<table>
<thead>
<tr>
<th>Title</th>
<th>Motor Imagery in Clinical Disorders: Importance and Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors(s)</td>
<td>Moran, Aidan P.; Bramham, Jessica; Collet, Christian; et al.</td>
</tr>
<tr>
<td>Publication date</td>
<td>2015-02-18</td>
</tr>
<tr>
<td>Publication information</td>
<td>Frontiers in Psychiatry, 6 (23):</td>
</tr>
<tr>
<td>Publisher</td>
<td>Frontiers</td>
</tr>
<tr>
<td>Item record/more information</td>
<td>http://hdl.handle.net/10197/6361</td>
</tr>
<tr>
<td>Publisher's statement</td>
<td>This Document is Protected by copyright and was first published by Frontiers. All rights reserved. It is reproduced with permission</td>
</tr>
<tr>
<td>Publisher's version (DOI)</td>
<td>10.3389/fpsyt.2015.00023</td>
</tr>
</tbody>
</table>
Motor imagery in clinical disorders: importance and implications

Aidan Moran1, Jessica Bramham1, Christian Collet2, Aymeric Guillot2,3 and Tadhg Eoghan MacIntyre4

1 School of Psychology, University College Dublin, Dublin, Ireland
2 Centre de Recherche et d’Innovation sur le Sport, Université Claude Bernard Lyon 1, Villeurbanne, France
3 Institute Universitaire de France, Paris, France
4 Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland

Correspondence: aidan.moran@ucd.ie

Keywords: motor imagery, mental imagery, post-traumatic stress disorder, personality disorders, social anxiety disorder

One of our most remarkable mental capacities is the ability to use our imagination voluntarily to mimic or simulate sensations, actions, and other experiences. For example, we can “see” things in our mind’s eye, “hear” sounds in our mind’s ear, and imagine motor experiences like running away from, or perhaps “freezing” in the face of, danger. Since the early 1900s, researchers have investigated “motor imagery” (MI) - or the mental rehearsal of actions without engaging in the physical movements involved. This trend is attributable mainly to the discovery of close parallels between the neurocognitive mechanisms underlying imagination and motor control. Specifically, inspired by Jeannerod’s (5–7) simulation theory of action representation, researchers have discovered that MI recruits similar neural pathways and mechanisms to those involved in actual movements. For example, Hétu et al. (8) showed that the neural network of MI includes several cortical regions known to underlie actual motor execution. Building on this apparent functional equivalence between imagined and executed actions, the present article explores the implications of research on MI for increased understanding of three clinical conditions – post-traumatic stress disorder (PTSD), personality disorder, and social anxiety disorder (SAD). Before we begin, however, some background information on imagery processes in psychopathology is required.

Arising from Kosslyn’s proposition that mental imagery plays “a special role in representing emotionally charged material” (9, p. 405; see also Ref. (10)), researchers have examined the role of imagery processes in the onset, maintenance, and treatment of various psychological disorders (11–13). A consistent finding is that negative, vivid, and distressing “intrusive” imagery is a “transdiagnostic” feature of depression (14), SAD (15), PTSD (16), and obsessive-compulsive disorder (OCD; 17). For example, Weßlau and Steil (14) reported that more than one in three depressed people suffer from involuntary negative mental imagery. Furthermore, people’s capacity to use imagery prospectively is significantly impaired in certain clinical disorders. Thus, Morina et al. (18) discovered that depressed patients were less capable of imagining positive future outcomes than were non-depressed controls. Imagery processes also help in the treatment of psychopathology. Indeed, Holmes et al. (19) evaluated the therapeutic value of “imagery rescripting” [where distressing images are modified to change their associated thoughts, feelings, and behavior; (20)] in the treatment of PTSD. Clearly, imagery research represents “a new and important arena” [Pearson et al. (13), p. 3] for clinical psychology.

Despite increased awareness of imagery processes in psychopathology, there is at least one significant gap in research in this field. Specifically, little is known about the role of MI in clinical disorders. Curiously, despite the multimodal nature of imagery (21), clinical researchers have tended to focus mainly on its visual component. Thus, Weßlau and Steil (14) proclaimed that in imagery, although “other sensory components such as smells, sounds, or haptic sensations... may be present... the visual aspect is the necessary and sufficient condition” (our italics, p. 274). This proposition may be challenged, however, by evidence that mildly to moderately depressed patients experience proportionately more somatic (39.6%) than visual (27.2%) imagery (17). More importantly, MI processes may help to elucidate the mechanisms underlying clinical conditions with distinctive motor components. For example, Chen et al. (22) discovered that depressed patients have difficulties in the mental rotation of hand stimuli. These imagery deficits reflect “an underlying slowing down of motor preparation, which may contribute to psychomotor retardation” (p. 341).

Let us now consider three specific disorders in which MI processes are potentially significant - PTSD, personality disorders, and SAD.

