Dinuclear ruthenium complexes containing a new ditopic phthalazine-bis(triazole) ligand that promotes metal–metal interactions

Joan Aguiló,*b,c Atena Naemi,*c Roger Bofill,* Helge Mueller-Bunz,c Antoni Llobet,*a Lluis Escriche,**a Xavier Sala,*a and Martin Albrecht**c

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

Much attention has been drawn on heterocyclic N-containing ligands due to their applicability as bridging ligands in the synthesis of redox active dinuclear metal complexes. With this aim, we report the synthesis and full characterization of a novel phthalazine-triazole ligand (1,4-bis(1-methyl-1H-1,2,3-triazol-4-yl)phthalazine). Moreover, we show that the phthalazine nitrogen atoms of this N-heterocyclic ligand are more reactive towards alkylating agents than the triazole groups. New ruthenium(II) complexes containing this ligand have been obtained and characterized both structurally and electrochemically. The geometry imposed by the ligand allows the placement of two ruthenium centers in very close proximity so that efficient through-space interactions take place, a concept of crucial importance for electron transfer processes.

Introduction

Ruthenium complexes with chelating heterocyclic N-donor ligands have received much attention owing to their interesting spectroscopic, photophysical and electrochemical properties.1 The redox-active nature of those complexes makes them conceivable mediators of electron transfer in photochemical processes, leading to potential uses in diverse areas such as photosensitizers for photochemical conversion of solar energy,2 molecular electronic devices3 and photoactive DNA cleavage agents for therapeutic purposes.4 Furthermore, this broad family of complexes has been shown to act as excellent catalysts in CO2 reduction, enantioselective hydrogenation, alcohol oxidation, epoxidation, sulfoxidation and water oxidation processes.5,6

Specific attention has been directed to ditopic N-heterocyclic ligands due to their applicability as bridging ligands in the synthesis of dinuclear metal complexes.7 The metal properties in such systems are directly related to the nature of the bridging ligand, which offers a methodology for tailoring of, for example, the electronic communication between the metal centers.8 Additionally, the nature and topology of the ligand can trigger mutual cooperativity of the two coordinated metals through space.8 The degree of electronic coupling between the metal centers and also synergistic intermetallic properties directly depend on the extent of interaction of the bridging ligand orbitals with those of the metal centers.9 Furthermore, the presence of non-bridging spectator ligands can be used to influence the relative energies of the metal-based orbitals, and these ligands are therefore able to indirectly fine-tune the electronic communication between the two metal centers.10 For example, the heterocyclic bridging ligand 3,5-bis(2-pyridyl)pyrazole (H-bpp, Fig. 1) with four N-donor sites was used to prepare the dinuclear ruthenium(II) complex C2+ (Fig. 1c).11 Once bridged by the anionic bpp– ligand, the rigidly meridional coordination geometry of the terpy ligands induce through-space interactions between the two ruthenium sites.11 However, the arrangement of the coordinating heterocyclic rings in H-bpp, specifically the presence of a central five-membered pyrazole with the two six-membered pyridine rings on each side, induced considerable strain when accommodating two ruthenium(II) centers, as evidenced by an appreciable distortion of the Ru–N–N–Ru dihedral angle (Fig. 1b).

Fig. 1 a) Two options A (h-bpp) and B for arranging 5- and 6-membered heterocycles around a central ditopic N,N-unit; b) Newman projection along the N–N axis of the central ditopic N,N-unit emphasizing the steric strain induced by the five-membered central ring with 6-membered heterocycles at the periphery, while the inverse arrangement (bottom) induces an almost ideal co-axial arrangement of the Ru...Ru vector with the N–N bond of the central unit; c) representative complex C2+ with the mononionic bpp– ligand and substantial torsion (Ru–N–N–Ru ca. 19°).

Based on these considerations, we have now designed and prepared a ditopic N7,N7-coordinating ligand that features a six-membered central ring and two five-membered heterocycles in adjacent positions. This geometry is expected to be better suited for accommodating two Ru(II) ions in the ligand plane (Fig. 1a,b...
bottom). As a consequence, the coordination axes of the two ruthenium centers are better mutually aligned, which will facilitate metal-metal interactions due to enhanced orbital overlap. Here, we report the synthesis and characterization of a novel phthalazine-triazole ligand (1,4-bis(1-methyl-1H-1,2,3-triazol-4-yl)phthalazine) and its coordination properties to octahedral ruthenium(II) centers. Due to the optimized coordination geometry and the ensuing electronic coupling of the metal centers, the bimetallic complexes demonstrate a broad potential window for stabilizing the mixed-valent species.

