<table>
<thead>
<tr>
<th>Title</th>
<th>Carbene transfer from triazolylidene gold complexes as a potent strategy for inducing high catalytic activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors(s)</td>
<td>Canseco-Gonzalez, Daniel; Petronilho, Ana; Müller-Bunz, Helge; Albrecht, Martin; et al.</td>
</tr>
<tr>
<td>Publication date</td>
<td>2013-09-04</td>
</tr>
<tr>
<td>Publication information</td>
<td>Journal of the American Chemical Society, 135 (35): 13193-13203</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Chemical Society</td>
</tr>
<tr>
<td>Item record/more information</td>
<td>http://hdl.handle.net/10197/6568</td>
</tr>
<tr>
<td>Publisher's statement</td>
<td>This document is the unedited author's version of a Submitted Work that was subsequently accepted for publication in Journal of the American Chemical Society, copyright © American Chemical Society after peer review. To access the final edited and published work, see http://pubs.acs.org/doi/abs/10.1021/ja406999p.</td>
</tr>
<tr>
<td>Publisher's version (DOI)</td>
<td>10.1021/ja406999p</td>
</tr>
</tbody>
</table>

The UCD community has made this article openly available. Please share how this access benefits you. Your story matters! (@ucd_oa)

Some rights reserved. For more information, please see the item record link above.
Carbene Transfer from Triazolylidene Gold Complexes as a Potent Strategy for Inducing High Catalytic Activity

Daniel Canseco-Gonzalez,† Ana Petronilho,† Helge Mueller-Bunz,† Kohsuke Ohmatsu,‡ Takashi Ooi,‡ and Martin Albrecht*†

† School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
‡ Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan

Abstract. A series of gold(I) complexes [AuCl(trz)] were synthesized that contain 1,2,3-triazolylidene (trz) ligands with variable wingtip groups. In the presence of AgBF₄, these complexes undergo ligand redistribution to yield cationic complexes [Au(trz)₂BF₄] in high yields as a result of efficient carbene transfer. Identical reactivity patterns were detected for carbene gold complexes comprised of Arduengo-type IMes ligands (IMes = N,N’-dimesityl-imidazol-2-ylidene). Reaction of cationic complexes [Au(trz)₂]⁺ with [AuCl(trz’)] afforded the heteroleptic complex [Au(trz)(trz’)]⁺ and [AuCl(trz)]⁻ (trz, trz’ = triazolylidene ligands with different wingtip groups). Carbene transfer occurs spontaneously, yet is markedly rate-enhanced in the presence of Ag⁺. The facile carbene transfer was exploited as a catalyst activation process to form active gold species for the aldol condensation of isocyanides and aldehydes to form oxazolines. The catalytic activity is strongly dependent on the presence of Ag⁺ ions to initiate catalyst activation. High turnovers (10⁵) and turnover frequencies (10⁴ h⁻¹) were accomplished. Structural analysis at early stages of the reaction support the critical role of triazolylidene dissociation to activate the precatalyst and dynamic light scattering revealed the presence of nanoparticles (±100 nm diameter) as potential catalytically active species. Furthermore, the triazolylidene scaffold had no impact on the diastereoselectivity of the oxazoline formation, and chiral triazolylidenes did not induce any asymmetry in the product. The facile dissociation of carbenes from [AuCl(carbene)] in the presence of Ag⁺ ions suggests a less stable Au–C_carbene interaction than often assumed, with potential implications for gold-catalyzed reactions that employ a silver salt as (putative) halide scavenger.
Introduction

Catalysis using gold complexes has become one of the most vibrant areas of modern synthesis. In line with progress in the catalytic application of other (late) transition metals, the catalytic chemistry of gold has been strongly stimulated by the availability of N-heterocyclic carbenes (NHCs) as paramount and potent ligands in catalysis and beyond. These NHC ligands convey properties and constraints that are often complementary to the ubiquitous phosphine ligand classes. For example, NHCs stabilize highly unusual and hitherto elusive reactive species. Their success as spectator ligands has generally been associated with two key parameters: the strong donor ability and the high covalent contribution to the metal bond, which is markedly higher than in metal bonding of other dative ligands such as neutral N- and P-donors. Tight metal-ligand bonding has been assumed to impart high robustness of the catalytically active species and thus an essential factor for accomplishing large catalytic turnover numbers. This bonding situation is thus in sharp contrast to the dative bonding of phosphines, which are kinetically labile and undergo dissociation and re-coordination to a (catalytically active) metal center.

Early work has demonstrated the susceptibility of carbene ligands towards degradation, especially in redox processes and hydrogenations. The presence of alkyl or hydride groups at the metal center has been demonstrated to induce reductive azolium elimination, and likewise, the reverse process has been used to synthesize metal carbene complexes. Typically, a given set of conditions favors the carbene formation or the carbene dissociation, and only rarely, carbene dissociation has been demonstrated to be a microscopically reversible process. In addition, recent transmetalation studies indicate that carbene transfer may occur from a range of different metals in addition to the most frequently used silver carbene intermediates, suggesting that the M–NHC bond may be less tight than often assumed. By using triazolylidenes as synthetically versatile analogues of Arduengo-type imidazolylidenes for the development of powerful catalytic systems, we have recently provided evidence that PdCl₂ and CuCl are leaving groups in the corresponding carbene complexes, thus providing access to catalytically active species where the triazolylidene ligand may not be bound to the active site. We have now expanded this concept and report here on gold triazolylidene complexes as catalyst precursors for the catalytic synthesis of oxazolines. Evidence is provided for triazolylidene dissociation from the gold coordination sphere as a pivotal step in catalyst activation. Similar carbene transfer is also
observed in Arduengo-type NHC gold systems, which has implications for a broad range of gold- (and indeed other metal-) catalyzed reactions starting from carbene metal catalyst precursors.

Results and discussion

Synthesis of triazolylidene gold complexes. The neutral gold(I) triazolylidene complexes 2a–f were synthesized from the corresponding 1,2,3-triazolium halides and Ag₂O and subsequent transmetalation with AuCl(SMe₂) (Scheme 1), according to established procedures.¹⁷c When starting from triazolium halides rather than tetrafluoroborate salts, additives are generally not required for the complex formation and yields of 2a–f were generally good (60–80%). An exception was the metalation of triazolium salt 1d with tert-butyl wingtips. Complex 2d was only obtained in moderate yields upon addition of (NMeEt₃)I to the reaction mixture and after prolonged reaction times. Complexes 2a–f are air and moisture stable in solution and in the solid state.

![Scheme 1](image)

Scheme 1 Synthesis of neutral triazolylidene gold(I) complexes 2.

Successful metalation of the triazolium salts is spectroscopically indicated by the disappearance of the low-field triazolium proton resonance in the ¹H NMR spectrum and a slight upfield shift of the N–CH₃ resonance. The gold-bound carbon appears in the δC 152–166 range, in agreement with previously related complexes¹⁷c and significantly upfield shifted in comparison with imidazol-2-ylidene analogues (166-195 ppm)²⁰ or 1,2,4-triazolylidene gold(I) complexes (168-178 ppm).²⁰a,²¹ Complexes 2a, 2b, 2d and 2e were analyzed by single-crystal X-ray diffraction (Fig. 1), which revealed the expected linear coordination geometry around the Au center. The Au-Cₜrz distances (1.980–1.993 Å) and the Au-Cl bond lengths (2.282–2.290 Å) are within expectation (Table 1).¹⁷c When compared to sterically identical Arduengo-type imidazolylidene
complexes, a slight but consistent increase of the Au-Cl bond length is noted, which reflects the stronger trans influence of the triazolyldiene ligand.22 For example, the Au-Cl bond length measures 2.2833(8) Å in 2a compared to 2.2756(12) Å in AuCl(IMes),20c and 2.2898(10) Å in 2d vs. 2.2742(7) Å in AuCl(I\textsubscript{t}Bu) (IMes = 1,3-dimesityl-2-imidazolyldiene, I\textsubscript{t}Bu = 1,3-di-\textit{t}-butyl-2-imidazolyldiene).20a

![figure 1](image)

Figure 1 ORTEP diagrams of complex 2a,b,d,e (50% probability level; co-crystallized solvent molecules and hydrogen atoms omitted for clarity; only one crystallographically independent molecule of a shown).

