<table>
<thead>
<tr>
<th>Title</th>
<th>Synthesis and catalytic activity of histidine-based NHC ruthenium complexes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors(s)</td>
<td>Monney, Angèle; Venkatachalam, Galmari; Albrecht, Martin</td>
</tr>
<tr>
<td>Publication date</td>
<td>2011-03-28</td>
</tr>
<tr>
<td>Publication information</td>
<td>Dalton Transactions, 40 (12): 2716-2719</td>
</tr>
<tr>
<td>Publisher</td>
<td>Royal Society of Chemistry</td>
</tr>
<tr>
<td>Item record/more information</td>
<td>http://hdl.handle.net/10197/6599</td>
</tr>
<tr>
<td>Publisher's version (DOI)</td>
<td>10.1039/c0dt01768j</td>
</tr>
</tbody>
</table>
Synthesis and catalytic activity of histidine-based NHC ruthenium complexes

Angèle Monney, a,b Galmari Venkatachalam b and Martin Albrecht a,b

Received (in XXX, XXX) Xth XXXXXXXXX 200X, Accepted Xth XXXXXXXXX 200X
First published on the web Xth XXXXXXXXX 200X
DOI: 10.1039/b000000x

Main-chain C2N-protected histidine has been successfully alkylated at both side-chain nitrogens. The corresponding histidinium salt was metallated with ruthenium(II) by a transmetalation procedure, thus providing histidine-derived NHC ruthenium complexes. These bio-inspired complexes show appreciable activity in the catalytic transfer hydrogenation of ketones.

The use of naturally abundant products as a versatile starting materials for ligand development is an appealing concept in homogeneous catalysis and is an increasingly popular strand of bioinorganic and bioorganometallic chemistry.1 A variety of biologically relevant classes of compounds have been functionalised for transition metal coordination, including DNA,2 carbohydrates,3 steroids,4 alkaloids,5 and vitamins such as biotin.6 Proteins constitute a particularly attractive platform for ligand synthesis, partly because of the diversity of functional groups in the amino acid side chains.7 Both, covalent as well as supramolecular anchoring of complexes onto peptidic scaffolds has successfully been demonstrated.8 Covalent linkers may be established, for example, via side chain functionalisation of amino acids.9 Histidine is remarkable in this respect, since imidazole has been widely employed as a precursor for N-heterocyclic carbenes,10 probably the most popular class of ligands during the last decade.11 Alkylation of the histidine side chain and subsequent metallation of the histidinium salt hence constitutes an attractive approach to bioorganometallic chemistry,12 providing potential catalyst precursors with activity and selectivity properties that may be tailored by biochemical principles inherent to enzymes such as second coordination sphere modification or side-chain-directed substrate recognition. Towards this end, we report here on a straightforward synthesis of catalytically active ruthenium centres anchored covalently to a histidine side chain through a histidine-derived NHC spectator ligand.

The synthesis of the histidine-derived carbene ligand precursors started with the protection of the amine and the acid group of native histidine (Scheme 1). An acetyl unit was chosen as amine protecting group because of its facile introduction and high chemical stability. Acetyl histidine 2 was obtained according to known procedures13 and subsequently esterified at the C-terminus.14 The corresponding methyl ester 3a was only soluble in highly polar solvents, which hampered the subsequent transformations considerably. Therefore, the corresponding butyl ester 3b comprising a longer alkyl chain was prepared by esterification in n-BuOH. While yields were high, racemisation at the α-carbon occurred during work-up, as demonstrated by the loss of any optical rotation of 3 at the sodium D-line. Attempts to avoid racemisation by using milder bases or a phosphate buffer (pH = 7.2) for the neutralisation have not been successful thus far. Optical instability of N-acetyl protected amino acids is well-established15 and often an undesired process. In our case, it may provide straightforward access to both L- and D-forms.

