<table>
<thead>
<tr>
<th>Title</th>
<th>Head impact biomechanics simulations: A forensic tool for reconstructing head injury?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors(s)</td>
<td>Motherway, Julie A.; Doorly, Mary C.; Curtis, M.; et al.</td>
</tr>
<tr>
<td>Publication date</td>
<td>2009-04</td>
</tr>
<tr>
<td>Publication information</td>
<td>Legal Medicine, 11 : S220-S222</td>
</tr>
<tr>
<td>Publisher</td>
<td>Elsevier</td>
</tr>
<tr>
<td>Item record/more information</td>
<td>http://hdl.handle.net/10197/5945</td>
</tr>
<tr>
<td>Publisher's statement</td>
<td>This is the author's version of a work that was accepted for publication in Legal Medicine. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Legal Medicine (11, , (2009)) DOI: http://dx.doi.org/10.1016/j.legalmed.2009.01.072</td>
</tr>
<tr>
<td>Publisher's version (DOI)</td>
<td>10.1016/j.legalmed.2009.01.072</td>
</tr>
</tbody>
</table>
Head impact biomechanics simulations: A forensic tool for reconstructing head injury?

J. Motherway, M.C. Doorly, M. Curtis and M.D. Gilchrist*

(a) School of Electrical, Electronic & Mechanical Engineering, University College Dublin, Belfield, Dublin 4, Ireland
(b) State Pathologist’s Office, Fire Brigade Training Centre, Marino, Dublin 8, Ireland
* Corresponding Author (Tel: +353-1-7161890; Fax: +353-1-2830534; Email: michael.gilchrist@ucd.ie

ABSTRACT

This paper describes a computer simulation method, which is used widely in engineering design and accident investigation reconstructions, which could constitute a valuable forensic tool for investigating cases of head impact injury and skull fracture. This method, the finite element method, relies on knowing the physical properties and strength of biological materials, including cranial bone and neural tissue, and on having evidence of the extent of head injuries in order to deduce causative forces. This method could help forensic pathologists to infer causes of skull fracture and to determine whether probable causes of fracture were accidental or intentional.

KEYWORDS

Skull fracture; accident investigation; computer simulation; finite element modelling
INTRODUCTION

Skull fractures are commonly observed on victims of falls, road traffic accidents (RTAs), murders and assaults. In Ireland, head injuries occur in approximately a quarter of all hospital fall admissions [1]. RTAs and falls generally lead to different types of skull trauma: RTAs tend to cause diffuse and multifocal injuries, whereas falls tend to lead to focal injuries. Biomechanics research serves to establish the development of injury, damage and fracture that can occur from various impacts to the head. This can be modelled using computational techniques, once accurate details are known for the geometry and anatomy of the head and the physical stress-strain response (i.e., constitutive properties) of the materials of the head. The objective of this present paper is to outline a procedure by which occurrences of skull fracture can be reconstructed using computational engineering techniques. While the same techniques can also be used to simulate occurrences of traumatic brain injury (TBI) lesions, the present paper shall focus solely on skull fracture, for the sake of simplicity.

MATERIALS AND METHODS

The constitutive properties of both the skull and brain influence the system response to mechanical loads and these must be known if the physical response of the skull-brain system is to be predicted accurately. A dynamic force applied to the head induces a complex series of mechanical and physical reactions involving local bending of the skull, volume changes to the intracranial contents, shock wave propagation throughout the brain and inertial effects, all of which induce tissue strains and stresses which may give rise to damage of the scalp, cranium, blood vessels or brain matter [2-4].