Table 1 Selected bond lengths [Å] and angles [°] in complexes 2a, 2b, 2d, and 2e.

<table>
<thead>
<tr>
<th>complex</th>
<th>Au–C(1)</th>
<th>Au–Cl(1)</th>
<th>C(1)–Au–Cl(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a</td>
<td>1.980(3)</td>
<td>2.2833(8)</td>
<td>176.95(10)</td>
</tr>
<tr>
<td>2b</td>
<td>1.987(3)</td>
<td>2.2821(7)</td>
<td>179.36(9)</td>
</tr>
<tr>
<td>2d</td>
<td>1.993(4)</td>
<td>2.2898(10)</td>
<td>174.25(12)</td>
</tr>
<tr>
<td>2e</td>
<td>1.990(2)</td>
<td>2.2881(6)</td>
<td>178.03(7)</td>
</tr>
</tbody>
</table>

Amide-functionalized triazolium salts gave different products upon metalation. In addition to the diagnostic features established for complexes 2a–f, NMR spectra of complex 2g derived from the enantiopure triazolium bromide \textbf{1g}23 revealed the absence of the amide proton resonance.
Moreover microanalysis indicated the halide-free molecular formula. Based on these data, a bimetallic complex was inferred with a bridged ligand coordination mode (Scheme 2). This bonding mode was also observed upon auration of the triazolium salt 1h containing a Boc-protected amine wingtip group. Complex 2h displayed similar spectroscopic features as 2g, including the absence of the NH resonance. Furthermore, a single crystal X-ray analysis of complex 2h confirmed the dimeric connectivity pattern (Fig. 2).

The chloride ligand in complexes 2a–f is readily substituted. For example, the cationic phosphine-ligated carbene gold(I) complex 3 was obtained from 2a and PPh3 in the presence of AgBF4 as halide scavenger (Scheme 3). This ligand exchange induced a small upfield shift of the N3-bound methyl proton resonances by 0.17 ppm and a substantial 15 ppm deshielding of the carbenic signal to δC 177.0 ppm (\(^2J_{PC} = 122 \) Hz). The \(J_{PC} \) coupling constant is slightly smaller than that observed for the analogous complex containing an Arduengo-type carbene ligand, in agreement with a stronger trans influence of the triazolylidene. The \(^{31}\text{P} \) NMR chemical shift in 3 is 40.9 ppm, similar to imidazolylidene analogues. In the crystal structure of 3, the Au–Ctrz bond is about 0.05 Å longer than in the neutral analogue 2a (2.028(3) Å vs 1.980(3) Å) due to the stronger trans influence of PPh3 vs Cl–.
Two homoleptic bis(carbene) gold(I) complexes were prepared from the corresponding triazolylidene silver intermediates by transmetalation with only half an equivalent of AuCl(SMe$_2$) (Scheme 4). Complex 4a bearing mesityl wingtips was obtained in 73% yield, while complex 4e was less efficient (30% yield) even when the reaction was stirred for extended periods because of competitive formation of the mono(triazolylidene) gold complex 2e.26 A one-pot synthesis without isolation of the silver carbene intermediate did not improve the yield and complex 2e was the dominant product (80% conversion). A diagnostic signature of the bis(carbene) complex 4a is the magnetic inequivalence of the ortho-methyl protons (δ_{H} 1.82 and 1.76 ppm) and the aromatic C$_{\text{Mes}}$–H protons (δ_{H} 6.92 and 6.86 ppm). No such desymmetrization was noted for the mono(triazolylidene) gold complex 2a. Likewise, free rotation of the adamantyl wingtips is restricted in 4e as indicated by the AB doublet centered at δ_{H} 1.62 and 1.44 ppm for the methylene groups. Furthermore, the 13C NMR data showed a lowfield Au-C$_{\text{trz}}$ signal at 175.8 ppm and 166.5 ppm for 4a and 4e, respectively, which corresponds to a 13 ppm downfield shift compared to the corresponding mono(triazolylidene) analogues 2a and 2e. X-ray diffraction analysis of single crystals of 4e confirmed the bonding of two triazolylidene ligands to the gold center. The Au-C$_{\text{trz}}$ bond distance (2.029(4) Å) is similar to the bond length observed in the phosphine complex 3a and thus slightly longer in the cationic complexes than in 2e. Similar differences were observed in neutral mono(carbene) vs cationic bis(carbene) gold complexes of Arduengo-type NHCs.21b,25,27
Carbene transfer. Alternatively, the bis(carbene) gold complexes were formed by reacting the gold complexes 2a or 2e with AgBF$_4$ (Scheme 4). This procedure is straightforward and afforded the bis(carbene) complexes 4c and 4e in higher yields (95% and 76% respectively) and much better selectivity than via direct transmetalation (cf complex 4e). No formation of by-products such as triazolium salts was observed. The spectroscopic data of the products are identical, irrespective of the nature of the non-coordinating anion (Cl$^-$/I$^-$ in the transmetalation, BF$_4^-$ in the AgBF$_4$-mediated route). Silver-assisted formation of complexes 4 from 2 implies a carbene transfer from one Au center to another, indicating that the Au–C$_{trz}$ bond is not very strong in the presence of Ag$^+$ ions and that dissociation is facile.

The kinetic lability of the carbene ligand in the triazolylidene gold complexes was further demonstrated by mixing 4a and the gold complex 2e (Scheme 5). 1H NMR spectroscopy revealed unreacted 4a by the diagnostic aromatic resonances at 6.93 and 6.87 ppm for the mesityl protons after 1 h. Furthermore, formation of the monocarbene gold complex 2a was indicated in 5% by the appearance of the pertinent resonances (3.90 ppm for the N3-bound methyl group). In addition, a new heteroleptic gold complex 5 formed in small quantities (ca. 5%). Complex 5 is characterized by a lowfield signal (δ$_H$ 4.11 ppm for the N3-methyl group), and an AB doublet for the adamantyl wingtip at 1.67 ppm and 1.48 ppm (2J$_{HH}$ = 12.4 Hz) indicating a hindered rotation of this group as expected for bis(carbene) complexes (cf 4e).
Subsequent addition of AgBF$_4$ (10 mol%) to this reaction mixture induced a marked increase of 2a to about 40% and a concomitant decrease of 4a within 1 h. These results highlight that carbene transfer occurs spontaneously, albeit slowly, and is strongly promoted by Ag$^+$ ions. Similar reactivity patterns have been established for triazolylidene palladium complexes in Suzuki cross-coupling catalysis,18 and in copper complexes for Huisgen cycloaddition reactions, where the catalytically active species presumably consists of a ligandless CuCl species generated by triazolylidene dissociation.19

![Scheme 5](image)

Scheme 5 Carbene transfer from bis(carbene) gold complex 4a to 2e.

It is worth noting that this transfer process is not exclusive to triazolylidenes and also applies to Arduengo-type carbene gold complexes (Scheme 6).28 Thus exposure of AuCl(IMes)20b to AgBF$_4$ afforded the homoleptic complex 6 in high yield. The aromatic H$_{\text{Mes}}$ and H$_{\text{imid}}$ protons and also the para-positioned Ar–CH$_3$ group appear at essentially identical frequency as in the mono(carbene) gold precursor ($\Delta\delta < 0.12$ ppm), and only the ortho methyl protons shift upfield by a diagnostic 0.4 ppm ($\delta_H = 1.69$ ppm in 6). The moderate shifts render 1H NMR spectroscopy less suitable for probing the carbene transfer. More diagnostic is the characteristic 10 ppm downfield resonance in the 13C NMR spectrum (δ_C 185.3 ppm in 6 vs 173.6 ppm in the monocarbene gold complex), similar to the shifts observed for mono- vs bis(triazolylidene) complexes (see above) and also related heteroleptic bis(imidazolylidene) gold complexes.25

![Scheme 6](image)

Scheme 6 Synthesis and molecular structure of bis(IMes) gold complex 6 (50% probability, hydrogens and anion omitted for clarity); Au(1)-C(1) 2.007(2) Å, C(1)A–Au(1)–C(1)B 176.32(10)$^\circ$.