Scheme 1. Synthesis of the histidine-based ligand precursors 5.
histidine-derived ligand precursors that may be easily resolved when coordinated to a metal centre through the formation of diastereomeric complexes. Hence, racemisation is not necessarily disadvantageous, and it has been claimed to be suppressed when using different protecting groups.12a

Functionalisation of the racemic \(N,C\)-protected histidine 3b included the alkylation of the side chain by deprotonation using NaH in DMF followed by the addition of 2-iodopropane. Selective \(N_2\)-alkylation and exclusive formation of the regioisomer 4 was confirmed by NMR spectroscopy which showed a single set of signals and a NOE cross-correlation of \(C_4\)H and the \(i\)-Pr protons. This alkylation method allows thus two different wingtip groups to be selectively introduced on the imidazole ring. Quaternisation at \(N_2\) by refluxing 4 and MeI in toluene afforded the histidinium salt 5a as a hygroscopic white solid. Introduction of two identical wingtip groups at the imidazole ring was performed in a single step by refluxing 3b in the presence of excess alkyl halide and NaHCO\(_3\) as proton scavenger, thus yielding the \(N_2,N_2\)-dimethylated histidinium salt 5b. Apart from saving one synthetic step, this route also uses milder reaction conditions, which might be beneficial when enantiomerically pure ligands are sought.

Metallation of the histidine-derived imidazolium salts was accomplished by using a transmetallation procedure.16 Accordingly, Ag\(_2\)O-mediated proton abstraction and subsequent transreuthenation with [Ru(cym)Cl]\(_2\) afforded the two ruthenium complexes 6a and 6b. Both complexes are air and moisture stable and were purified by flash chromatography on silica gel using a mixture of acetonitrile and water (9:1). Disappearance of the signal due to the \(C_1\) bound proton in the \(^1\)H NMR spectrum as well as the downfield carbene signal in the \(^13\)C NMR spectrum (\(\delta_C = 173.6\) and 172.9 ppm for 6a and 6b respectively) supported the formation of complexes 6. Notably, the NMR spectra in CDCl\(_3\) are broad at room temperature, presumably due to rotation about the Ru–C\(_{\text{carbene}}\) and the Ru–cyocene bonds, which causes epimerisation at Ru. The resonances are markedly better resolved upon moderate warming. Variable temperature NMR spectroscopy revealed (de)coalescence of the wingtip groups, which allows for estimating the energy barrier for rotation about the Ru–C\(_{\text{carbene}}\) bond. From these measurements, a distinct influence of the amino acid residue was noted as the activation barrier \(\Delta G^\ddagger = 65(\pm 2)\) kJ mol\(^{-1}\) for 6a was higher than that determined for the model complex 7a.

<table>
<thead>
<tr>
<th>entry</th>
<th>catalyst</th>
<th>additive</th>
<th>conversion</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7a</td>
<td>---</td>
<td>10–16%</td>
<td>2 h</td>
</tr>
<tr>
<td>2</td>
<td>7b</td>
<td>---</td>
<td>31–47%</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>6a</td>
<td>---</td>
<td>21%</td>
<td>56%</td>
</tr>
<tr>
<td>4</td>
<td>6b</td>
<td>---</td>
<td>20%</td>
<td>60%</td>
</tr>
<tr>
<td>5</td>
<td>7a</td>
<td>PPh(_3)</td>
<td>39%</td>
<td>88%</td>
</tr>
<tr>
<td>6</td>
<td>7a</td>
<td>(P(n-Bu))</td>
<td>56%</td>
<td>93%</td>
</tr>
<tr>
<td>7</td>
<td>7b</td>
<td>(P(n-Bu))</td>
<td>87%</td>
<td>99%</td>
</tr>
<tr>
<td>8</td>
<td>6a</td>
<td>(P(n-Bu))</td>
<td>17%</td>
<td>50%</td>
</tr>
<tr>
<td>9</td>
<td>6b</td>
<td>(P(n-Bu))</td>
<td>39%</td>
<td>85%</td>
</tr>
</tbody>
</table>

*General conditions: benzophenone (1 mmol), KOH (100 µmol), catalyst (10 µmol), and where indicated, additive (10 µmol) in refluxing \(i\)-PrOH (5 mL);4 after 10 min with limited reproducibility, see text for details.