POST-TRAUMATIC STRESS DISORDER

Post-traumatic stress disorder typically involves a threat to an individual’s physical integrity [DSM-V; (23)]. This threat may prompt movement execution either
through resistance to attack (fight) or through intended escape (flight) (24). Accordingly, it seems plausible that re-experiencing a traumatic event in the form of “flashbacks” will involve MI. Corroborating this hypothesis, research shows that flashbacks are associated with increases in various types of motor behavior (25). More recently, neuroimaging paradigms in which individuals with PTSD imagine their traumatic experience or simulate flashbacks have shown increased cerebral blood flow to the motor cortex including the pre-central gyrus and supplementary motor area (26, 27). These findings shed light on the neurocognitive mechanisms underlying PTSD disorders because they confirm the involvement of motor cortex in the simulated re-experiencing of traumatic events.

Another link between PTSD and MI processes has emerged from recent studies of the “freeze” response or tonic immobility. Briefly, tonic immobility is an involuntary, reflexive state, characterized by apparent physical paralysis, muscular rigidity, and inability to vocalize (28, 29). For animals, it may be a last line of defense because it reduces the likelihood that predators will continue to attack them (30). The freeze response is more complex in humans, however, as it may be triggered by symbolic events such as the perception that a situation is inescapable (31). Interestingly, although “freezing” was first noted as a characteristic of sexual assault (32) - with up to 37-52% of such assault survivors reporting tonic immobility - it has also been identified among victims of other traumas including physical assault and natural disasters (33). Accordingly, tonic immobility has been proposed as a core sign of trauma in PTSD (34). Unfortunately, peri-traumatic tonic immobility has been shown to predict a poor response to pharmacological treatment (35, 36) - which suggests that psychological processes may be especially significant in this form of PTSD. Recently, Bovin et al. (37) discovered that guilt (i.e., negative evaluation of an action or inaction) mediated the association between tonic immobility and PTSD symptom severity. These authors speculated that guilt may be a mechanism through which individuals develop PTSD following tonic immobility. The argument here is that during the tonic immobility experienced in the trauma situation, victims may feel guilty about their lack of action – which renders them especially vulnerable to developing PTSD. As tonic immobilization is a key risk factor for PTSD, interventions that are targeted to remediate the impact of the freeze response could provide a fruitful strategy for the reduction or prevention of PTSD symptoms (36). Therefore, we propose that rescripting based on MI (“remobilizing”) could prove valuable as an intervention technique for PTSD (38).

Recent studies show that tonic immobility during childhood sexual abuse is associated with the onset of subsequent PTSD symptomatology in adulthood (39). The freeze response, or “learned helplessness,” is especially likely in cases of trauma experienced by infants or young children who are physically unable to escape (40). Further insights into MI processes in PTSD spring from research on the differences between patients’ memories of traumatic events and those of non-traumatic events. Thus, van der Kolk and Fisler (41) suggested that trauma is initially represented using somatosensory information - with traumatic experiences being remembered as bodily sensations. Consistent with this proposal, Malmo and Suzuki Laidlaw (42) found that people who had no memory of childhood sexual abuse prior to therapy were “more kinesthetic than visual” in their orientation to the world. Remarkably, during therapy, the “no memory of trauma” participants became aware of their traumatic memories, and were consistently able to report kinesthetic memory details such as their bodily position in relation to that of the perpetrator (42).

PERSONALITY DISORDERS
The development of personality disorders, particularly borderline personality disorder, has been strongly associated with early trauma and neglect (43–45). Interestingly, certain kinds of imagery rescripting such as re-imagining adverse early childhood events from an adult perspective have been used to treat personality disorders (46). Imagery rescripting was first used by Arntz and Weertman (47) with the primary objective of revising the perceived meaning of events. For example, an image of a childhood memory might be rescripted constructively by imagining an adult entering the scene and intervening in a positive way (e.g., comforting the child concerned). Typically, the rescripting session with the therapist is recorded and the patient then listens to the recording and practices the exercise again at home, where possible using imagery. Later, patients themselves are required to rescript the adverse event. Although imagery rescripting in a promising therapeutic strategy, its efficacy is mediated by many psychological variables. For example, consider the role of “imagery perspective” or the virtual vantage point-of-view adopted by the person imagining [e.g., first-person versus third-person perspective; (48)]. To illustrate, one can “feel” oneself performing an action with one’s body (first-person perspective) or one can “see” oneself or someone else performing that action (third-person perspective). Imagery perspective is important in the treatment of trauma because McIsaac and Eich (49) found that traumatic images retrieved from a third-person perspective were experienced as less emotional than those retrieved from a first-person perspective. Unfortunately, few studies have explored the relative efficacy of different perspectives [which may involve different levels of embodiment (48)] in rescripting imagery interventions.

SOCIAL ANXIETY DISORDER
Social anxiety disorder is a highly prevalent and disabling condition that involves fear and avoidance of interpersonal interactions, particularly those that involve potential for social evaluation (50). This disorder is typically characterized by vivid visual imagery, particularly that generated from a third-person perspective (51). According to cognitive models of social anxiety [e.g., by Clark and Wells (52)], people with SAD habitually generate negative images from thoughts, feelings, and bodily sensations to create impressions of how they appear to others from a third-person (“observer”) perspective. Intriguingly, Spurr and Stopa discovered that imagery experienced from a third-person perspective is associated with increased negative self-evaluation by comparison with that occurring from a first-person perspective (53).