Results and discussion

Ligand synthesis and characterization

The synthesis of the target ligand started from 1,4-diodophthalazine\(^{12}\) as the central six-membered heterocycle. Sonogashira cross-coupling with trimethylsilylecylene according to a previously reported methodology\(^{13}\) and using \(\text{Cs}_2\text{CO}_3\) as a mild base\(^{14}\) afforded 1,4-bis(trimethylsilyl-ethyl)phthalazine (1) in moderate yield. A double [3+2] cycloaddition (“click” reaction)\(^{15}\) between 1 and methyl azide, generated in situ from sodium azide and methyl iodide, subsequently afforded the target ligand 1,4-bis(1-methyl-1H-1,2,3-triazol-4-yl)phthalazine (2). While click reactions typically involve terminal alkynes as reactants,\(^{16}\) we employed here a one-step procedure that involves \(\text{K}_2\text{CO}_3\)-induced deprotection of the alkyne\(^{17}\) and copper-catalyzed cycloaddition in the presence of ascorbate in one pot. Reactions under microwave conditions increase both the reaction rate and the product yield as compared to conventional heating.\(^{18}\) According to this procedure and after extensive washing to remove residual copper salts,\(^{19}\) pure ligand 2 was obtained in good 80% yield from precursor 1 (Scheme 1).

![Scheme 1 Synthesis of ligand precursor 2.](image)

The purity of compounds 1 and 2 was confirmed by NMR spectroscopy, ESI-MS (Fig. S1–S3) and elemental analysis (see the Experimental Section). One- and two-dimensional NMR experiments proved valuable for full structural characterization of the compounds in solution. Both compounds 1 and 2 display \(\text{Cs}_2\) symmetry in solution, which mutually relates the two alkyn substituents of 1 and the two triazole rings of 2 by symmetry. The aryl protons H7 and H8 of the phthalazine unit appear as doublet of doublets (inset Fig. S1a), which is in agreement with the typical AA’BB’ pattern for such systems. The pertinent coupling constants are larger for \(J_{7,8} = 6.3\) Hz than for \(J_{7,8'} = 3.3\) Hz. The assignment of H7 and H8 was unambiguously confirmed by long-range coupling to C6 and C4 (Figure S1c).

The most characteristic NMR feature of ligand 2 pertains to the triazole protons, which appear as one singlet at \(\delta_{\text{H}} = 8.70\) ppm, demonstrating the successful cycloaddition on both sides of the phthalazine unit. Moreover, ligand 2 displays a downfield shift of the doublet of doublets attributed to H7 as a consequence of the aromaticity of the triazole ring (Fig. S3).

Reactivity in methylation reactions

The relative donor ability of the nitrogen sites in compound 2 have been assessed by probing their nucleophilicity towards \(\text{CH}_3\)\(^+\) electrophiles. Even though phthalazines are less basic than triazoles (\(\text{pK}_a = 10.5\) and 9.4, respectively),\(^{20}\) alkylation of 2 occurred predominantly at the phthalazine site and produced selectively the mono- and dicatic cations 3\(^+\) and 4\(^{2+}\), respectively (Scheme 2). Thus, when 2 was reacted with MeI as alkylation agent in MeCN at 80 °C, the monocationic iminium salt 3\(^+\) was produced exclusively due to methylation of one of the phthalazine nitrogen atoms. Results after 3 h were identical to those at longer reaction times and after addition of further portions of MeI. However, when 2 was reacted with MeOTf (OTf\(^{2-}\) = trifluoromethyl sulfonate) as stronger alkylation agent in \(\text{CH}_2\text{Cl}_2\) at 45 °C a double methylation was observed, which involved the phthalazine and one of the triazole units, yielding 4\(^{2+}\). The preference for phthalazine alkylation and formation of 3\(^+\) indicates a higher nucleophilicity of these central nitrogen atoms as compared to the triazole nitrogens. The selectivity of the second methylation towards the triazole unit is a direct consequence of the reduced electron density in the phthalazine ring after the first alkylation. Selective alkylation of the triazole distal to the methylated phthalazine nitrogen is probably induced by steric congestion similar to ortho-substituted biaryl, and inductively due to the presence of the iminium cation.

