072</td>
<td>0.086</td>
<td>0.095</td>
<td>0.109</td>
</tr>
<tr>
<td>$\gamma'_i - a, \gamma'_i + a, \gamma'_m - a, \gamma'_m + a$</td>
<td>0.013</td>
<td>0.020</td>
<td>0.024</td>
<td>0.032</td>
<td>0.040</td>
<td>0.049</td>
<td>0.056</td>
<td>0.059</td>
<td>0.059</td>
</tr>
<tr>
<td>$\gamma'_i + b, \gamma'_i - b, \gamma'_m + b, \gamma'_m - b$</td>
<td>0.007</td>
<td>0.012</td>
<td>0.014</td>
<td>0.018</td>
<td>0.023</td>
<td>0.029</td>
<td>0.029</td>
<td>0.029</td>
<td>0.022</td>
</tr>
<tr>
<td>$\gamma'_i + b, \gamma'_i - b, \gamma'_m - b, \gamma'_m + b$</td>
<td>0.013</td>
<td>0.021</td>
<td>0.023</td>
<td>0.029</td>
<td>0.032</td>
<td>0.031</td>
<td>0.022</td>
<td>0.009</td>
<td>-0.045</td>
</tr>
<tr>
<td>$\gamma'_i - b, \gamma'_i + b, \gamma'_m + b, \gamma'_m - b$</td>
<td>0.014</td>
<td>0.024</td>
<td>0.029</td>
<td>0.041</td>
<td>0.054</td>
<td>0.072</td>
<td>0.092</td>
<td>0.108</td>
<td>0.143</td>
</tr>
<tr>
<td>$\gamma'_i - b, \gamma'_i + b, \gamma'_m - b, \gamma'_m + b$</td>
<td>0.002</td>
<td>0.004</td>
<td>0.004</td>
<td>0.006</td>
<td>0.007</td>
<td>0.008</td>
<td>0.010</td>
<td>0.011</td>
<td>0.011</td>
</tr>
</tbody>
</table>

Note : Les elasticités sont évaluées aux différents percentiles de CRP, les autres variables étant fixées à leur valeur médiane. Les paramètres γ'_i, pour $i = f, m$ et $j = c, l$, correspondent aux paramètres de préférence estimés des célibataires. Les scalaires a et b prennent respectivement les valeurs de 0,05 et 0,1.
2. **Description de la réforme fiscale**

En France, le système fiscal actuel est une extension du « *splitting system* » permettant de prendre en compte la présence d’enfants dépendants. Il s’agit d’une taxation jointe et le taux marginal d’imposition est donc le même pour les deux conjoints. Nous suggérons une individualisation du système qui va vraisemblablement augmenter le taux marginal du principal pourvoyeur de revenu mais diminuer celui du second pourvoyeur, la femme dans 73 % des couples.

2.1 **Le système actuel**

En France, les règles de taxation de l’année *t* s’appliquent aux revenus de l’année *t* – 1. Ainsi, nous appliquons les règles de 1996 pour calculer l’imposition des revenus de 1995. Le revenu imposable correspond au revenu salarial net de contributions sociales et net des contributions spéciales déductibles (« contribution sociale généralisée » et « contribution relative à la dette sociale »). Des déductions pour frais professionnels (10 %) ainsi qu’une déduction spéciale pour les salariés (20 %) sont également retirées. Le barème fiscal progressif, noté *n(·)*, est une fonction linéaire par morceau composée de sept taux marginaux (de 0 à 54 % pour l’année 1996).

Décrivons maintenant les règles propres à la taxation des individus mariés. Notons le revenu imposable du ménage *y* = *y*₁ + *y*₂ avec *y*₁ le revenu imposable du conjoint *i* = *f*, *m*. Pour prendre en compte la dimension familiale, le barème est appliqué au revenu équivalent *y*₁/*s*. Le nombre d’équivalent-adulte (ou « quotient familial ») s’écrit :

\[s = 2 + k \]

et compte 2 unités (ou « parts de quotient ») pour les conjoints et *k* unités pour les enfants, calculées à partir d’une échelle d’équivalence officielle. Le montant d’impôt s’écrit donc :

\[T = st(y₁/s). \] \hspace{1cm} (13)

Ce système conduit à une imposition marginale plus faible pour les couples mariés que pour les célibataires et encore plus faibles en présence d’enfant. Étant donnée la progressivité du système, cette méthode de calcul implique que les gains d’impôts dus aux enfants sont plus larges dans les familles riches et un plafond sur le montant des déductions autorisées prévient donc de trop fortes inégalités.

27. Cette dernière a pour objectif de rendre homogène le traitement fiscal des salariés et des indépendants, le revenu des seconds étant généralement sous-déclaré.