One strategy for treating social anxiety involves helping patients to restructure their imagery experiences (54). Thus, Wild et al. (55) developed an imagery-based...
Weertman (www.frontiersin.org)

the systematic use of objective measures of

ing problems such as psychomotor retarda-

and visualizing scenes. Secondly, in assess-

refer to quite different simulation phenom-

For example, some researchers [e.g., Arntz

greater theoretical and linguistic precision

In this article, we have presented two main

CONCLUSION AND FUTURE

DIRECTIONS

In this article, we have presented two main arguments concerning imagery processes in psychopathology. Firstly, we postu-

lated that research on MI processes offers

REFERENCES

1. Bets GH. The Distribution and Functions of Men-

tal Imagery. (Vol. 26). New York: Teachers’ College

Columbia University Contributions to Education

2. Munzert J, Lorey I, Zentgraf I. Cognitive motor pro-

cesses: the role of motor imagery in the study of

3. Reisberg D. Mental images. In: Reisberg D, edi-
tor. The Oxford Handbook of Cognitive Psychology.

4. Moran A, Guillot A, Maclntyre T, Collet C. Re-
imaging motor imagery: building bridges between

cognitive neuroscience and sport psychology.

12044-8295.211.02085.x

5. Jeannerod M. The representing brain: neural corre-

lates of motor intention and imagery. Behav Brain

S0140525X00004026

6. Jeannerod M. Neural simulation of action: a unify-
ing mechanism for motor cognition. Neuroimage

Morina N, Deeprose C, Pusowski C, Schmid

Hirsch CR, Clark DM, Mathews A. Imagery

processes: the role of motor imagery in the study of

9. Hagenaes MA, Oitzl M, Roelofs K. Updating freeze:

aligning animal and human research. Neurosci

j.neubiorev.2014.07.021

11. American Psychiatric Association. Diagnostic and

Statistical Manual of Mental Disorders: DSM-5. 5th ed. Arlington, VA: American Psychiatric Associa-
tion (2013).

12. Baldwin DV. Primitive mechanisms of trauma re-
type: an evolutionary perspective on trauma-

13. Hellawell SJ, Brewin CR. A comparison of flash-

backs and ordinary autobiographical memories of

trauma: cognitive resources and behav-

00008-0

tion and heart rate during script-driven trau-

matic imagery in PTSD: preliminary findings. Psy-

j.psychres.2012.08.007

16. Holmes EA, Grey N, Young KAD. Intrusive images and “hotspots” of trauma memories in posttrau-

matic stress disorder. J Behav Ther Exp Psychi-

17. Klein JP, Moritz S. On the relevance of mental

imagery beyond stress-related psychiatric disor-

ferrps.2014.00877

Morina N, Deeprose C, Pusowski C, Schmid

Hirsch CR, Clark DM, Mathews A. Imagery

processes: the role of motor imagery in the study of

19. Holmes EA, Arntz A, Smucker MR. Imagery

recording in cognitive behaviour therapy: images, treat-

ment techniques and outcomes. J Behav Ther

j.bthrop.2007.10.007

20. Long ME, Quevillon R. Imagery rescripting in the

treatment of posttraumatic stress disorder. J Cog

23. 1.6.7

21. Mouton ST, Kossllyn SM. Imagining predictions:

mental imagery as mental emulation. Philos Trans

1098/rstb.2008.0314

22. Chen J, Yang LQ, Zhang ZL, Ma WT, Wu XQ, Zhang

XR, et al. The association between the disruption of

motor imagery and the number of depressive

episodes of major depression. J Affect Disord (2013)

23. American Psychiatric Association. Diagnostic and

Statistical Manual of Mental Disorders: DSM-5. 5th ed. Arlington, VA: American Psychiatric Associa-
tion (2013).

24. Baldwin DV. Primitive mechanisms of trauma re-
type: an evolutionary perspective on trauma-

25. Hellawell SJ, Brewin CR. A comparison of flash-

backs and ordinary autobiographical memories of

trauma: cognitive resources and behav-

00008-0

tion and heart rate during script-driven trau-

matic imagery in PTSD: preliminary findings. Psy-

j.psychres.2012.08.007

Fusé T, Tonic immobility as an evolved predator

10.1111/j.1468-2850.2008.00112.x

29. Hagenaes MA, Oitzl M, Roelofs K. Updating freeze:

aligning animal and human research. Neu-

j.neubiorev.2014.07.021

30. Monassi CR, Leite-Panissi CR, Menescal-de-

Oliveira L. Ventrolateral periaqueductal gray

www.frontiersin.org

February 2015 | Volume 6 | Article 23 | 3

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 08 December 2014; accepted: 04 February 2015; published online: 18 February 2015.
This article was submitted to Affective Disorders and Psychosomatic Research, a section of the journal Frontiers in Psychiatry.
Copyright © 2015 Moran, Bramham, Collet, Guillot and MacIntyre. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Psychiatry | Affective Disorders and Psychosomatic Research

February 2015 | Volume 6 | Article 23 | 4