8
Catalytic synthesis of oxazolines. The carbene transfer reactivity patterns have specific relevance in catalysis, especially in forming ligandless and hence highly reactive gold centers, and we have exploited this concept in oxazoline synthesis. The new triazolylidene gold complexes are effective catalyst precursors for the aldol condensation of isocyanooacetate and aldehydes to afford oxazolines. An initial set of experiments was carried out using benzaldehyde and methyl isocyanooacetate as model substrates in order to determine the activity of the different gold complexes and the relevance of additives (Table 2). The results indicate that the phosphine triazolylidene gold(I) complex 3a and the bis(triazolylidene) gold(I) complex 4a are poor catalyst precursors (entries 2, 3) while the neutral monocarbene gold complex 2a provides access to a moderately active species (entry 1). Addition of AgBF₄, in particular in combination with NEtᵢPr₂ as a Brønsted base accelerated catalytic transformations significantly (entries 4–6). Interestingly, this is a synergistic effect, as addition of only a base is detrimental to conversions (entry 5). The use of a base shifted the product distribution from an essentially 1:1 cis/trans ratio to 3:1 in favour of the trans isomer. In contrast, the reaction temperature had no impact on the stereoselectivity of the condensation (entries 6–9). However, the reaction temperature directly correlated with the conversion rate. While reactions at 0 °C required almost 24 h to reach completion, full conversions were accomplished within only 30 min at 40 °C under otherwise identical conditions.

Table 2 Evaluation of triazolylidene gold complexes as catalyst precursors

<table>
<thead>
<tr>
<th>entry</th>
<th>[Au]</th>
<th>additive</th>
<th>time (h)</th>
<th>Temp °C</th>
<th>conv. (%)</th>
<th>cis/trans</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2a</td>
<td>---</td>
<td>24</td>
<td>20</td>
<td>72</td>
<td>48/52</td>
</tr>
<tr>
<td>2</td>
<td>3a</td>
<td>---</td>
<td>24</td>
<td>20</td>
<td>10</td>
<td>44/56</td>
</tr>
<tr>
<td>3</td>
<td>4a</td>
<td>---</td>
<td>24</td>
<td>20</td>
<td>0</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>2a</td>
<td>AgBF₄</td>
<td>24</td>
<td>20</td>
<td>96</td>
<td>48/52</td>
</tr>
<tr>
<td>5</td>
<td>2a</td>
<td>NEtᵢPr₂</td>
<td>24</td>
<td>20</td>
<td>9</td>
<td>23/77</td>
</tr>
<tr>
<td>6</td>
<td>2a</td>
<td>AgBF₄, NEtᵢPr₂</td>
<td>6</td>
<td>20</td>
<td>96</td>
<td>27/73</td>
</tr>
<tr>
<td>7</td>
<td>2a</td>
<td>AgBF₄</td>
<td>22</td>
<td>0</td>
<td>9</td>
<td>39/61</td>
</tr>
</tbody>
</table>
Control experiments were performed in order to determine whether the condensation is gold-catalyzed. Catalytic runs using K[N(SiMe₃)₂] in the absence or presence of the triazolium salt 1a gave no oxazoline product within 20 h, indicating that the condensation is unlikely to be base-catalyzed nor organo-catalyzed by an in-situ generated triazolylidene. The latter may be initiated by ligand dissociation from the gold complexes 2a. Simple AuCl(SMe₂) gave only marginal conversions (13% in 20 h).

The beneficial effect of AgBF₄ was intriguing, especially when considering its role in mediating the formation of bis(triazolylidene) complexes such as 4. We therefore performed a series of experiments to clarify the role of the silver additive with a particular focus on the early stages of the catalytic reaction. Thus complex 2a did not yield any oxazoline in the absence of AgBF₄ within the first 10 min, but 75% conversion were reached with equimolar quantities of 2a and AgBF₄ (Table 3, entries 1,2). The role of Ag⁺ is usually to scavenge a halide in the catalyst activation step, and we thus prepared the isonitrile complex 7 as a potential first intermediate in the catalytic cycle (Scheme 7). Even though 7 should, not require AgBF₄ to turn over if the triazolylidene is a mere spectator ligand, this complex is completely inactive within 10 min under standard conditions and only accomplishes moderate conversions once AgBF₄ is added (28% conversion, entries 3,4). Hence Ag⁺ appears to have a role beyond abstracting the chloride from complex 2a and is involved in removing the triazolylidene from the gold coordination sphere. These observations together with the high yield of bis(triazolylidene) complexes 4 from 2a in the presence of AgBF₄ suggests that triazolylidene dissociation from the gold complex is relevant for generating the catalytically active species.
Table 3 Catalytic synthesis of oxazolines with various triazolyldiene gold complexes \(^{a} \)

<table>
<thead>
<tr>
<th>entry</th>
<th>([\text{Au}])</th>
<th>AgBF(_4) (equiv)</th>
<th>conv’n (%)(^{b})</th>
<th>cis/trans(^{b})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2a</td>
<td>0</td>
<td>0</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>2a</td>
<td>1</td>
<td>73</td>
<td>25/75</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>1</td>
<td>28</td>
<td>36/64</td>
</tr>
<tr>
<td>5</td>
<td>4a</td>
<td>0</td>
<td>0</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>4a</td>
<td>1</td>
<td>59</td>
<td>36/64</td>
</tr>
<tr>
<td>7</td>
<td>4a</td>
<td>10</td>
<td>94</td>
<td>28/72</td>
</tr>
<tr>
<td>8</td>
<td>AuCl(SMe(_2))</td>
<td>0</td>
<td>0</td>
<td>---</td>
</tr>
</tbody>
</table>

\(^{a}\) Benzaldehyde (1.5 mmol), methyl isocyanoacetate (1.4 mmol), \([\text{Au}]\) (14 µmol), base (0.17 mmol), equiv AgBF\(_4\) relative to \([\text{Au}]\), CH\(_2\)Cl\(_2\) (4 mL), 40 °C, 10 min

\(^{b}\) Conversions and cis/trans ratio determined by \(^{1}\)H NMR spectroscopy.

Based on this presumption, the catalytic inactivity of the bis(carbene) complex 4a is not unexpected (entries 5–7). With added AgBF\(_4\) (1 equiv per Au), activity is resumed, albeit relatively low (59% after 10 min). Performance is substantially increased, however, when 10 equiv AgBF\(_4\) were added (94%). This reactivity pattern is commensurate with triazolyldiene dissociation as catalyst activation step, yielding predominantly a weakly active mono(carbene) complex at low Ag/4a ratio, and inducing dissociation of both carbene ligands at higher Ag/4a ratios to give an active species identical to that obtained from 2a and AgBF\(_4\). Since the free carbene is catalytically silent (\textit{vide supra}), these results taken together strongly suggest that the catalytically active species is a triazolyldiene-free species, either a ligandless ‘hot’ Au\(^{+}\) ion or a gold aggregate (cluster or nanoparticle). Small gold clusters have been recently reported to be extraordinary active in C–C bond forming reactions. Further support for the formation of aggregates was obtained from analysis of the catalytic reaction mixture by dynamic light scattering, revealing the presence of particles in the 100 nm range once AgBF\(_4\) was added to a solution containing complex 2a and the substrate (Fig. S1). Repetitive experiments indicated consistently similar sized particles, suggesting that additives (carbenes, triazolium salts, or amine) may be involved in stabilizing the particles and in preventing the formation of larger aggregates. Such a model provides a rationale for the synergistic effect of Ag\(^{+}\) as carbene transfer agent and the base as particle stabilizer in catalytic reactions (cf Table 2). While the
formation of smaller (and presumably more active) particles cannot be excluded due to the intrinsic principles of light scattering, these data reveal that aggregation of the ligandless gold ions is occurring under catalytic conditions. It is worth noting that these *in situ* generated nanoparticles induce substantially higher catalytic activity than AuCl(SMe₂), which probably suffers from aggregation in CH₂Cl₂ as the solvent for this catalytic reaction (entry 8).