28. Simplement 0,5 pour chacun des deux premiers enfants et 1 pour chaque enfant additionnel.
2.2 Individualisation de l’impôt sur le revenu

Nous considérons ici une réforme importante dans le débat politique français. Il s’agit de l’individualisation de l’imposition sur le revenu. Chaque époux dans le ménage est taxé sur la base de ses seules ressources. Notons que dans le système existant, une grande part des revenus du capital est taxée via un système différent de l’impôt sur le revenu (prélèvement libératoire) de sorte que les interférences avec la réforme proposée sont limitées. Pour le traitement familial, nous choisissons une adaptation naturelle du système actuel et supposons que k est partagé à part égale entre les époux. Le nombre d’équivalent-adulte du foyer fiscal de l’époux $i = f, m$ s’écrit $s_i = 1 + k / 2$ de sorte que le montant d’impôt du ménage devient:

$$T_i = s_i t(y_i / s_i) + s_m t(y_m / s_m).$$

Avec cette réforme, les règles fiscales concernant les époux deviennent proches des règles actuelles pour les concubins. Avec le système purement individualisé, cependant, les époux n’ont pas la liberté d’allouer k à leur gré entre les deux foyers fiscaux. Dans ce cas, le processus de négociation dans le ménage devrait intégrer ce degré de liberté supplémentaire ce qui n’a pas été possible à l’étape de calibration.

2.3 Impact direct de la réforme

La réforme proposée modifie la contrainte budgétaire et distord donc la frontière de Pareto. Ignorons tout d’abord les réactions comportementales de sorte que (h_i, h_m, p) ne varie pas. La distribution (U_i, U_m) n’est probablement plus sur la nouvelle frontière.

Le tableau 7 décrit les variations des charges fiscales après la réforme : l’imposition des couples mariés augmente en moyenne. Lorsque leur contribution individuelle est proche, les époux sont taxés dans la même tranche d’imposition que l’était leur revenu équivalent-adulte avant la réforme. Ils font donc face aux deux au même taux marginal et la charge fiscale du ménage n’a pas de raison de varier. Les ménages les plus pauvres ne payent pas d’impôt et ne sont donc pas touchés par la réforme. Au total, rien ne change pour 35.5 % des ménages.

Pour les autres, à savoir les ménages contribuables dans lesquels un écart de revenu substantiel existe entre les deux conjoints, le taux marginal du pourvoyeur secondaire diminue ou se maintient tandis que le taux du pourvoyeur principal augmente dans la plupart des cas. De par la forme du barème, le second effet tend à dominer de sorte que la charge fiscale augmente. Le cas le plus flagrant est celui des ménages monoactifs puisque le nombre d’équivalent-adulte est alors réduit de $1 + k / 2$ après la réforme.
TABLEAU 7

VARIATION DE L’IMPOSITION APRÈS RÉFORME (PAS DE RÉACTION COMPORTEMENTALE)

<table>
<thead>
<tr>
<th>% de ménages</th>
<th>Impôt avant réforme</th>
<th>Impôt après réforme</th>
<th>Variation relative*</th>
</tr>
</thead>
<tbody>
<tr>
<td>35,5%</td>
<td>64,5</td>
<td>64,5</td>
<td>63,3</td>
</tr>
<tr>
<td>Moyenne</td>
<td>3 228</td>
<td>4 243</td>
<td>67 %</td>
</tr>
<tr>
<td>Médiane</td>
<td>1 767</td>
<td>2 530</td>
<td>19 %</td>
</tr>
<tr>
<td>Écart-type</td>
<td>2 346</td>
<td>5 512</td>
<td>1,02</td>
</tr>
<tr>
<td>10 %</td>
<td>0</td>
<td>932</td>
<td>2 %</td>
</tr>
<tr>
<td>90 %</td>
<td>4 822</td>
<td>8 528</td>
<td>188 %</td>
</tr>
</tbody>
</table>

Note: *La distribution des charges fiscales est fortement asymétrique et la moyenne bien supérieure à la médiane. De fait, la moyenne des variations relatives d’imposition (67 %) est supérieure à la variation relative de la charge fiscale moyenne (27,7 %). Notez également que 1,2 % des couples ne paient pas d’impôt avant la réforme (ils paient un impôt moyen de 641 euros après la réforme) et ne sont pas inclus dans le calcul des variations relatives de la charge fiscale. Les chiffres sont donnés en euros.*

En moyenne sur la population retenue, l’imposition augmente de 920 euros par an et de 67 % en termes relatifs. La variation médiane est une hausse de 19 %. Ces résultats s’approchent des chiffres officiels présentés par le ministère des Finances français (voir Briaire et Echevin, 2002). Le revenu fiscal agrégé tiré des couples mariés augmente de 21,2 % avec la réforme. Il correspond au prélèvement par l’État du « gain fiscal au mariage » dont bénéficient actuellement les couples mariés en France. Nous ne proposons pas une réforme à coût/gain budgétaire nul, essentiellement puisque nous n’avons pas pour but de comparer plusieurs propositions de réformes mais seulement d’étudier l’impact potentiel d’une réforme à titre d’exemple.

29. La neutralité de la réforme requerrait un changement complet du système fiscal et notamment une modification du barème. Dans le cas présent, elle impliquerait une baisse d’ensemble du barème de 13 %, ce qui consituerait une forte redistribution des couples mariés vers les concubins et les célibataires. Ce scénario très improbable ne mérite pas de compliquer inutilement l’exercice proposé dans cet article.
3. Simulation des réponses d'offre de travail.

