SEASONAL AND SOCIO-DEMOGRAPHIC PREDICTORS OF SUICIDE IN IRELAND: A 22 YEAR STUDY

Patricia Casey ¹,a

Isla Gemmell ²

Urara Hiroeh ³

Catherine Fulwood ⁴

¹ Professor of Psychiatry, University College Dublin and Consultant Psychiatrist Mater Misericordiae University Hospital, Eccles St., Dublin 7, Ireland. apsych@mater.ie

² Lecturer in Epidemiology and Biostatistics
MPH/MRes Programmes in Public Health and Primary Care
G63b Ground Floor Simon Building
University of Manchester
M13 9PL

³ Lecturer in Statistics
Northwest Institute for BioHealth Informatics
University of Manchester
1st Floor Jean McFarlane Building
Oxford Road, Manchester M13 9PL UK

⁴ Medical Statistician, The University of Manchester, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, NIHR Manchester Biomedical Research Centre,
29 Grafton Street, Manchester, M13 9WU

a Corresponding author

Declaration of Interest: None for any of the authors
Sources of funding: This was not funded by any external sources.
Abstract

Background: Seasonal influences on suicide have been studied for many years with inconclusive and contradictory findings.

Methods: Data on suicide in Ireland from 1980 to 2002 was examined to ascertain the contribution of season and demographic variables to suicide. Using Poisson regression modeling and sinusoidal analysis a small seasonal effect (7% from peak to trough) was identified but age, gender, marital status and residence were much larger contributors. The seasonal contribution increased in the latter half of the period under study. There was also a small seasonal effect for method of suicide. The suicide rate was highest in the 40-44 age group after controlling for confounders.

Limitations: Because this was an ecological study, information on other possible contributors, such as mental illness was not available.

Conclusions: These findings are discussed in light of international studies. Continuing studies are required to confirm the trend in increasing seasonality in Ireland. Since suicide is highest in those who are middle aged, preventive strategies should be directed to this group.
SEASONAL AND SOCIO-DEMOGRAPHIC PREDICTORS OF SUICIDE IN IRELAND: A 22 YEAR STUDY

Seasonal variations in suicide were first recognized by the Italian physician Enrico Morselli (1881) who identified a summer peak, coinciding, he believed, with the time when severe mental illness was at its peak. In recent years suicide in countries such as Finland (Partonen et al 2004), Ireland (Corcoran et al 2004), Italy (Rocchi et al 2007; Preti and Miotto 1998) has continued to show a significant seasonal trend. In some, such as Italy (Rocchi et al 2007) and Slovenia (Oravecz et al 2007) the seasonal effect is so marked that changes in the national suicide rates are reported as corresponding to changes in the seasonal rates of suicide. However other countries exhibit a diminishing or absent seasonal pattern, including England and Wales (Yip et al 2000), Australia and New Zealand (Yip et al 1998), Switzerland (Ajdacic-Gross et al 2007) and Singapore (Parker et al 2001).

The observation of a seasonal pattern in suicide has been refined and elaborated upon over the past 20 years with evidence indicating that seasonal patterns also apply to the method of suicide. However, the results are confusing and conflicting. In Belgium (Maes et al 1993) and Israel (Schreiber et al 1993), researchers have described a clear seasonal pattern to deaths by violent methods, although the December peak, during the colder months in the Israeli study differed from the summer peak in the Belgian study. In the Southern hemisphere, Yip et al (1998) found a seasonal trend for death by hanging in Australia but none in New Zealand.

While season is one variable influencing suicide rates others have also been identified includg age (Bertelote and Fleischmann 2002), gender (Canetto and Sakinofsky 1998), residence (Middleton et al 2003) and marital status (Yip and Thorburn 2004). It is notable that many of the studies which have examined seasonality have considered it as a single variable rather than as one of many that might influence the suicide rate (Ho et al 1997; Yip et al 1998) although some studies have controlled for age and gender in the analysis (Corcoran et al 2004) or have stratified the data by age and gender for analysis (Preti and Miotto 1998).