Cranial bone is a complex material comprising a three-layered structure. The outer and inner layers consist of compact, high-density bone called cortical bone, while the central layer consists of a low-density, irregularly porous bone structure. In order to examine the mechanism of skull fracture it was necessary to carry out mechanical tests on specimens of cranial bone. Most mechanical tests to date of cranial bone have been carried out at quasi-static speeds. In this instance, we have attempted to investigate the mechanical properties of cranial bone under more realistic accident conditions and the current tests were carried out under three-point bending to destruction at dynamic speeds of 1m/s. Cranial bone specimens (6cm x 1cm) were extracted from 8 fresh frozen cadavers (F=4, M=4; 81±11 yrs old; max=97 yrs old; min=62 yrs old). 62 specimens were obtained from the parietal and frontal cranial bones. Prior to testing all specimens were scanned using a microCT scanner at a resolution of 56.9 µm. The moment of inertia for each specimen was calculated from the microCT scan sets using custom written Matlab code. From the measured force-displacement curves and the calculated moment of inertia values, it was possible to evaluate the Young’s modulus for each of the bone specimens. Furthermore, it was possible to quantitatively describe the structural properties and their variation within the cranial bone specimens and to investigate the link between mechanical and structural property variation. The measured moment of inertia and stiffness modulus (Young’s modulus) from these tests were 2.39×10^{-4} m4 and 9.82 GPa.
The geometry of two human cadavers was determined by CT, MRI and sliced colour photographs. The geometric data are available through the Visible Human Database (National Institute of Health, USA) with 0.3 mm incrementation in the coronal plane [5]. A three-dimensional finite element (3DFE) model was created using this CT data [6,7]. Such digitised data is made up of voxels, which can be considered to be three-dimensional pixels. The scans are stored in stacks which make a stepped volume sampled recording. Interpolation and thresholding schemes were used to identify voxels representing bone, for example, and interpolate through the voxel generating smooth triangulated surfaces closer to the shape of the actual scanned head. The CT data was used to create a polygonal model of the visible male skull using vtk-software. The resulting polygonal model was decimated and smoothed in order to make the model more portable. This then was converted into IGES format and imported into the commercially available software MSC/Patran and used in the ABAQUS simulation software.

The 3DFE model of the skull-brain complex includes scalp, a 3-layered skull (outer and inner tables, diploe), dura, CSF, pia, falx, tentorium, cerebral hemispheres, cerebellum and brain stem. This is shown in cutaway view in Fig. 4. Much emphasis was placed in the model on mesh quality and ease of meshing, without sacrificing anatomical accuracy. For example, the ridge of the sphenoid wing, or the cusp of the skull upon which the temporal lobe sits, does not have an element face traversing it, which would necessitate smoothing this ridge (for element quality).

RESULTS

The use of this three-dimensional finite element head model is illustrated in Figure 2, in which a physical example of linear skull fracture was successfully modelled: the location of the fracture, and the general extent of the fracture, are both consistent with what was observed in a physical reconstruction of an impacted skull. This computational analysis was undertaken using ABAQUS 5.8. Further details of such reconstructions are provided elsewhere [8].

DISCUSSION

This paper reports on the status of ongoing research efforts to simulate the effects of head impacts and to reconstruct the extent of damage and fracture to cranial bone under such impacts. This computational technique requires knowledge of the force-time history in order to estimate the full-field distribution of stress and strain within the cranium. It also requires reasonably accurate knowledge of the geometry of a specific head if predictions more accurate than generic simulations are required. It is suggested that this simulation technique could provide useful knowledge when attempting to infer the relative likelihood of particular scenarios having led to known patterns of injury and skull fracture.

REFERENCES

3. Gilchrist, M.D., O’Donoghue, D. & Horgan, T., A two dimensional analysis of the biomechanics of
4. Gilchrist, M.D., Experimental device for simulating traumatic brain injury resulting from linear
5. National Institutes of Health (NIH) U.S. National Library of Medicine, Visible Human Database,
6. Horgan, T.J. & Gilchrist, M.D., The creation of three-dimensional finite element models for
7. Horgan, T.J. & Gilchrist, M.D., Influence of FE model variability in predicting brain motion and
 401-418 (2004).
8. Doorly, M.C. & Gilchrist, M.D., The analysis of traumatic brain injury due to head impacts arising
 from falls using accident reconstruction. *Computer Methods in Biomechanics and Biomechanical

FIGURE LEGENDS

Figure 1: Cutaway view (left) and surface view (right) of finite element head model.

Figure 2: Example of skull fracture in physical specimen (left; red dot and dashed line indicates
extent of linear fracture) and as predicted by finite element model (right; high gradients of colour
indicate region of greatest stress and location of fracture).
ROLE OF FUNDING

No funding agency was involved in any aspect of this research or in deciding to submit this paper for publication.

ACKNOWLEDGEMENTS

The kind assistance of Prof. J. Vander Sloten and Mr P. Verschueren of Katholieke Universiteit Leuven, Belgium with experiments using cranial bone specimens is gratefully acknowledged.

CONFLICT OF INTEREST STATEMENT

None of the authors have any conflict of interest in this publication
Figure 1: Cutaway view (left) and surface view (right) of finite element head model.
Figure 2: Example of skull fracture in physical specimen (left; red dot and dashed line indicates extent of linear fracture) and as predicted by finite element model (right; high gradients of colour indicate region of greatest stress and location of fracture).