Nous passons maintenant à la simulation des réactions d'offre de travail issues du modèle précédent. Il est bien connu que la taxation jointe implique en général pour le pourvoyeur secondaire un taux marginal plus élevé qu'il ne subirait normalement. L'individualisation du système fiscal corrige cette anomalie et joue donc positivement sur le salaire net d'impôt des femmes mariées. Il s'ensuit un effet de substitution encourageant l'activité féminine. Cet effet est capturé par le modèle précédent simplement à travers une modification de la contrainte budgétaire. Cependant, un effet redistributif additionnel intervient dans le cadre proposé ici. Cet effet, généralement ignoré dans la littérature, se manifeste par une modification des poids sur les utilités individuelles résultant d'une variation de la contribution financière relative de l'épouse (variable \(CRP \)) avec la réforme. Malgré le cadre multiutilité disponible, nous limitons l'étude à une analyse positive. La raison principale de ce choix tient au fait que la prise en compte formelle de la production domestique fait défaut à une analyse rigoureuse du bien-être individuel.\(^{30}\)

3.1 Réponses comportementales dans un cadre unitaire

Nous supposons tout d'abord l'indice \(\mu \) constant : \(\frac{\partial \mu}{\partial \theta} \) est égal à 0 pour tous les ménages. Le processus de décision revient à une maximisation d'une fonction de bien-être du ménage tel que décrit par Samuelson (1956) et le modèle est véritablement unitaire\(^{31}\). Le seul impact de la réforme est une altération de la contrainte budgétaire familiale. La fiscalité devenant moins favorable en moyenne, les ensembles d'utilités possibles se réduisent vers l'origine. Les ménages « unitaires » optimisent de sorte que l'allocation \((U_t, U_m) \) se trouve sur la nouvelle frontière parétiene.

Les réactions d'offre de travail des conjoints sont guidées uniquement par les effets de revenu et de substitution traditionnels. Les taux marginaux effectifs de prélèvement des pourvoyeurs principaux (resp. secondaires) augmentent (resp. diminuent) en moyenne de sorte que l'effet de substitution conduit à une baisse de l'offre de travail des maris et une hausse de la participation et des heures travaillées des épouses. En effet, 7,64 % des maris diminuent leur temps de travail et

30. L'entrée massive des femmes sur le marché du travail ne correspond pas forcément à une perte de bien-être due à une baisse du loisir si le temps hors travail correspond à une production domestique coûteuse en termes d'effort. La sortie concomitante des hommes du marché du travail peut en revanche augmenter leur bien-être si leur temps domestique n'augmente pas autant que la baisse de temps domestique féminin. Les études sur l'allocation du temps suggèrent en effet que dans les pays où participations féminine et masculine sont comparables, les épouses sont responsables d'une part plus importante des tâches domestiques (voir par exemple Bonke et al., 2002, pour le Danemark).

31. Formellement, Chiappori (1992) et Kooreman et Kapteyn (1992) notent qu'une telle fonction d'utilité familiale ne peut être distinguée d'un modèle unitaire puisque ce qui relève de la négociation ne peut être distingué de ce qui tient aux préférences individuelles.
seulement 0,63 % l’accroissent. Parmi les épouses, 15,07 % entrent potentiellement sur le marché du travail tandis que 6,74 % diminuent leur activité. L’effet de revenu, correspondant à une baisse du revenu disponible, annule seulement en partie l’effet de substitution négatif sur l’offre de travail des hommes et renforce l’effet positif sur l’offre de travail des femmes. Au total, 21,8 % des épouses réagissent à la réforme pour seulement 8,27 % des maris. Le tableau 8 montre que dans certains ménages, les deux conjoints changent simultanément leur offre de travail.

TABLEAU 8

OFFRE DE TRAVAIL ET RÉPONSE UNITAIRE : VARIATION HEBDOMADAIRE

<table>
<thead>
<tr>
<th>Femmes \ Hommes</th>
<th>-10</th>
<th>-5</th>
<th>0</th>
<th>+5</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1,67</td>
<td>75,9</td>
<td>0,63</td>
<td>78,19</td>
</tr>
<tr>
<td>10</td>
<td>0,28</td>
<td>1,46</td>
<td>5,00</td>
<td>0</td>
<td>6,74</td>
</tr>
<tr>
<td>20</td>
<td>0,35</td>
<td>3,75</td>
<td>10,83</td>
<td>0</td>
<td>14,93</td>
</tr>
<tr>
<td>30</td>
<td>0,14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,14</td>
</tr>
<tr>
<td>Total</td>
<td>0,76</td>
<td>6,88</td>
<td>91,73</td>
<td>0,63</td>
<td>1 440</td>
</tr>
</tbody>
</table>

Note : Les chiffres à l’intérieur du tableau sont en pourcentage, excepté la dernière cellule de la colonne « Total » qui donne le nombre d’observations.