\(\Delta G^\ddagger = 60(\pm 2)\) kJ mol\(^{-1}\). This significant difference suggests that functionalisation at the imidazole C4 position (i.e. C in Scheme 2) has a marked influence on the Ru–C bond, despite being remote.

Both complexes are stable as solids at ambient conditions but decompose within minutes in DMSO and within few days in most common organic solvents (e.g. MeCN, toluene, \(CH_2Cl_2\), \(CHCl_3\)). A single crystal of complex 6a, obtained by layering a concentrated CHCl\(_3\) solution with pentane, was analysed by X-ray diffraction. The complex crystallised in a centrosymmetric space group (\(P2_1/c\)), implying the co-crystallisation of both the R and the S stereoisomer as a racemate. The molecular structure (Fig. 1) features a ruthenium centre in a piano-stool-type arrangement. The Ru1–C1 bond length is 2.067(10) Å and hence within the typical observed range.17 Complexes 6 were evaluated as catalyst precursors for the...
transfer hydrogenation of ketones. Benzophenone was used as substrate and i-propanol as hydrogen donor (Table 1). The known unfunctionalised analogues of complexes 6, i.e. complexes 7 (cf. Scheme 2), 18 were included as a reference.

Under standard conditions, i.e. using KOH as a co-catalyst in refluxing i-ProOH (substrate/base/catalyst 100:1:1), the reference complexes 7 showed generally higher catalytic activity than the corresponding histidine-based complexes 6 (Table 1, entries 1-4). While these activity differences were observed in most runs, it should be noted that the catalytic performance of these monodentate carbene complexes showed very poor reproducibility in our hands. 21 For example, in some runs the catalytic activity of complex 7a ceased after 5 min at conversion below 5%, while in other runs under seemingly identical reaction conditions, 97% conversions were reached after identical periods, which would place these ruthenium complexes amongst the most active transfer hydrogenation catalysts known to date (TOF 50 ~ 105 h−1). 20 Possibly, heterogeneisation of the catalyst precursor to catalytically active ruthenium nanoparticles may occur. 22

Stabilisation of the catalytic intermediate was sought by using phosphines as additives. 23 In the presence of PHP3 (1:1 ratio of Ru and PR3), the transfer hydrogenation activity of complex 7a was slightly lower (Table 1, entry 5), yet the reproducibility was significantly better. Addition of P’Bu3 improved both catalytic activity and reproducibility. The effect was particularly pronounced for the catalytic performance of complexes 6b and 7b containing two methyl wingtip groups (entries 7 and 9). In contrast, complexes 6a and 7a comprising an isopropyl wingtip group were slightly less active (entries 6 and 8), presumably due to steric congestion at the ruthenium centre. As a general trend, the histidine-derived carbene ruthenium complexes displayed a lower catalytic activity than the model complexes prepared from simple imidazolium salts. Since the first coordination sphere of the metal centre is identical in both the histidine-derived complexes 6 and their model complexes 7, these activity differences suggest that the remote amino acid residue has an impact on the (catalytic) properties of the metal centre, thus corroborating NMR spectroscopic analyses. Such remote tunability may provide interesting opportunities for catalyst optimisation through bio-inspired concepts.

In summary, histidine was successfully used as starting material for two new NHC ruthenium complexes. The histidine-derived complexes were readily accessible in five to six steps using a final transmetallation procedure and, depending on the wingtip substitution pattern, they exhibit moderate to good catalytic performance in transfer hydrogenation. An attractive feature of these complexes is based on the fact that the catalytic activity differs from that of simple imidazol-2-ylidene ruthenium complexes, thus allowing the activity to be tailored both via wingtip group modification and via remote substitution at the amino acid moiety of the complex. Work along these lines is currently in progress.

We thank A. Neels, Y. Ortin, and F. Nydegger for analytical measurements. This work was financially supported by the Swiss National Science Foundation, COST D40, and the European Research Council through a Starting Grant. M.A. also acknowledges the Alfred Werner Foundation for an Assistant Professorship.

Notes and references

1 School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland. E-mail: martin.albrecht@ucd.ie; Fax: (+353-1)7762501.

2 Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland.