Carbene dissociation from complex **2a** was further confirmed by NMR spectroscopy. Under catalytically relevant conditions (1 equiv AgBF₄, 40 °C) the mono(triazolylidene) complex furnishes 5–10% of **4a** within 10 min, as indicated by the appearance of the characteristic resonances at 6.92 and 6.86 ppm for the aromatic mesityl protons and the inequivalence of the three CH₃ groups of the mesityl wingtip group. These results underline the kinetic lability of the Au-Ctrz bond and support the formation of an active Au species via triazolylidene dissociation in the presence of Ag⁺.

Evaluation of complexes **2a–g** (Table 4, entries 1–6) revealed no direct correlation between catalytic activity (TON, TOF) and the steric or electronic properties of the triazolylidene wingtip groups. For example, sterically demanding adamantyl/phenyl substituents induce similar activity as two mesityl groups (entries 1,5). Furthermore, only very minor differences were observed in *cis/trans* selectivity of product formation, suggesting that the triazolylidene wingtip groups are not involved the condensation step. When using the chiral triazolylidene gold complex **2g**, no asymmetric induction was observed and the obtained product mixture was racemic according to chiral HPLC analysis. The absence of any enantio- or diastereoselective control even with **2g** suggests a common catalytic species from complexes **2a–g** that is not related to the triazolylidene ligand, in agreement with carbene dissociation as catalyst activation step. The rate of dissociation is likely dependent on the wingtip groups, hence providing a rationale for the different activities (yet identical selectivities) observed with complexes **2a–g**. Accordingly, the activities observed in the series of complexes reflect the lability of the carbene ligand rather than the ligand-induced differences at the gold center. Thus, methoxy-substituted aryl wingtip groups (**2b**) or tBu wingtips (**2d**) imparted highest activity and gave complete conversion within 5 min (entries 2,4). Activity differences for these two complexes unveiled only when reducing the catalyst loading from 1 to 0.5 mol%. Under these conditions, catalysis initiated by complex **2b** was significantly faster and achieved full conversion within 30 min while complex **2d** required about twice as long (entries 7,8). Time-conversion profiles (Fig. S2) provided pertinent turnover
frequencies (TOFs). At 50% conversion, complex 2b reached a TOF$_{50} = 2000$ h$^{-1}$. To the best of our knowledge this is the highest activity reported for catalytic oxazoline synthesis to date.30,31 Further lowering the catalyst loading to 0.01 mol% is possible, though reaction time has to be considerably extended to accomplish the 10,000 turnovers for full conversion (2d, entry 9). Further lowering of catalyst loading was not productive (entry 10).

Table 4 Catalytic activity of different gold complexes a)

<table>
<thead>
<tr>
<th>entry</th>
<th>[Au] loading (mol%)</th>
<th>time (h)</th>
<th>conv’n (%)b</th>
<th>cis/trans b</th>
<th>TON</th>
<th>TOF$_{50}$ (h$^{-1}$)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2a</td>
<td>1</td>
<td>0.5</td>
<td>98</td>
<td>24/76</td>
<td>98</td>
</tr>
<tr>
<td>2</td>
<td>2b</td>
<td>1</td>
<td>0.08</td>
<td>98</td>
<td>27/73</td>
<td>98</td>
</tr>
<tr>
<td>3</td>
<td>2c</td>
<td>1</td>
<td>1.5</td>
<td>98</td>
<td>30/70</td>
<td>98</td>
</tr>
<tr>
<td>4</td>
<td>2d</td>
<td>1</td>
<td>0.08</td>
<td>96</td>
<td>25/75</td>
<td>96</td>
</tr>
<tr>
<td>5</td>
<td>2e</td>
<td>1</td>
<td>0.5</td>
<td>98</td>
<td>24/76</td>
<td>98</td>
</tr>
<tr>
<td>6</td>
<td>2f</td>
<td>1</td>
<td>1</td>
<td>98</td>
<td>24/76</td>
<td>98</td>
</tr>
<tr>
<td>7</td>
<td>2b</td>
<td>0.5</td>
<td>0.5</td>
<td>95</td>
<td>26/74</td>
<td>190</td>
</tr>
<tr>
<td>8</td>
<td>2d</td>
<td>0.5</td>
<td>1</td>
<td>97</td>
<td>24/76</td>
<td>194</td>
</tr>
<tr>
<td>9</td>
<td>2b</td>
<td>0.01</td>
<td>44</td>
<td>96</td>
<td>27/73</td>
<td>9600</td>
</tr>
<tr>
<td>10</td>
<td>2d</td>
<td>0.001</td>
<td>240</td>
<td>< 2</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

a) General conditions: benzaldehyde (1.52 mmol), methyl isocyanoacetate (1.38 mmol), AgBF$_4$ (16 µmol), [Au] (14 µmol), base (166 µmol), CH$_2$Cl$_2$ (4 mL).

b) Conversions and cis/trans ratio determined by 1H NMR spectroscopy.

c) TOF$_{50}$ = turnover frequency at 50% conversion.

The substrate scope was investigated with the catalyst precursors 2b and 2g (Table 5). Benzaldehydes with electron donating and withdrawing substituents were converted well and no significant electronic differentiation was noted. Bulky tBuCHO was poorly converted, presumably due to steric limitations. However these restrictions increased substantially the selectivity towards the trans diastereoisomer, lending further support to a substrate-controlled regioselectivity of the condensation and a marginal role of the triazolylidene ligand in the
catalytic cycle, if any. In agreement with such a reactivity pattern, earlier work has demonstrated the critical role of (chiral) anions in determining the product selectivity in the protodeauration step of related condensation reactions.42

Table 5 Substrate scope for the catalytic aldol condensation with complexes 2b and 2ga)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Complex</th>
<th>R</th>
<th>conv’n (%)b)</th>
<th>cis/trans (%)b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2b</td>
<td>C\textsubscript{6}H\textsubscript{5}</td>
<td>> 95</td>
<td>28/72</td>
</tr>
<tr>
<td>2</td>
<td>2g</td>
<td>C\textsubscript{6}H\textsubscript{5}</td>
<td>> 95</td>
<td>25/75</td>
</tr>
<tr>
<td>3</td>
<td>2b</td>
<td>4-MeO-C\textsubscript{6}H\textsubscript{4}</td>
<td>93</td>
<td>37/63</td>
</tr>
<tr>
<td>4</td>
<td>2g</td>
<td>4-MeO-C\textsubscript{6}H\textsubscript{4}</td>
<td>84</td>
<td>20/80</td>
</tr>
<tr>
<td>5</td>
<td>2b</td>
<td>4-NO\textsubscript{2}-C\textsubscript{6}H\textsubscript{4}</td>
<td>> 95</td>
<td>35/65</td>
</tr>
<tr>
<td>6</td>
<td>2g</td>
<td>4-NO\textsubscript{2}-C\textsubscript{6}H\textsubscript{4}</td>
<td>91</td>
<td>16/84</td>
</tr>
<tr>
<td>7</td>
<td>2b</td>
<td>4-Cl-C\textsubscript{6}H\textsubscript{4}</td>
<td>> 95</td>
<td>39/61</td>
</tr>
<tr>
<td>8</td>
<td>2g</td>
<td>4-Cl-C\textsubscript{6}H\textsubscript{4}</td>
<td>78</td>
<td>30/70</td>
</tr>
<tr>
<td>9</td>
<td>2b</td>
<td>tBu</td>
<td>20</td>
<td>5/95</td>
</tr>
<tr>
<td>10</td>
<td>2g</td>
<td>tBu</td>
<td>46</td>
<td>0/100</td>
</tr>
</tbody>
</table>

a) Aldehyde (1.5 mmol), methyl isocynoacetate (1.4 mmol), AgBF\textsubscript{4} (16 \textmu mol), [Au] (14 \textmu mol), NiPr\textsubscript{2}Et (0.17 mmol), CH\textsubscript{2}Cl\textsubscript{2} (4 mL), RT, 18 h; b) Conversions and cis/trans ratio determined by 1H NMR spectroscopy.