Au final, le revenu disponible décroit de 2,9 % en moyenne. Les poids sur les utilités sont fixés de sorte qu’avec la spécification retenue, la part de consommation ne change pas. En revanche, l’arbitrage consommation-loisir est différent entre les hommes et les femmes de sorte que même dans les ménages sans réaction comportementale, le bien-être du mari peut évoluer différemment de celui de sa femme. C’est d’autant plus vrai dans les ménages qui réagissent puisque les niveaux de loisir sont modifiés. Ceci est propre au cadre multiutilité retenu qui fait de ce modèle un peu plus qu’un modèle unitaire *stricto sensu*. Cependant, ce cadre de travail ne capture pas les effets propres de la fiscalité sur la négociation dans le ménage.

3.2 *Réponses comportementales dans un cadre collectif*

Avec la réforme proposée, la contribution potentielle nette du conjoint dont le salaire est le plus faible augmente de façon substantielle relativement à celle de l’autre époux. Ainsi, même si l’imposition ne change que dans 64,5 % des couples, *tous* les couples mariés de l’échantillon subissent une modification de la variable...
CRP. Cette modification intervient en faveur des femmes et CRP augmente de 15 % en moyenne et dans 99,7 % des couples. Nous donnons brièvement l’intuition de ce résultat. Notons

\[CRP' = \frac{R'_{0,40} - R'_{1,40}}{R'_{0,40}}. \]

la valeur de la variable CRP après la réforme et \(\Delta CRP = CRP' - CRP \). Il vient que :

\[\Delta CRP = \frac{R_{0,40} \left[R'_{0,40} - R'_{0,40} \right] - R'_{0,40} \left[R_{0,40} - R_{0,40} \right]}{R_{0,40} R'_{0,40}}. \]

Notons A la première expression entre crochet et B la seconde. Le dénominateur est positif de même que A et B. Le signe de \(\Delta CRP \) est donné par \(AR_{0,40} - BR'_{0,40} \). Pour tous les ménages, \(R_{0,40} > R'_{0,40} \) car le nombre d’équivalent-adulte est automatiquement réduit de \(1 + k / 2 \) pour les monoactifs. Si \(A \geq B \), la contribution de la femme lorsqu’elle prend un emploi à plein temps est plus importante après la réforme et \(\Delta CRP \geq 0 \). C’est le cas pour 98,6 % des couples. En effet, on peut écrire :

\[A - B = [R'_{0,40} - R'_{0,40}] - [R'_{0,40} - R_{0,40}]. \]

Les deux expressions entre crochets sont négatives ou nulles (la charge fiscale augmente avec la réforme) mais la valeur absolue de la seconde domine puisque la perte est plus importante pour un ménage monoactif. La différence \(A - B \) est donc positive. La perte \([R'_{0,40} - R_{0,40}] \) est d’autant plus importante et \(\Delta CRP \) plus grand que l’homme est pourvoyeur principal \((w_i < w_m) \), c’est-à-dire dans trois quart des ménages. On constate en effet que CRP augmente de 9 % lorsque la femme est pourvoyeur principal et de 17,1 % lorsque c’est le mari.

Le vecteur \(\theta_{\text{new}} \) incorpore la nouvelle valeur de CRP de sorte que l’indice de pouvoir après réforme est calculé comme suit :

\[\mu_{\text{new}} = \frac{\exp(\theta_{\text{new}} \tilde{\eta} + \tilde{u})}{1 + \exp(\theta_{\text{new}} \tilde{\eta} + \tilde{u})}. \]

La fiscalité induit donc une modification en faveur des épouses dans la négociation intrafamiliale. Comme on l’a vu, l’élasticité de l’indice de pouvoir par rapport à CRP est cependant extrêmement faible et l’effet de distribution reste donc limité. L’indice de pouvoir augmente en moyenne de 1,1 %. Le tableau 9 compare les variations jointes de CRP et de l’indice après la réforme.
TABLEAU 9
Variation jointe de CRP et de l’indice de pouvoir

<table>
<thead>
<tr>
<th></th>
<th>CRP</th>
<th></th>
<th></th>
<th>Préfé-</th>
<th>Préfé-</th>
<th>Préfé-</th>
<th>Préfé-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>forme</td>
<td>Postré-</td>
<td>Variation</td>
<td>forme</td>
<td>forme</td>
<td>forme</td>
<td>forme</td>
</tr>
<tr>
<td>Moyenne</td>
<td>0,749</td>
<td>0,839</td>
<td>14.97 %</td>
<td>0,511</td>
<td>0,516</td>
<td>1.09 %</td>
<td></td>
</tr>
<tr>
<td>Écart-type</td>
<td>0,39</td>
<td>0,39</td>
<td>0.09</td>
<td>0.078</td>
<td>0.077</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>0.09</td>
<td>0.16</td>
<td>-2.3 %</td>
<td>0.167</td>
<td>0.169</td>
<td>-0.30 %</td>
<td></td>
</tr>
<tr>
<td>10 %</td>
<td>0.35</td>
<td>0.43</td>
<td>6.4 %</td>
<td>0.467</td>
<td>0.471</td>
<td>0.48 %</td>
<td></td>
</tr>
<tr>
<td>Médiane</td>
<td>0.67</td>
<td>0.76</td>
<td>12.8 %</td>
<td>0.5</td>
<td>0.505</td>
<td>1.02 %</td>
<td></td>
</tr>
<tr>
<td>90 %</td>
<td>1.20</td>
<td>1.30</td>
<td>26.2 %</td>
<td>0.6</td>
<td>0.605</td>
<td>1.75 %</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>4.58</td>
<td>4.59</td>
<td>84.5 %</td>
<td>0.867</td>
<td>0.870</td>
<td>3.10 %</td>
<td></td>
</tr>
</tbody>
</table>