This study has a number of aims, the first aim was to examine the magnitude of the contribution of season, along with other variables, such as age, gender, marital status, year
and residence (urban/rural), to suicide. The second was to ascertain if the suicide rate in Ireland among those aged 15 years and over exhibited a seasonal pattern. A third aim was to determine if the seasonal pattern changed over time and the fourth was to ascertain if a seasonal pattern existed for any particular method of suicide.

Method

Information on suicide occurring in Ireland between 1980 and 2002, along with the Irish census data, was obtained from the Central Statistics Office, Dublin. This data contained information on the dates and methods (coded using International Classification of Diseases version 9), age group (15 and over, grouped in 5 year intervals), gender, marital status and residence. With regard to residence rates were available for the five cities in Ireland, for the large conurbation outside Dublin (the capital) and for the remaining counties. A pragmatic decision was take to combine the cities and conurbations to form the urban variable while data from the counties was combined to form the rural variable. Census data was available in 5 year intervals so that the 1981 census provided the data for years 1980-1984, 1986 for 1985-1989, etc. This was used to calculate suicide rates for each of the demographic variables. Data for those under the age of 15 was excluded from the analysis due to the small number of suicides.

Multivariate Poisson regression modelling was used to estimate which variables were independently associated with suicide. Poisson regression modelling enables estimation of the independent effect of a set of predictor variables when the outcome variable is count data (Cameron 1998) and is particularly applicable when modelling aggregated ecological data. In this case the outcome variable is number of suicides aggregated by the predictor variables (gender, age group, marital status, residence, year and month). The method estimates the incidence rate ratio (IRR) for each category of the predictor variables compared with a baseline category (IRR 1.00).

Sinusoidal analysis involves fitting a cosine curve to data and can be used to assess the degree of seasonal variation in mortality and morbidity (Gemmell et al 2000). Here we used sinusoidal analysis to estimate the percentage change in IRR from the trough to the peak of the seasonal curve in the Poisson model after adjustment for gender, year, age group, marital
status and residence. This technique was also used to estimate whether there was a difference in seasonality according to method of suicide.

Data analysis was carried out using SPSS 14.0 and STATA version 9.

Results

There were 7899 suicides in people aged 15 years and over between 1980 and 2002 in the Republic of Ireland and the numbers and crude rates are shown in Table 1.

Table 1: Count and crude rates of suicides by sex and 5 year age groups

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Males Count</th>
<th>%</th>
<th>Rate /1 000 000</th>
<th>Females Count</th>
<th>%</th>
<th>Rate /1 000 000</th>
<th>Total Count</th>
<th>%</th>
<th>Rate /1 000 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-19</td>
<td>464</td>
<td>7.49</td>
<td>9.61</td>
<td>96</td>
<td>5.63</td>
<td>2.08</td>
<td>560</td>
<td>7.09</td>
<td>5.94</td>
</tr>
<tr>
<td>25-29</td>
<td>788</td>
<td>12.72</td>
<td>21.15</td>
<td>135</td>
<td>7.91</td>
<td>3.60</td>
<td>923</td>
<td>11.69</td>
<td>12.34</td>
</tr>
<tr>
<td>30-34</td>
<td>685</td>
<td>11.06</td>
<td>18.80</td>
<td>147</td>
<td>8.62</td>
<td>4.03</td>
<td>832</td>
<td>10.53</td>
<td>11.41</td>
</tr>
<tr>
<td>40-44</td>
<td>571</td>
<td>9.22</td>
<td>18.52</td>
<td>174</td>
<td>10.20</td>
<td>5.76</td>
<td>745</td>
<td>9.43</td>
<td>12.21</td>
</tr>
<tr>
<td>45-49</td>
<td>446</td>
<td>7.20</td>
<td>16.27</td>
<td>161</td>
<td>9.44</td>
<td>6.06</td>
<td>607</td>
<td>7.68</td>
<td>11.24</td>
</tr>
<tr>
<td>50-54</td>
<td>392</td>
<td>6.33</td>
<td>16.12</td>
<td>164</td>
<td>9.61</td>
<td>6.94</td>
<td>556</td>
<td>7.04</td>
<td>11.59</td>
</tr>
<tr>
<td>55-59</td>
<td>374</td>
<td>6.04</td>
<td>17.21</td>
<td>147</td>
<td>8.62</td>
<td>6.76</td>
<td>521</td>
<td>6.60</td>
<td>11.98</td>
</tr>
<tr>
<td>60-64</td>
<td>355</td>
<td>5.73</td>
<td>18.27</td>
<td>129</td>
<td>7.56</td>
<td>6.39</td>
<td>484</td>
<td>6.13</td>
<td>12.21</td>
</tr>
<tr>
<td>65+</td>
<td>650</td>
<td>10.50</td>
<td>13.26</td>
<td>238</td>
<td>13.95</td>
<td>3.76</td>
<td>888</td>
<td>11.24</td>
<td>7.91</td>
</tr>
<tr>
<td>Total</td>
<td>6193</td>
<td>100.00</td>
<td>16.73</td>
<td>1706</td>
<td>100.00</td>
<td>4.49</td>
<td>7899</td>
<td>100.00</td>
<td>10.53</td>
</tr>
</tbody>
</table>