Conclusions

Triazolylidene gold complexes are precursors for highly active catalysts for the synthesis of oxazolines. Mechanistic investigations and stereoselective considerations provide strong evidence for triazolylidene dissociation as a critical step of catalyst activation. This dissociation is facilitated by the presence of AgBF\textsubscript{4} as carbene transfer mediator, a role of silver that is often underestimated in metal catalyzed reaction and that reaches significantly beyond classical halide scavenging. Once activated, appreciable turnover numbers (105) and frequencies (104 h-1) are achieved. The carbene transfer is spontaneous, albeit slow, and considerably accelerated in the presence of Ag+ ions. Transfer is not restricted to triazolylidenes and is also demonstrated for the
more frequently used IMes as representative of Arduengo-type NHCs. These results call into question the often cited and generally assumed stability of the Au–C\(\text{NHC}\) bond in catalytic applications, in particular when silver salts are used as additives\(^{43,44}\). Carbene dissociation processes as demonstrated here provide ligandless metal centers that impart high catalytic activity. Noteworthy, in such a model the different observed catalytic activities do not reflect ligand-induced changes at the metal center, but different dissociation propensities of the ligands in the activation step. Such reactivity patterns may be relevant beyond gold-centered NHC chemistry and warrant a cautionary note when assuming a ‘strong’ or ‘kinetically inert’ bonding of NHCs to metal centers, especially to coinage metals. Metal-triggered ligand dissociation provides interesting perspectives, e.g. for supramolecular chemistry (self-assembly) and for generating latent catalysts that can be activated selectively, a process that is much harder to achieve with other neutral donor ligand systems such as imines or phosphines.

Experimental section

General. 1-(3,4,5-trimethoxyphenyl)-4-(4-methoxyphenyl)-1,2,3-triazole\(^{45}\) and the triazolium salts 1a,\(^{46}\) 1c,\(^{47}\) 1g,\(^{23}\) and AuCl(IMes)\(^{20c}\) were described previously. The synthesis of all new triazoles and triazolium salts is reported in the supporting information. All solvents used for the reactions were purified using an alumina/catalyst column system (Thermovac Co.). Ag\(_2\)O was freshly prepared according to literature procedures.\(^{48}\) All other reagents are commercially available and were used as received. Unless specified otherwise, NMR spectra were recorded at 25 °C on Varian Innova spectrometers operating at 300, 400 or 500 MHz (\(^1\)H NMR) and 75, 100 or 125 MHz (\(^13\)C\{\(^1\)H\} NMR), respectively. Chemical shifts (\(\delta\) in ppm, coupling constants \(J\) in Hz) were referenced to residual solvent resonances. Assignments are based on homo- and heteronuclear shift correlation spectroscopy. Elemental analyses were performed by the Microanalytical Laboratory at University College Dublin, Ireland, by using an Exeter Analytical CE-440 Elemental Analyzer.

General procedure for the synthesis of the gold carbene complexes 2. Triazolium salt 1 (1.0 eq), Ag\(_2\)O (0.5 eq) and AuCl(SMe\(_2\)) (1.0 eq) in dry CH\(_2\)Cl\(_2\) were stirred in CH\(_2\)Cl\(_2\) in the dark at room temperature for 24 h and filtered through Celite. The solvent was removed in vacuo the
residue was washed with pentane (25 mL) and dried, then re-dissolved in CH₂Cl₂ (2 mL) and precipitated with pentane (50 mL). The precipitate was collected by filtration and passed through a short pad of SiO₂. Elution with dry CH₂Cl₂, and solvent evaporation yielded pure complex 2.

Complex 2a. According to the general method, the title compound was obtained from 1a (125 mg, 0.28 mmol), Ag₂O (33 mg, 0.14 mmol), and AuCl(SMe₂) (82 mg, 0.28 mmol) in dry CH₂Cl₂ (30 mL) as a white solid (92 mg, 60%). ¹H NMR (CDCl₃, 500 MHz): δ 7.03 (s, 4H, HMes), 3.90 (s, 3H, NCH₃), 2.38 (s, 6H, ArCH₃), 2.10 (s, 12H, ArCH₃). ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 162.0 (Cₜₚ₂−Au), 146.1 (Cₜₚ₂−Mes), 141.1, 140.9, 138.1, 135.7, 134.3, 129.6, 129.3, 122.3 (8 × Cₘes), 36.9 (NCH₃), 21.5, 21.4, 20.3, 17.6 (4 × Ar−CH₃). ¹H NMR (CDCl₃, 500 MHz): δ 7.00 (s, 2H, HMes), 7.09 (s, 2H, HMes), 3.90 (s, 3H, NCH₃), 2.41 (s, 3H, ArCH₃), 2.39 (s, 3H, ArCH₃), 2.13 (s, 6H, ArCH₃), 2.10 (s, 6H, ArCH₃). ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 162.4 (Cₜₚ₂−Au), 146.4 (Cₜₚ₂−Mes), 141.7, 141.6, 138.6, 134.9, 129.9, 129.6, 129.3, 122.7 (8 × Cₘes), 37.4 (NCH₃), 21.7, 21.6, 20.4, 17.8 (4 × Ar−CH₃). Anal. Calcd for C₂₁H₂₅AuClN₃ (551.86): C, 45.70; H, 4.57; N, 7.61. Found: C, 45.77; H, 4.37; N, 7.55.

Complex 2b. According to the general method, reaction of 1b (166 mg, 0.34 mmol), Ag₂O (41 mg, 0.17 mmol), and AuCl(SMe₂) (100 mg, 0.34 mmol) in dry CH₂Cl₂ (30 mL) gave 2b as a yellow solid (160 mg, 80%). ¹H NMR (CDCl₃, 500 MHz): δ 7.02 (d, ³J_HH = 9.0 Hz, 2HAr), 7.60 (s, 2HAr), 7.02 (d, ³J_HH = 9.0 Hz, 2HAr), 4.18 (s, 3H, NCH₃), 3.95 (s, 6H, OCH₃), 3.92 (s, 3H, OCH₃), 3.89 (s, 3H, OCH₃). ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 161.5, 131.2, 114.9, 113.2 (4 × CAr), 153.7, 139.7, 134.5, 101.8 (4 × CAr), 156.7 (Cₜₚ₂−Au), 147.8 (Cₜₚ₂−Ar), 61.2 (OCH₃), 56.9 (OCH₃), 55.7 (OCH₃), 38.1 (NCH₃). Anal. Calcd for C₁₉H₂₁AuClN₃O₄ (587.80): C, 38.82; H, 3.60; N, 7.15. Found: C, 38.58; H, 3.30; N, 7.05.