Par construction, la modification des poids respectifs des conjoints dans la négociation devrait conduire en moyenne à une augmentation de la part de consommation des femmes et à une hausse de leur loisir au détriment des maris. L’effet est très faible et au total, seules 0.6 % des épouses diminuent potentiellement leur offre de travail (baisse de 10 heures par semaine) contre une hausse pour 2.4 % des hommes (0.4 % de 5 heures et 2 % de 10 heures par semaine). Le tableau 10 montre que comparé à l’ampleur des réponses guidées par les effets traditionnels dans le cadre unitaire, l’ajout de l’effet distributif n’a qu’un effet marginal sur les heures travaillées. On pourrait conclure ici que le modèle unitaire offre une approximation raisonnable pour l’analyse de la fiscalité directe.

TABLEAU 10
Offre de travail moyenne

<table>
<thead>
<tr>
<th></th>
<th>Préfé forme</th>
<th>Postréforme et effet unitaire</th>
<th>Postréforme et effet collectif</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_i (h / semaine)</td>
<td>26.2</td>
<td>29.9</td>
<td>29.8</td>
</tr>
<tr>
<td>h_m (h / semaine)</td>
<td>42.2</td>
<td>41.8</td>
<td>42.0</td>
</tr>
</tbody>
</table>
3.3 Analyse de sensibilité

Tout d’abord, nous étudions la sensibilité des résultats à la distribution simulée de l’indice de pouvoir. Nous mesurons ensuite la variation de CRP nécessaire à l’obtention d’un effet de distribution non négligeable.

Étant donné que la réforme fiscale entraîne une hausse de l’indice de pouvoir de 1,1 % en moyenne et au plus de 3,1 %, nous menons l’analyse de sensibilité en faisant augmenter l’indice de pouvoir des femmes dans tous les couples, successivement de 1, 2,5 et 5 %. L’augmentation de 5 % est interprétée comme la borne supérieure de ce qu’une réforme fiscale peut accomplir de façon réaliste.

Les effets respectifs des différentes hausses de l’indice de pouvoir sur les offres de travail sont présentés dans les tableaux 11 et 12. Pour la hausse de 1 %, l’impact est faible. Pour la hausse de 2,5 %, 3,6 % des femmes diminuent leur temps de travail (0,5 % arrêtent de travailler) tandis que plus de 10 % des hommes l’augmentent. Ces ajustements ne sont pas marginaux et un effet de distribution de cet ordre ne peut être ignoré. Il peut cependant ne pas être réalisable à grande échelle par une réforme fiscale crédible.

TABLEAU 11

Impact de l’effet de distribution sur la moyenne de l’offre de travail.

<table>
<thead>
<tr>
<th>μ</th>
<th>Impact postunitaire</th>
<th>Impact posteffet de distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>μ + 1 %</td>
</tr>
<tr>
<td>h_t (h / semaine)</td>
<td>29,9</td>
<td>29,8</td>
</tr>
<tr>
<td>h_m (h / semaine)</td>
<td>41,8</td>
<td>41,95</td>
</tr>
</tbody>
</table>
TABLEAU 12

VARIATION DE L’OFFRE DE TRAVAIL EN FONCTION DES DIFFÉRENTES HAUSSES DE L’INDICE DE POUVOIR

<table>
<thead>
<tr>
<th>Femmes \ Hommes</th>
<th>μ + 1 %</th>
<th></th>
<th></th>
<th></th>
<th>μ + 2.5 %</th>
<th></th>
<th></th>
<th></th>
<th>μ + 5</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>Total</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>Total</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>Total</td>
</tr>
<tr>
<td>-20</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0</td>
<td>0.5</td>
<td>0.6</td>
<td>0.5</td>
<td>0.1</td>
<td>1.1</td>
</tr>
<tr>
<td>-10</td>
<td>0.3</td>
<td>0.1</td>
<td>0.2</td>
<td>0.6</td>
<td>2.1</td>
<td>0.7</td>
<td>0.3</td>
<td>3.1</td>
<td>3</td>
<td>2.4</td>
<td>0.6</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>97.7</td>
<td>1.3</td>
<td>0.2</td>
<td>99.2</td>
<td>92.8</td>
<td>3.3</td>
<td>0.3</td>
<td>96.4</td>
<td>85.8</td>
<td>6.4</td>
<td>0.7</td>
<td>92.9</td>
</tr>
<tr>
<td>Total</td>
<td>98</td>
<td>1.5</td>
<td>0.4</td>
<td>1 440</td>
<td>95.1</td>
<td>4.3</td>
<td>0.6</td>
<td>1 440</td>
<td>89.3</td>
<td>9.3</td>
<td>1.4</td>
<td>1 440</td>
</tr>
</tbody>
</table>