† Electronic Supplementary Information (ESI) available: CCDC 804412 and experimental and analytical details; see DOI: 10.1039/d0000000z.

‡ Typical procedure: A mixture of 5a (500 mg, 1.14 mmol) and AgO (265 mg, 1.14 mmol) in dry CH2Cl2 (25 mL) was stirred at reflux for 15 h in the dark. After filtration of the cold mixture through Celite, solid [RuC(n)Cl3] (350 mg, 0.87 mmol) was added to the filtrate and stirring in the absence of light was continued for 2.5 h. The reaction mixture was subsequently filtered through Celite and the volatiles were removed under reduced pressure. The residue was purified by flash chromatography (SiO2, MeCN:H2O 9:1), thus affording pure 6a as a brown-orange solid (353 mg, 50% yield).

3 NH (500 MHz, CDCl3, 50 °C) δ 6.02 (br, 1H, C₆H₅), 5.39−5.49 (m, 2H, C₆H₅), 5.22 (septet, JHH = 6.7 Hz, 1H, NCHMe2), 5.09 (d, JHH = 5.7 Hz, 2H, C≡CHNH), 4.78 (br, 1H, C≡CH), 4.09−4.18 (2H, COOCH3), 3.87 (br, 3H, NCH), 3.07−3.10 (m, 1H, CH2), 2.96 (septet, JHH = 7.0 Hz, 1H, CH2Ph), 2.79 (br, 1H, CH2), 2.05 (s, 3H, CH3), 1.96 (br, 3H, CH2O), 1.60−1.64 (m, 2H, CH2CH₂CH₂), 1.35−1.40 (m, 2H, CH₂CH₂).

4 JHR = 9.8 Hz; JHH = 7.3 Hz, CH₂CH₂).

5 NH2 (350 mg, 0.57 mmol) was added to the filtrate and stirring in the absence of light was continued for 2.5 h. The reaction mixture was subsequently filtered through Celite and the volatiles were removed under reduced pressure. The residue was purified by flash chromatography (SiO2, MeCN:H2O 9:1), thus affording pure 6a as a brown-orange solid (353 mg, 50% yield).

6 [H3N]HMR (125 MHz, CDCl3, 50 °C) δ 173.6 (CH2CO), 171.1 (C=O), 170.3 (C=O), 131.5 (C), 117.4 (CH), 108.8 (C≡CH), 98.4 (C≡CHNH), 86.5 (CH2CHCH2CH2), 85.3 (C≡CHN), 82.4 (br, 2 × C≡CH), 65.9 (COOCH3), 52.4 (C≡CH), 50.6 (C≡CH), 36.8 (NCH), 31.0 (C≡CH2C≡CH), 30.7 (CH2CH₂CH₂), 28.3 (C≡CH), 21.9 (C≡CH2), 21.3 (CH2CO), 21.9 (C≡CH2C≡CH2), 19.2 (CH2CH₂), 18.9 (C≡CHNH), 13.7 (CH₂CH₂). Elem. anal. calcd. for C29H23N2O2Ru (615.60); C 50.73, H 6.71, N 6.83; found: C 50.50, H 6.50, N 6.77.

7 Crystal data for 6a: yellow rod, C29H23N2O2Ru, M = 615.59, monoclinic, a = 11.1246(13), b = 10.9646(9), c = 24.403(3) Å, α = 90.00, β = 92.472(10), γ = 90.00 Å, V = 2973.80(6) Å³, T = 173(2) K, space group P21/c, Z = 4, µ = 19658 measured reflections, 5293 unique reflections (Rint = 0.2063), Rw = 0.0679, wR = 0.1384 for 2θ(20).

Synthesis and catalytic activity of histidine-based NHC ruthenium complexes

Angèle Monney, Galmari Venkatachalam and Martin Albrecht

Histidine has been successfully used as a bio-relevant precursor for the synthesis of catalytically active ruthenium NHC complexes. The activity of the metal centre in hydrogen transfer catalysis is considerably affected by the remote C,N-protected amino acid functionality.