Complex 2c. According to the general method, reaction of 1c (120 mg, 0.33 mmol), Ag₂O (40 mg, 0.16 mmol), and AuCl(SMe₂) (98 mg, 0.33 mmol) in dry CH₂Cl₂ (30 mL) yielded 2c as an off-white solid (107 mg, 70%). ¹H NMR (CDCl₃, 500 MHz): δ 8.05 (d, ³J_HH = 7.0 Hz, 2HAr), 7.68 (d, ³J_HH = 6.5 Hz, 2H, HAr), 7.56–7.50 (m, 6H, HAr), 4.18 (s, 3H, NCH₃). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 157.3 (Cₜₚ₂−Au), 147.8 (Cₜₚ₂−Ph), 139.2, 130.6, 130.4, 129.9, 129.7, 129.4,
126.4, 124.3 (8 × C_{Ar}), 38.3 (NCH₃). Anal. Calcd for C₁₅H₁₃AuClN₃ (467.70): C, 38.52; H, 2.80; N, 8.98. Found: C, 38.37; H, 2.50; N, 8.77.

Complex 2d. According to the general method, 1d (150 mg, 0.46 mmol), Ag₂O (54 mg, 0.23 mmol), AuCl(SMe₂) (136 mg, 0.46 mmol) and [NEt₃Me]I (11 mg, 0.046 mmol) were reacted in dry CH₂Cl₂ (30 mL) for 72 h. Complex 2d was obtained as a white solid (90 mg, 45%). ¹H NMR (CDCl₃, 500 MHz): δ 4.22 (s, 3H, NCH₃), 1.93, 1.67 (2 × (s, 9H C-C₃H₃)). ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 157.7 (C₄trz–Au), 152.7 (C₄trz–tBu), 64.8 (N-CMe₃), 40.9 (NCH₃), 32.1 (C-CMe₃), 32.0, 30.9 (2 × C-C₃H₃). Anal. Calcd for C₁₁H₂₁AuClN₃ (427.72): C, 30.89; H, 4.95; N, 9.82. Found: C, 30.70; H, 4.59; N, 9.62. ¹H NMR (CD₂Cl₂, 500 MHz): δ 4.20 (s, 3H, NCH₃), 1.92, 1.66 (2 × (s, 9H C-C₃H₃)). ¹³C{¹H} NMR (CD₂Cl₂, 125 MHz): δ 155.0 (C₄trz–Au), 152.6 (C₄trz–tBu), 64.9 (N-CMe₃), 41.3 (NCH₃), 32.3 (C-CMe₃), 32.1, 31.0 (2 × C-C₃H₃).

Complex 2e. According to the general method, reaction of 1e (73 mg, 0.17 mmol), Ag₂O (20 mg, 0.08 mmol), and AuCl(SMe₂) (52 mg, 0.17 mmol) in dry CH₂Cl₂ (30 mL) gave 2e as a white solid (70 mg, 77%). ¹H NMR (CDCl₃, 500 MHz): δ 7.64 (bs, 2H Ar), 7.50 (bs, 3H Ar), 4.06 (s, 3H, NCH₃), 2.66 (m, 6H, CH₂ ada), 2.32 (bs, 3H, CH ada), 1.81 (m, 6H, CH₂ ada). ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 152.8 (C₄trz–Au), 147.7 (C₄trz–Ph), 130.3, 129.8, 129.2, 127.4 (4 × C₃Ph), 65.3 (C ada-N), 43.3 (CH₂ ada), 37.8 (NCH₃), 35.9 (CH₂ ada), 30.0 (CH ada). Anal. Calcd for C₁₉H₂₃AuClN₃ (525.82): C, 43.40; H, 4.41; N, 7.99. Found: C, 44.13; H, 4.22; N, 7.76.

Complex 2f. The title compound was obtained according to the general method from 1f (100 mg, 0.25 mmol), Ag₂O (29 mg, 0.13 mmol), and AuCl(SMe₂) (78 mg, 0.25 mmol) in dry CH₂Cl₂ (30 mL) as a white solid (86 mg, 65%). ¹H NMR (CDCl₃, 500 MHz): δ 4.21 (s, 3H, NCH₃), 2.64 (m, 6H, CH₂ ada), 2.28 (bs, 3H, CH ada), 1.81 (m, 6H, CH₂ ada), 1.67 (s, 9H, C-C₃H₃). ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 154.5 (C₄trz–Au), 151.5 (C₄trz–tBu), 65.2 (C ada-N), 43.3 (CH₂ ada), 40.9 (NCH₃), 36.0 (CH₂ ada), 31.9 (C-CMe₃), 32.0 (C-C₃H₃), 30.0 (CH ada). Anal. Calcd for C₁₇H₂₇AuClN₃ (505.83): C, 40.37; H, 5.38; N, 8.31. Found: C, 40.33; H, 5.22; N, 8.28.

Complex 2g
1g (94 mg, 0.12 mmol) was mixed with Ag$_2$O (14 mg, 0.06 mmol) and stirred for one hour in dry CH$_2$Cl$_2$ (30 mL) at room temperature. AuCl(SMe)$_2$ (36 mg, 0.12 mmol) was added to the reaction mixture and stirred for additional 16 h. The workup and purification were carried out according to the general method to yield 2g as a white solid (69 mg, 62%). 1H NMR (CDCl$_3$, 600 MHz) δ 8.22 (br, 2H, H$_{Ar}$), 8.20–7.98 (m, 6H, H$_{Ar}$), 7.61 (m, 2H, H$_{Ar}$), 7.47–7.43 (m, 6H, H$_{Ar}$), 7.37–7.22 (m, 4H, H$_{Ar}$), 7.20–7.00 (m, 9H, H$_{Ar}$), 6.60–6.45 (m, 7H, H$_{Ar}$), 4.50, 4.21 (2× AB doublet, 2J$_{HH}$ = 14.3 Hz, 2H, NCH$_2$Ph), 3.34 (d, 3J$_{HH}$ = 15.4 Hz, N$_1$CHC$_{H\alpha\beta}$Ph), 3.03 (dd, 3J$_{HH}$ = 15.4 Hz, N$_1$CHC$_{H\alpha\beta}$Ph).

13C NMR (150 MHz, CDCl$_3$) δ 166.4 (NC=O), 165.9 (C$_{trz}$– Au), 139.6, 135.3, 132.5, 132.3, 132.2, 131.8, 131.3, 130.5, 129.8, 129.4, 129.2, 129.1, 129.0, 128.9, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 128.0, 127.9, 127.8, 127.7, 127.5, 127.4, 127.3, 127.0 (all C$_{Ar}$), 68.9 (N$_1$CHC$_{q\beta}$Ph), 68.7 (NCP$_2$), 54.3 (NCH$_2$Ph), 36.2 (NCHC$_{q\beta}$Ph). Anal. Calcd for (C$_{49}$H$_{39}$AuN$_4$O)$_2$ (1866.6): C, 65.62; H, 4.38; N, 6.25. Found: C, 65.52; H, 4.62; N, 6.03.

Complex 2h. Complex 2h was obtained according to the general procedure from triazolium salt 1h (110 mg, 0.30 mmol), freshly prepared Ag$_2$O (139 mg, 0.60 mmol), and AuCl(SMe)$_2$ (90 mg, 0.30 mmol) in dry CH$_2$Cl$_2$ (25 mL). The mixture was stirred in the dark for 5 h and filtered through Celite. The solvent was concentrated to 1 mL and treated with pentane (150 mL). A white precipitate formed after storage at 4 °C for 16 h. This solid was collected by decantation and was dried in vacuo (60 mg, 36%). Recrystallized by slow diffusion of pentane into a CH$_2$Cl$_2$ solution of 2h yielded single crystals suitable for X-ray diffraction analysis. 1H NMR (CDCl$_3$, 400 MHz) δ 6.92 (s, 2H, H$_{Ar}$), 4.71 (s, 2H, CH$_2$N), 4.39 (NCH$_3$), 2.30 (s, 3H, Ar–CH$_3$), 2.00 (s, 6H, Ar–CH$_3$), 1.17 (s, 9H, CH$_3$ Boc). 13C{1H} NMR (CDCl$_3$, 100 MHz): 163.5 (N–C=O), 163.3 (C$_{trz}$–Au), 150.6 (C$_{trz}$–alkyl), 137.9, 136.3, 134.6, 129.3 (4×C$_{Mes}$), 76.3 (CMe$_3$), 42.8 (CH$_2$N), 37.5 (NCH$_3$), 28.8 (CH$_3$ Boc), 21.3, 18.0 (2×Ar–CH$_3$). HR-MS (ES$^+$) Calcd for C$_{36}$H$_{51}$Au$_2$N$_8$O$_4$ [M+H]$^+$: 1053.3364. Found 1053.3409. Calcd for (C$_{18}$H$_{25}$AuN$_4$O)$_2$ (1052.8): C, 41.07; H, 4.79; N, 10.64. Found: C, 41.10; H, 4.81; N, 10.48.