Figure 1 presents the age standardized suicide rates for men and for women over the period studied. This shows an overall increase in suicide, especially for males, up to 1998 with a suggestion of a plateau thereafter.

Figure 1: Age standardized rates of suicide/100,000 (using 1980 as the base year) for men, women and the total population 1980-2002
Multivariate Poisson regression modelling was used to estimate which variables were significant predictors of the suicide rates over the study period. All variables in the model contributed significantly, however the smallest effect was for month of the year after the others had been controlled for. The results of the analyses are given in Table 2.

Table 2 provides a more detailed analysis of the multivariate Poisson regression results and shows the IRR for each variable thus allowing more meaningful comparisons between them.

Table 2: Multivariate Poisson regression analysis controlling for year and month of death, gender, age group, marital status and residence

<table>
<thead>
<tr>
<th>Predictor</th>
<th>IRR*</th>
<th>Std Err</th>
<th>Z</th>
<th>p-value</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>0.29</td>
<td>0.008</td>
<td>44.65</td>
<td><0.001</td>
<td>0.27</td>
</tr>
<tr>
<td>Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><20</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-24</td>
<td>2.29</td>
<td>0.120</td>
<td>15.74</td>
<td><0.001</td>
<td>2.06</td>
</tr>
<tr>
<td>25-29</td>
<td>2.93</td>
<td>0.157</td>
<td>19.97</td>
<td><0.001</td>
<td>2.64</td>
</tr>
<tr>
<td>30-34</td>
<td>3.62</td>
<td>0.202</td>
<td>23.06</td>
<td><0.001</td>
<td>3.24</td>
</tr>
<tr>
<td>35-39</td>
<td>4.06</td>
<td>0.235</td>
<td>24.22</td>
<td><0.001</td>
<td>3.62</td>
</tr>
<tr>
<td>40-44</td>
<td>4.63</td>
<td>0.270</td>
<td>26.27</td>
<td><0.001</td>
<td>4.13</td>
</tr>
<tr>
<td>45-49</td>
<td>4.24</td>
<td>0.258</td>
<td>23.71</td>
<td><0.001</td>
<td>3.76</td>
</tr>
<tr>
<td>50-54</td>
<td>4.28</td>
<td>0.266</td>
<td>23.46</td>
<td><0.001</td>
<td>3.79</td>
</tr>
<tr>
<td>55-59</td>
<td>4.31</td>
<td>0.271</td>
<td>23.26</td>
<td><0.001</td>
<td>3.81</td>
</tr>
<tr>
<td>60-64</td>
<td>4.24</td>
<td>0.271</td>
<td>22.60</td>
<td><0.001</td>
<td>3.74</td>
</tr>
<tr>
<td>65+</td>
<td>2.55</td>
<td>0.149</td>
<td>16.31</td>
<td><0.001</td>
<td>2.28</td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>0.32</td>
<td>0.009</td>
<td>41.57</td>
<td><0.001</td>
<td>0.31</td>
</tr>
<tr>
<td>Sep/div</td>
<td>0.16</td>
<td>0.021</td>
<td>13.98</td>
<td><0.001</td>
<td>0.13</td>
</tr>
</tbody>
</table>
Month of the year was a small but statistically significant predictor of suicide after controlling for other variables (p=0.038). Overall, the most significant predictor was gender, with female rates over 3 times lower than male rates (IRR 0.29, p<0.001). Age was also a significant factor in suicide, with a peak in those aged 40-44 years (IRR 4.63, p<0.001). The incidence rate of suicide was higher in those aged between 35 and 64 compared with those aged less than 35 and over 65 after controlling for other variables. Marital status was also a strong predictor; the suicide rates amongst those who were married, separated/divorced and widowed were significantly lower than those for who were single, when age and other variables were taken into account. Those who were separated or divorced had the lowest rates. Urban dwellers were also protected from suicide, with rates reduced by around 30% compared with those living in rural areas (IRR 0.76, p<0.001). Year of death was also significant, with indications of a general increase over the study period (Table 2). While month was a small contributor rates tended to be higher in late spring and early summer and lower in autumn (see figure 2).