Note : Les chiffres à l’intérieur du tableau sont en pourcentage, exceptée la dernière cellule de la colonne « Total » qui donne le nombre d’observations.
Intéressons-nous maintenant aux variations nécessaires de CRP pour atteindre les hausses de 2,5 % et de 5 % de l'indice de pouvoir sur l'ensemble de la population\(^3\). Pour obtenir une augmentation de 5 % de l'indice du pouvoir des femmes, CRP doit augmenter de 76 % en moyenne (et entre +63 % et +104 % pour 80 % des couples). Même dans le cas d'une hausse de 2,5 %, une variation importante de CRP est nécessaire : +35 % en moyenne, et entre +27 % et +48 % pour 80 % des couples\(^4\). Il est peu probable qu'une réforme fiscale réaliste produise de telles variations de la contribution salariale relative de la femme. Dans le cas de la réforme simulée, CRP augmente seulement de 15 % en moyenne (et entre +6 % et +26 % pour 80 % des couples). Le graphique 3 illustre les résultats.

GRAPHIQUE 3

DISTRIBUTION DE LA HAUSSE DE CRP (EN %) SUR LA POPULATION

Réforme de l'impôts

32. La hausse de 1 % est, en moyenne, ce qui a été obtenu avec la réforme fiscale simulée.

33. Notons que la relation concave entre \(\mu\) et CRP empêche respectivement 5,5 % et 14,6 % des couples de remplir les hausses requises de 2,5 % et 5 %.
Réforme amenant un mu de 2,5 % pour tous

Réforme amenant un mu de 5 % pour tous
Ces résultats ne contredisent pas, mais complètent, ceux existant dans la littérature sur les tests d’agrégation des revenus, tel Lundberg, Pollak et Wales (1997). Notons une différence fondamentale entre nos travaux, à savoir que le papier de 1997 traite des choix de consommation alors que notre modèle est calibré sur les offres de travail.

Conclusion

Dans cet article, nous calibrions un modèle collectif d’offre de travail sur données françaises. Chaque individu est doté de ses propres préférences et les décisions au sein du ménage sont supposées efficaces au sens de Pareto. L’indice de pouvoir de la femme, représenté par le poids de son utilité dans l’utilité familiale, s’avère dépendre positivement, mais avec une très faible elasticité, d’un indicateur de la contribution relative potentielle de l’épouse aux revenus familiaux après impôts (CRP). Nous simulons ensuite le passage d’un système d’imposition joint à séparé en prenant en compte la réaction des individus à ce changement. L’indice de pouvoir est dans un premier temps supposé fixe de sorte que le modèle est de type unitaire. Les effets de revenu et de substitution traditionnels créent de fortes incitations pour le conjoint au salaire horaire le plus faible à entrer sur le marché du travail. Dans un deuxième temps, nous autorisons l’indice de pouvoir à varier avec la contribution relative potentielle de l’épouse aux ressources du ménage, cette contribution augmentant fortement avec la réforme. Cet effet de distribution, qui rend le modèle spécifiquement collectif, se révèle cependant trop faible pour modifier notablement les comportements d’offre de travail issus du modèle de type unitaire. L’analyse de sensibilité menée ensuite montre que de très fortes variations de l’indicador CRP sont nécessaires à l’obtention d’un effet de distribution significatif. De telles variations ont cependant peu de chance de se produire dans le cadre d’une réforme de l’impôt.

Le faible impact de l’effet de distribution par rapport aux effets de revenu et de substitution pourrait suggérer que le modèle unitaire suffit à l’analyse de l’offre de travail en présence de fiscalité. Il nous semble cependant plus prudent d’apporter d’abord des améliorations au modèle collectif utilisé. Voici quelques pistes de recherche, non exhaustives. Tout d’abord, une spécification explicite des points de menace permettrait de mieux cerner l’effet de distribution. De plus, les résultats obtenus dépendent en partie d’hypothèses spécifiques sur les choix des utilisités individuelles et de la discrétisation des offres de travail. Des spécifications alternatives mériteraient d’être utilisées. Enfin, il est nécessaire d’intégrer la production domestique dans le modèle, notamment en présence d’enfant(s).

Également, il est à noter que le type de réforme envisagée est important. Une réforme de type « wallet to purse » telle que décrite par Lundberg, Pollak et Wales (1997) peut apparaître plus ciblée sur un des membres du ménage et impliquer un effet distributif plus important. Maitra et Ray (2001) montrent notamment que les transferts sont moins susceptibles d’être agrégés par le ménage que d’autres types de revenus. Enfin, le mode de gestion du budget dans le ménage est également une piste importante qui mérite un examen plus attentif de la part des économistes.
ANNEXES

DONNÉES ET SéLECTION DE L’ÉCHANTILLON

Les données proviennent de la seconde vague (1995) du Panel européen pour la France. Nous avons extrait trois échantillons (hommes célibataires, femmes célibataires et couples) et procédé aux sélections suivantes. Tout d’abord, l’âge doit être compris entre 25 et 55 ans. Ensuite, nous avons restreint notre échantillon aux personnes salariées34 ou inactives35. Une autre règle de sélection porte sur la composition du ménage. Aucun autre adulte (hors le conjoint) ne doit vivre dans le ménage; les célibataires ne doivent pas avoir d’enfant; les couples ne doivent pas en avoir plus de trois. Les couples avec un enfant qui travaille ont été enlevés. Enfin, les données nous semblant aberrantes ont été enlevées.