Complex 3. Complex 2a (50 mg, 0.09 mmol), PPh$_3$ (24 mg, 0.09 mmol), and AgBF$_4$ (35 mg, 0.18 mmol) in dry CH$_2$Cl$_2$ (30 mL) were stirred in the dark for 4 h, and then passed through a small pad of Celite and eluted with CH$_2$Cl$_2$ (7 mL). After evaporation of all the volatiles the
residue was washed with pentane (20 mL), dissolved in CH$_2$Cl$_2$ (0.5 mL), and passed through a short pad of Celite. Elution with CH$_2$Cl$_2$ (7 mL) and evaporation of the solvent afforded pure 3 as a white powder (62 mg, 80%). 1H NMR (CDCl$_3$, 500 MHz): δ 7.52 (t, 3J$_{HH}$ = 7.2 Hz, 3H, H$_{PPh3}$), 7.40 (t, 3J$_{HH}$ = 7.2 Hz, 6H, H$_{PPh3}$), 7.16 (dd, 3J$_{HH}$ = 7.2 Hz, 3J$_{HP}$ = 12.8 Hz, 6H, H$_{Ph3P}$), 7.07 (s, 4H, H$_{Mes}$), 4.07 (s, 3H, NCH$_3$), 2.41, 2.38 (2 × s, 3H, ArCH$_3$), 2.18, 2.13 (2 × s, 6H, ArCH$_3$).

31P{1H} NMR (CDCl$_3$, 162 MHz): δ 40.9 (s, PPh$_3$).

13C{1H} NMR (CDCl$_3$, 125 MHz): δ 177.0 (d, 2J$_{CP}$ = 122.1 Hz, C$_{trz}$–Au), 147.4 (C$_{trz}$–Mes), 141.4, 141.3, 138.3, 135.8, 134.7 (5 × C$_{Mes}$), 134.1 (d, 3J$_{CP}$ = 13.7 Hz, CH$_{PPh3}$), 132.3 (d, 4J$_{CP}$ = 2.5 Hz, CH$_{PPh3}$), 129.7 (C$_{Mes}$), 129.5 (d, 2J$_{CP}$ = 14.5 Hz, CH$_{PPh3}$), 128.5 (d, 1J$_{CP}$ = 57.4 Hz, C$_{PPh3}$), 121.6 (C$_{Mes}$), 37.7 (NCH$_3$), 21.5, 20.5, 20.4, 17.7 (3 × Ar–CH$_3$). Anal. Calcd for C$_{39}$H$_{40}$AuPN$_3$BF$_4$ (865.50): C, 54.12; H, 4.66; N, 4.86. Found: C, 53.73; H, 4.46; N, 4.55.

Complex 4a. Method A: Triazolium salt 1a (200 mg, 0.45 mmol), and Ag$_2$O (55 mg, 0.23 mmol) in dry CH$_2$Cl$_2$ (10 mL) were stirred in the dark for 24 h. AuCl(SMe$_2$) (66 mg, 0.22 mmol) was added and the solution was stirred for 48 h and filtered through Celite. The solvent was removed in vacuo then the residue was washed with pentane (25 mL) and dried, then re-dissolved in CH$_2$Cl$_2$ (2 mL) and precipitated with pentane (50 mL). The solid was collected by filtration under air then dried over vacuum to yield 4a as a yellow solid (150 mg, 73%). Microanalysis indicates a 1:7 mixture of chloride and dichloroiodate(I) anions; Anal. Calcd for 7/8 C$_{42}$H$_{50}$N$_6$AuICl$_2$ (1033.66) + 1/8 C$_{42}$H$_{50}$N$_6$AuICl$_2$ (1033.66): C, 49.78; H, 5.52; N, 9.02. Found: C, 49.79; H, 5.74; N, 8.17.

Method B: Complex 2a (50 mg, 0.09 mmol), and AgBF$_4$ (18 mg, 0.09 mmol) in dry CH$_2$Cl$_2$ (10 mL) were stirred in the dark for 12 h at RT. The solution was passed through a short pad of Celite and eluted with CH$_2$Cl$_2$ (5 mL) and concentrated to approximately 1 mL. Addition of pentane (50 mL) afforded 4a as a white powder. The solid was collected by filtration and dried under vacuum (40 mg, 95%). Anal. Calcd for C$_{42}$H$_{50}$N$_6$AuBF$_4$ (922.66) × 0.5H$_2$O: C, 54.14; H, 5.52; N, 9.02. Found: C, 54.10; H, 5.28; N, 8.66.

Spectroscopic analyses were identical for both products: 1H NMR (CDCl$_3$, 400 MHz): δ 6.92 (s, 4H, H$_{Mes}$), 6.86 (s, 4H, H$_{Mes}$), 3.88 (s, 6H, NCH$_3$), 2.42 (s, 12H, ArCH$_3$), 1.82 (s, 12H, ArCH$_3$), 1.76 (s, 12H, ArCH$_3$). 13C{1H} NMR (CDCl$_3$, 100 MHz): δ 175.8 (C$_{trz}$–Au), 146.7 (C$_{trz}$–Mes), 165.4 (C$_{trz}$–Mes).
140.6, 140.4, 138.0, 135.6, 134.2, 129.2, 128.9, 122.1 (8 × C_{Mes}), 37.1 (NCH₃), 21.6, 21.5, 20.1, 17.3 (4 × Ar–CH₃).

Complex 4e. Method A: Triazolium salt 1e (200 mg, 0.47 mmol), and Ag₂O (55 mg, 0.23 mmol) in dry CH₂Cl₂ (10 mL) were stirred in the dark for 24 h. AuCl(SMe₂) (70 mg, 0.24 mmol) was added and the solution was stirred for 48 h and filtered through Celite. The solvent was removed in vacuo the residue was washed with pentane (25 mL) and dried, then re-dissolved in CH₂Cl₂ (2 mL) and precipitated with pentane (50 mL). The solid was collected by filtration under air then dried in vacuum to yield a yellow solid comprised of a mixture of 2e and 4e (152 mg, ca. 1:1). Pure 4e was obtained from recrystallization by slow diffusion of Et₂O into a saturated solution of complex 4e in acetone (64 mg, 30%). Microanalysis indicates a 3:2 mixture of chloride and dichloroiodate(I) anions; Anal. Calcd for 0.6 C₃₈H₄₆AuN₆[Cl₂I] (981.59) + 0.4 C₃₈H₄₆AuN₆[Cl] (819.23): C, 51.62; H, 5.24; N, 9.50. Found: C, 51.65; H, 5.50; N, 8.95.

Method B: Complex 2e (40 mg, 0.08 mmol), and AgBF₄ (15 mg, 0.08 mmol) in dry CH₂Cl₂ (10 mL) were stirred in the dark for 12 h at 40 °C. The solution was passed through a short pad of Celite and eluted with CH₂Cl₂ (5 mL) and concentrated to approximately 1 mL. Addition of pentane (50 mL) afforded 4e as a white powder. The solid was collected by filtration and dried under vacuum. (25 mg, 76%). Anal. Calcd for C₃₈H₄₆AuBF₄N₆ (870.57) × 0.5H₂O: C, 51.89; H, 5.39; N, 9.55. Found: C, 51.80; H, 5.22; N, 9.16.