Figure 2. Incidence rate ratio by month.
Sinusoidal analysis showed that the seasonal percentage increase in IRR for suicide from 1980 to 2002, adjusted for year, age, gender, marital status and residence, was 7.2% (95% CI 7.1-7.3) from an autumn trough to a spring peak. Among males and females the seasonal variations were 7.1% (95% CI 7.0-7.3) and 7.3% (95% CI 7.1-7.6) respectively. Among those who were single and were married the equivalent figures were 6.7% (95% CI 6.6-6.9) and 8.3% (95% CI 8.1-8.5) demonstrating that the seasonal variation in suicide was significantly greater in those who were married as compared to the single category. In the under 30 age group the figure was 6.9% (95% CI 6.7-7.1), for those aged 30-49 the variation was 7.5% (95% CI 7.3-7.7) and among those over 50, 7.1% (95% CI 6.9-7.4). For those living in rural and urban areas the figures were 7.1% (95% CI 6.8-7.4) and 7.4% (95% CI 7.2-7.6) respectively. The results therefore show that all of the above variables are significantly associated with some seasonal variation and that this is significantly greater in those who are married compared with single individuals.

Subgroup analysis

In order to examine our third hypothesis, the study period was divided into two parts. The sinusoidal analysis showed that the seasonal increase in suicide adjusted for year, age, gender, marital status and residence for the earlier years 1980-1991 was 6.8% (95% CI 6.7-7.0) while from 1992-2002 the seasonal increase was 7.5% (95% CI 7.3-7.6); thus the seasonal pattern was significantly greater in the later years although the overall contribution was still small.
Method of suicide

Examining the methods of suicide Table 3 shows the number of suicides in people aged 15 or over between 1980 and 2002 recorded by method according to ICD-9.

Table 3. Method of Suicide classified by ICD9 codes

<table>
<thead>
<tr>
<th>ICD-9 code</th>
<th>Method</th>
<th>Number of cases</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>950</td>
<td>Poisoning</td>
<td>1290</td>
<td>16.3</td>
</tr>
<tr>
<td>953</td>
<td>Hanging</td>
<td>3056</td>
<td>38.7</td>
</tr>
<tr>
<td>954</td>
<td>Drowning</td>
<td>1959</td>
<td>24.8</td>
</tr>
<tr>
<td>951-952, 955-959</td>
<td>Other causes</td>
<td>1594</td>
<td>20.2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>7899</td>
<td>100</td>
</tr>
</tbody>
</table>

Adjusted for year, age, gender, marital status and residence, the seasonal percentage increase in IRR shown in the sinusoidal analysis was 6.81% (95% CI 6.5%-7.1%) for poisoning, 6.95% (95% CI 6.8%-7.2%) for hanging and 6.74% (95% CI 6.5%-6.9%) for drowning. Thus there is a small but significant contribution of season but this does not differ significantly between the three methods.