Le salaire horaire n’est pas fourni directement dans l’enquête. Nous l’avons calculé à partir des informations disponibles et prédit pour les femmes inactives36. Le graphique 4 présente les distributions d’offre de travail pour les hommes et les femmes, célibataires et en couple, à ce stade sélectionnées.

\footnotesize
34. Les travailleurs indépendants et les agriculteurs sont soumis à une fiscalité différente qui requiert une information indisponible dans l’enquête. De plus, leur comportement d’offre de travail nécessiterait une modélisation différente.

35. Le chômage involontaire étant considéré comme exogène aux comportements étudiés dans ce travail.

36. Les personnes interrogées reportent leur revenu salarial annuel YW, le nombre de mois travaillés dans l’année NM ainsi que le nombre d’heures habituellement travaillées par semaine HW. Le salaire horaire calculé est $YW / (NM \times HW \times 4,33)$. Le salaire des individus inactifs est ensuite prédit à partir d’une estimation à la Heckman par maximum de vraisemblance à information complète.
GRAPHIQUE 4

Distribution de l’offre de travail pour les individus sélectionnés

Femmes en couples

Femmes célibataires
GRAPHIQUE 4 (suite)

Hommes en couples

Fraction

Hommes célibataires

Fraction
Le très faible pourcentage d’hommes inactifs nous a conduit à exclure cette catégorie des différents échantillons. La modalité « inactivité » n’est pas prise en compte dans le modèle à choix discrets que nous utilisons pour les hommes. Au final, tous les hommes sélectionnés travaillent tandis que respectivement 24 % et 16 % des femmes mariées et célibataires sont inactives. Le tableau 13 fournit les statistiques descriptives pour les couples.

TABLEAU 13

Statistiques descriptives pour les couples retenus

<table>
<thead>
<tr>
<th></th>
<th>Obs.</th>
<th>Moyenne</th>
<th>Écart-type</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offre de travail hebdomadaire de l’homme #</td>
<td>1,440</td>
<td>41,2</td>
<td>7,9</td>
<td>8</td>
<td>84</td>
</tr>
<tr>
<td>Offre de travail hebdomadaire de la femme #</td>
<td>1,096</td>
<td>33,8</td>
<td>9,7</td>
<td>2</td>
<td>70</td>
</tr>
<tr>
<td>Salaire horaire brut de l’homme (euro)</td>
<td>1,440</td>
<td>10,3</td>
<td>6,0</td>
<td>3,1</td>
<td>91,4</td>
</tr>
<tr>
<td>Salaire horaire brut de la femme (euro)</td>
<td>1,096</td>
<td>8,4</td>
<td>4,3</td>
<td>3,1</td>
<td>37</td>
</tr>
<tr>
<td>Âge de l’homme</td>
<td>1,440</td>
<td>40,3</td>
<td>7,6</td>
<td>25</td>
<td>54</td>
</tr>
<tr>
<td>Âge de la femme</td>
<td>1,440</td>
<td>38,4</td>
<td>7,6</td>
<td>25</td>
<td>55</td>
</tr>
<tr>
<td>Indicatrice pour région parisienne</td>
<td>1,440</td>
<td>0,17</td>
<td>0,38</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Indicatrice pour présence d’enfants</td>
<td>1,440</td>
<td>0,84</td>
<td>0,37</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Nombre d’enfants</td>
<td>1,440</td>
<td>1,53</td>
<td>0,94</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Indicatrice du niveau d’étude de l’homme</td>
<td>1,440</td>
<td>0,36</td>
<td>0,48</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Indicatrice du niveau d’étude de la femme</td>
<td>1,440</td>
<td>0,36</td>
<td>0,48</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Note : Indicatrice pour région parisienne : 1 = Paris et sa région; indicatrice pour niveau d’étude : 1 = études secondaires ou supérieures.

* : Nombre d’observations; pour les heures travaillées et les salaires, il s’agit du nombre d’actifs occupés, suivi des statistiques correspondantes.

: Avec la discrétisation que nous avons retenue, pour les hommes : moyenne = 42,6, minimum = 40, maximum = 60, et pour les femmes : moyenne = 34,3, minimum = 0, maximum = 50.
Les paramètres γ et γ' ont été estimés séparément. Ils vérifient les conditions usuelles $1 > \gamma > 0$, $1 > \gamma' > 0$. La restriction $\gamma + \gamma = 1$ a été imposée \textit{a posteriori} par normalisation.