Spectroscopic analyses were identical for both products: ¹H NMR (CDCl₃, 400 MHz): δ 7.63 (d, ³J_HH = 7.2 Hz, 4H, H_{Ph}), 7.51–7.45 (m, 6H, H_{Ph}), 4.11 (s, 6H, NCH₃), 2.37 (br s, 12H, CH₂ada), 2.06 (br s, 6H, CH_{ada}), 1.63, 1.48 (2 × AB doublet, ²J_HH = 12.4 Hz, 12H, CH₂ada). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 166.5 (C_{trz}–Au), 149.0 (C_{trz}–Ph), 130.4, 130.1, 129.6, 127.6 (4 × C_{Ph}), 64.8 (C_{ada}–N), 43.4 (CH₂ada), 38.0 (NCH₃), 35.7 (CH₂ada), 29.7 (CH_{ada}).

Complex 6. AuCl(IMes) (100 mg, 0.18 mmol), and AgBF₄ (35 mg, 0.18 mmol) in dry CH₂Cl₂ (10 mL) were stirred in the dark for 12 h at 40 °C. The solution was passed through a short pad of Celite, eluted with CH₂Cl₂ (5 mL) and concentrated to 1 mL. Addition of pentane (50 mL) afforded 6 as a white powder, which was collected by filtration and dried under vacuum (75 mg, 83%). ¹H NMR (CDCl₃, 400 MHz): δ 7.10 (s, 4H, H<i>imi</i>), 6.88 (s, 8H, H<i>Mes</i>), 2.43 (s, 12H, ArCH₃), 1.69 (s, 24H, ArCH₃). ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 185.3 (C_{imi}–Au), 139.5,
134.7, 134.3, 129.3 (4 x C\textsubscript{Mes}), 123.3 (H\textsubscript{imid}), 21.4, 17.3 (2 x Ar–CH\textsubscript{3}). Anal. Calced for C\textsubscript{42}H\textsubscript{48}N\textsubscript{4}AuBF\textsubscript{4} (892.63): C, 56.51; H, 5.42; N, 6.28. Found: C, 56.45; H, 5.26; N, 6.15.

Complex 7. Complex 2a (50 mg, 0.09 mmol), methyl isocyanoacetate (11 mg, 0.11 mmol), and AgBF\textsubscript{4} (35 mg, 0.18 mmol) in CD\textsubscript{2}Cl\textsubscript{2} (2.0 mL) were stirred in the dark for 16 h, and then passed through a small pad of Celite and eluted with CD\textsubscript{2}Cl\textsubscript{2} (0.5 mL). 1H NMR (CD\textsubscript{2}Cl\textsubscript{2}, 400 MHz): δ 7.11 (s, 4H, H\textsubscript{Mes}), 4.55 (s, 2H, CNCH\textsubscript{2}), 3.95 (s, 3H, NCH\textsubscript{3}), 3.80 (s, 3H, COOCH\textsubscript{3}), 2.41, 2.39 (2 x s, 3H, ArCH\textsubscript{3}), 2.11, 2.08 (2 x s, 6H, ArCH\textsubscript{3}). 13C 1H NMR (CD\textsubscript{2}Cl\textsubscript{2}, 125 MHz): δ 167.9 (COO), 163.0 (C\textsubscript{trz–Au}), 148.5 (C\textsubscript{trz–Mes}), 142.3, 142.2, 138.5, 135.5, 134.7, 130.2, 129.8, 121.4 (8 x C\textsubscript{Mes}), 54.5 (CH\textsubscript{3}), 46.1 (broad, CNCH\textsubscript{2}), 37.7 (NCH\textsubscript{3}), 21.7, 21.6, 20.5, 17.7 (4 x Ar–CH\textsubscript{3}), Au-CN not resolved.

General procedure for the catalytic synthesis of oxazolines. In a typical procedure, benzaldehyde (0.15 mL, 1.5 mmol), methyl isocyanoacetate (0.130 mL, 1.4 mmol), complex 2 (14 µmol, 1 mol%), and NEt\textsubscript{2}Pr\textsubscript{2} (24 µL, 0.17 mmol) were dissolved in CH\textsubscript{2}Cl\textsubscript{2} (3.2 mL). A solution of AgBF\textsubscript{4} (0.8 mL, 20 mM in CH\textsubscript{2}Cl\textsubscript{2}/MeOH 4:1, 16 µmol) was added and the reaction was stirred at 40 °C protected from light. Samples were taken at indicated times by removing 0.1 mL of the reaction mixture by syringe and dilution with CDCl\textsubscript{3} (0.7 mL) for analysis by 1H NMR spectroscopy.

Crystallographic details. Crystal data for complexes 2a, 2b, 2d, 2e, 2h, 3, 4e and 6 were collected by using an Agilent Technologies SuperNova A diffractometer fitted with an Atlas detector. 2a, 2b, 2e, 3, 4e and 6 were measured with Mo-K\textsubscript{α} radiation (0.71073 Å), 2d and 2h with Cu-K\textsubscript{α} (1.54178 Å). A complete dataset was collected, assuming that the Friedel pairs are not equivalent. An analytical numeric absorption correction was performed49 The structures were solved by direct methods using SHELXS-97 and refined by full-matrix least-squares fitting on F2 for all data using SHELXL-97.50 Hydrogen atoms were added at calculated positions and refined by using a riding model. Anisotropic thermal displacement parameters were used for all nonhydrogen atoms. Crystallographic details are compiled in the supporting information (Tables S1–S8). CCDC numbers 945559–945566 contain the supplementary crystallographic data for this
paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Associated Content
Supporting Information: Experimental procedures for the triazolium salts, DLS data, representative time-conversion profiles and crystallographic details for all reported structures. This material is available free of charge via the Internet at http://pubs.acs.org.

Acknowledgements
We thank Thomas de Jong for the synthesis of ligand 1h. This work was financially supported by the ERC (StG 208561, PoC 324609), Science Foundation Ireland, and the JSPS Funding Program for Next Generation World-Leading Researchers.

Author Information
Corresponding author: E-mail: martin.albrecht@ucd.ie; Fax: +35317162501; Phone: +35317162504.

References

(26) The transmetalation of triazolylidene silver complexes with AuCl(SMe$_2$) afforded complexes 4 as bis(triazolylidene) gold cations with an inseparable mixture of chloride and dichloroiodate(I) [ICl$_2$]$^-$ anions. The presence of the two different counterions was confirmed by microanalysis and by X-ray analysis of single crystals of 4e, providing identical ratios of Cl$^-$ vs [ICl$_2$]$^-$. The formation of dichloroiodate from the iodide of the triazolium salt and chlorides from AuCl(SMe$_2$) suggests a thus far neglected background redox-reaction in addition to the transmetalation process.

(32) Similar effects were observed when using proton sponge (1,8-(NMe₂)₂-naphthalene) as a base instead of NEtᵢPr₂.

(33) AgBF₄ on its own induces activity, though conversions are significantly lower than in the presence of 2a (48% vs 73%).

Four additional signals for the N3-methyl bound triazolylidene species were detected in the range of 3.9–4.1 ppm (25% ratio for the four peaks together). Some of these signals may reflect the formation of silver triazolylidene complexes from carbene transfer.

Absence of enantioselectivity may also be associated with racemization of the ligand during the reaction of 1g with Ag2O, see: Monney, A.; Nastri, F.; Albrecht, M. Dalton Trans. 2013, 42, 5655–5660. However, even in the event of racemization, the absence of any diastereoselectivity change when using less bulky 2c or the highly congested complex 2g suggests that the triazolylidene ligand is not acting as spectator ligand during the condensation step.