Discussion

The study of seasonal variations in suicide is important for a number of reasons. If a clear-cut seasonal pattern were identified this might guide service providers to enhance interventions during the periods of highest risk. In addition, understanding the role of season in determining suicide might assist in understanding its possible biological and sociological aetiology.

Despite its potential usefulness, the evidence for suicide seasonality has not been conclusive and many of the findings are conflicting and confusing. Possible reasons includes the short time span examined in some studies (Corcoran et al 2004; Parker et al 2001) raising the possibility that the findings are transient. Other studies have examined different time periods from a single country, during which the seasonal variation may have altered. For example, in
Britain a distinct seasonal pattern was found in a study of suicide data from 1958 to 1974 (Meares et al 1981), while a study (Yip et al 2000) of data from 1982 to 1996 showed a greatly diminished seasonal effect. In Ireland a study by Reid et al (1980) analysed suicide data from 1971-75 and found no seasonal trend for either sex while Corcoran et al (2004), using data from 1990-1998, found a seasonal variation for men. Thus some of the contradictory findings may relate to cohort effects in a particular jurisdiction.

A further concern is that studies have examined the contribution of season as a single variable (Ho et al 1997, Yip et al 1998) and not taken account of the relative contribution of other variables such as age, gender, marital status etc. The study reported here is unique in that it examined the role of season as a possible determinant of seasonal patterns along with other variables such as gender, age, marital status and residence to the suicide rate over time. By controlling for these confounders the relative magnitude of season as an independent predictor could be evaluated.

A further strength of this study is that it spans a longer period (22 years) than many other studies of seasonality, which have ranged from 8 to 20 years (Corcoran et al 2004, Parker et al 2001, Preti and Miotto 1998, Ho et al 1997; Yip et al 1998, Yip et al 2000, Mears et al 1981), although some have covered longer periods of between 20 and 42 years (Partonen et al 2004, Bridges et al 2005, Rocchi et al 2007, Oravecz et al 2007 and Fruehwald et al 2004). This study has reduced the possibility that the effects were temporary or had changed over time since it covered a relatively long period and it was also possible to compare recent with older time periods.

There are a number of limitations that should also be considered when interpreting the results. Because this is an ecological study the data available for analysis was limited. Therefore measures of psychiatric illness, social isolation or alcohol consumption were absent although these have been shown to be associated with suicide and with a seasonal pattern (Goodwin and Jamison 1990; Durkheim (1951;Uitenbroek 1996; Unemployment is also associated with suicide (Kposowa 2001) and exhibits a seasonal pattern but was excluded because of logistic problems with the data set for this variable.

Notwithstanding these considerations we believe that this study makes an important contribution to the international literature on seasonality and suicide.
Variables influencing suicide

In accordance with our first aim, we identified the magnitude of the contribution of a number of variables other than season to the suicide rate. The finding that the most important predictor was gender, followed by marital status, year, age group, residence (rurality) then month, was not surprising given what is already known about suicide in Ireland (National Office for Suicide Prevention 2009). With regard to marital status, two aspects of our findings are worthy of comment. Firstly, our finding that rates of suicide were lowest in those who are divorced, rather than amongst those who are married as described in other studies (Corcoran and Nagar 2010), was surprising as the divorced have generally been shown to have the highest suicide rates in most studies (Kposowa 2000). One possible explanation is that divorce was only introduced in Ireland in 1994 and so the beneficial effects of marriage may be continuing as the data collection covered a period before and shortly after this change in Irish law. Another possible explanation is that the trend in Ireland is following the trend in Britain in which the suicide rate in the divorced has been reducing for several decades (Yip and Thorburn 2004) possibly as divorce becomes less stigmatised and less associated with psychopathology. Our results were consistent with studies finding that being single increases the risk (Masocco et al 2008).