TABLEAU 14
\textsc{Estimation du Mixed Logit sur les célibataires (deux points masse)}

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient hommes célibataires</th>
<th>Coefficient femmes célibataires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propension marginale au loisir γ :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Âge</td>
<td>-8,81 (2,03)</td>
<td>5,05 (1,20)</td>
</tr>
<tr>
<td>Niveau d’étude</td>
<td>-40,89 (7,51)</td>
<td>-2,27 (0,59)</td>
</tr>
<tr>
<td>Région parisienne</td>
<td>-3,03 (1,04)</td>
<td>-3,27 (0,77)</td>
</tr>
<tr>
<td>Propension marginale à consommer γ :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Âge</td>
<td>-2,75 (1,09)</td>
<td>9,03 (3,16)</td>
</tr>
<tr>
<td>Niveau d’étude</td>
<td>-27,27 (5,53)</td>
<td>-0,56 (0,29)</td>
</tr>
<tr>
<td>Région parisienne</td>
<td>0,37 (0,71)</td>
<td>-1,19 (0,39)</td>
</tr>
<tr>
<td>Âge \times Âge</td>
<td></td>
<td>-4,17 (1,58)</td>
</tr>
<tr>
<td>Hétérogénéité sur le loisir :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_{11}</td>
<td>8,72 (2,16)</td>
<td>-3,23 (1,33)</td>
</tr>
<tr>
<td>θ_{12}</td>
<td>58,99 (7,61)</td>
<td>46,87 (10,98)</td>
</tr>
<tr>
<td>Hétérogénéité sur la consommation :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_{21}</td>
<td>2,55 (1,13)</td>
<td>-4,05 (1,48)</td>
</tr>
<tr>
<td>θ_{22}</td>
<td>37,23 (5,67)</td>
<td>53,88 (12,84)</td>
</tr>
<tr>
<td>Probabilité d’hétérogénéité :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>π_{i}</td>
<td>0,18 (0,06)</td>
<td>0,57 (0,03)</td>
</tr>
<tr>
<td>Log-vraisemblance</td>
<td>-256,54</td>
<td>-397,86</td>
</tr>
</tbody>
</table>

\textit{Note} : Niveau d’étude est une indicatrice pour les études supérieures. Âge est l’âge réel divisé par 40. Région parisienne vaut 1 si le couple vit en région parisienne, 0 sinon. Les écart-types sont entre parenthèses. L’écart-type asymptotique du paramètre d’hétérogénéité a été calculé par la méthode dite « delta ».

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Par la suite, nous supposons que le régime choisi par chaque célibataire est celui donnant les meilleures prédictions, une fois vérifiées les conditions de concavité. À la lecture du tableau 15, il apparaît que le régime 2 prévaut. Il est choisi trop souvent, mais beaucoup d'individus ne vérifient pas les conditions de concavité sous le régime 1.

TABLEAU 15

Probabilités estimées et fréquences des régimes

<table>
<thead>
<tr>
<th>Régime r</th>
<th>Hommes célibataires</th>
<th>Femmes célibataires</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Probabilité estimée π, Fréquence</td>
<td>Probabilité estimée π, Fréquence</td>
</tr>
<tr>
<td>1</td>
<td>0.18, 0.06</td>
<td>0.57, 0.25</td>
</tr>
<tr>
<td>2</td>
<td>0.82, 0.94</td>
<td>0.43, 0.75</td>
</tr>
</tbody>
</table>

Dans l’ensemble, 64.2 % (resp. 66.4 %) des offres de travail discrétisées sont prédites correctement pour les femmes (resp. hommes) célibataires. Ces chiffres cachent de fortes disparités. Pour les femmes célibataires, respectivement 75 % et 94 % des situations d’inactivité et de travail à temps plein sont correctement prédites. À l’inverse, les emplois à temps partiel sont très mal reproduits. Seulement 11 % le sont correctement. Concernant les hommes célibataires, 90 % d’entre eux sont prédits travailler 40 heures par semaine, pour 67 % en réalité. En dehors de cette catégorie, aucune tranche horaire n’est correctement prédite, si ce n’est 28.6 % des heures à temps partiel. Les paramètres γ sont présentés dans le tableau 16, une fois normalisés.

TABLEAU 16

Propensions marginales normalisées – célibataires

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Écart-type</th>
<th>Minimum</th>
<th>10 %</th>
<th>Médiane</th>
<th>90 %</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_i</td>
<td>0.52</td>
<td>0.15</td>
<td>0.35</td>
<td>0.37</td>
<td>0.47</td>
<td>0.80</td>
<td>0.92</td>
</tr>
<tr>
<td>γ_i^*</td>
<td>0.48</td>
<td>0.15</td>
<td>0.08</td>
<td>0.20</td>
<td>0.53</td>
<td>0.62</td>
<td>0.65</td>
</tr>
<tr>
<td>γ_{m1}</td>
<td>0.61</td>
<td>0.03</td>
<td>0.52</td>
<td>0.57</td>
<td>0.62</td>
<td>0.63</td>
<td>0.87</td>
</tr>
<tr>
<td>γ_{m2}</td>
<td>0.39</td>
<td>0.03</td>
<td>0.13</td>
<td>0.37</td>
<td>0.38</td>
<td>0.43</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
BIBLIOGRAPHIE

BRADBURY, B. (2003), « Consumption and the Within-household Income Distribution: Outcomes from an Australian Experiment », présenté à la CESifo Venice Summer Institute '03.

FRIEDMAN, J.W. (1990), Game Theory with Applications to Economics, Oxford University Press.