The finding that the risk of suicide was highest in those in the middle years of life was surprising since National data shows that it is those under 25 who are at highest risk (National Office for Suicide Prevention Report 2009). However, the current study controlled for a number of possible confounder variables that national reports do not control for and so this effect may not be apparent. Finally the possible impact of the national suicide prevention programme needs to be considered although this was not introduced until 1998 (1998) and any effect would be unlikely to be evident between that date and 2002, the final year for which data was analysed.

Season and suicide

Our second goal, of examining the contribution of season to suicide resulted in the identification of a small but statistically significant seasonal variation in suicide rates in multivariate analysis, with a 7% increase in the rate of suicide from an autumn trough to a
spring peak in the sinusoidal analysis. Unlike Corcoran et al (2004) who only found a seasonal contribution to male suicide, this study identified a seasonal effect for both genders. The results of this study are similar to those in a number of other studies which have confirmed a seasonal effect in several countries including Hong Kong and Taiwan, Italy, Finland and Slovenia (Ho et al 1997; Preti and Miotto 1998; Rocchi et al 2007, Partonen et al 2004, Oravec et al 2007) although studies from others, such as Australia and New Zealand and England and Wales have shown a diminishing effect or absence of seasonal influences (Yip et al 2000; Yip et al 1998).

Subgroup analysis

It is now accepted that the reduction in the seasonal effect began in the early part of the 20th century (Dreyer 1959; Ajdacic-Gross et al 2005) and that in some countries this is continuing (Parker et al 2001; Yip et al 1998; Ho et al 1997; Yip et al 2000).

Thus our third aim was explored in the current study against the background of a previous Irish study (Reid 1980) which found no seasonal variation. Dividing the study period in two parts covering the earlier and later years respectively, we failed to find any statistically significant loss of seasonal effect and on the contrary there was a slight but significant increase in the percentage difference between peak and trough from 6.8% during 1980-1992 to 7.5% during 1992-2000. One possible explanation for the seeming emergence of an increasing seasonal pattern is that the reliability of the data has improved in recent years in comparison to the earlier years before suicide was decriminalized (Kelleher et al 1997) making it now possible to capture a slightly larger seasonal effect. Combined with the findings of Corcoran et al (2005) of a seasonal effect for men only, the results presented in the study reported here of a seasonal effect for both men and women and of an increase over time since the earlier study (Reid 1980) suggests that it may be a true findings and that the role of season is increasing in both sexes albeit still only making a small contribution. Such an evolving pattern was identified in the United States also (Bridges et al 2005). Clearly further studies over time are warranted to explore this changing pattern in Ireland and to examine possible causes, should it continue.

Method of suicide
In exploring our fourth aim concerning the contribution of season to method of suicide we found a small seasonal increase from peak to trough for the three major methods i.e poisoning, hanging and drowning after controlling for all the available variables. Unlike other studies (Lester and Frank 1988, Yip et al 1998, Preti and Miotto 1998; Maes et al 1993; Linkowski et al 1992) the seasonal effect in our study was not limited to violent methods. As in those studies the peak was identified in the warmer months and differing from a study of an Israeli sample which identified a peak during the colder months (Schreiber, et al 1993).

What are the implications of these findings? The finding of a small but statistically significant effect from season might suggest that, for certain months of the year, services for those at risk of suicide should be increased. However, since season was a much smaller contributor to the overall suicide rate than other variables, these, rather than season, should be prioritised for a targeted approach to prevention. In particular our findings that suicide risk is highest in the middle years of life lends weight to a view that the preventive focus should specifically target those in this age category of life (Reach Out 2006). Such an approach would include psychological autopsy studies to better understand the aetiology of suicide in this age group.

There should also be continuing research into the seasonal influences on suicide in Ireland, as this may be increasing rather than diminishing as in other countries. It should also explore possible reasons for the seasonal effect should its contribution continue to grow.
Reference