![Scheme 2 Synthesis of the iminium cations 3\(^+\) and 4\(^{2+}\).](image)

Both alkylated products 3\(^+\) and 4\(^{2+}\) were characterized by NMR spectroscopy (Fig. S4, S5). The asymmetric alkylation of the N atoms in 3\(^+\) and 4\(^{2+}\) induces a loss of symmetry, which results in a more complicated set of NMR resonances than 2. Thus, H7 and H8 (see Fig 2 for atom labelling scheme) do not appear as AA’BB’ spin system and become regular doublets and triplets, respectively. In 4\(^{2+}\), the triazolium proton H14 is deshielded by 0.5 ppm compared the equivalent proton (H2) of the neutral triazole ring. Only a single set of resonances was observed, which points to regioselective alkylation of the

!image
The molecular structure of 3^{+}, as characterized by two planes, one comprised of the coplanar phthalazine moiety and the distal triazole ring (torsion angle N5–C12–C13–C14 = 8.9(5)$^\circ$), and the other plane defined by the proximal triazole heterocycle adjacent to the phthalazinium N–CH$_3$ group. The planes are significantly tilted as demonstrated by the large torsion angle N4–C4–C3–C2 = 75.5(5)$^\circ$. This almost perpendicular orientation is presumably imparted by repulsion between the triazole proton (H2) and the N-bound methyl group (H5). Accordingly, all three heterocycles of the dicaticionic compound 4^{2+} are mutually twisted in the solid state structure (Fig. 2b). The torsion angles between both triazole rings and the central phthalazine scaffold are N4–C4–C3–C2 = 51.1(12)$^\circ$ and N5–C12–C13–C14 = 42.9(8)$^\circ$. Interestingly, no N–CH$_3$...N close contacts were observed in either compound that might point to intramolecular hydrogen bonding. Finally, we note that the torsion angles between the phthalazinium unit and triazole rings are variable (from 43$^\circ$ to 75$^\circ$). This steric flexibility is particularly useful for metal coordination.

Ruthenium(II) complexation

Ligand 2 was used as a N$_2$N$_2$-bridging ligand in order to obtain a dinuclear RuIIRuII complex. Thus, complexation of 2 with [RuCl$_2$(terpy)]$^-$ (terpy = 2,2':6',2''-terpyridine) as starting material in MeOH at reflux temperature in the presence of slightly over-stoichiometric quantities of Et$_3$N and LiCl induced reduction of the metal center to the +2 oxidation state and simultaneously coordination of 2, thus affording complexes [Ru$_2$(μ-Cl)$_2$(terpy)$_2$]$^{2+}$ (5$^{3+}$) and [Ru$_2$(μ-Cl)$_2$(terpy)$_2$]$^{3+}$ (6$^{3+}$; Scheme 3 and Fig. S6). These two products were successfully separated by column chromatography using alumina with a mixture of CH$_2$Cl$_2$ and MeOH (99:1) as eluent, providing the dinuclear complex 5$^{3+}$ as the major product (20% yield based on ruthenium) and the mononuclear complex 6$^{3+}$ as a minor fraction (~5% yield).

![Fig. 2 POV-RAY plot of 3^{+} (a) and 4^{2+} (b) and adopted atom labelling schemes (OTf anions and co-crystallized solvent molecules omitted for clarity).](image_url)

Scheme 3 Synthesis of bimetallic complex 5$^{3+}$ and mononuclear 6$^{3+}$.

In solution, complex 5$^{3+}$ displays C$_{3v}$ symmetry as indicated by the simple resonance pattern observed for the complex (Fig. S7). The terminal pyridyl rings of the two terpy ligands are all symmetry-related and appear as one single set of four resonances. Coordination of the triazole rings to the ruthenium(II) centers was deduced from the 1.2 ppm downfield shift of the H2 singlet in the 1H NMR spectrum (δH 9.94 ppm) as compared to the frequency in the free ligand 2 (δH 8.70 ppm). This chemical shift difference reflects to some extent the depletion of electron density in the triazole ring due to π-hyper conjugation of the heterocycle adjacent to the central phthalazine moiety. The integral ratio between the signals of the terpy ligands and the phthalazine as well as the shift of only one triazole ring (from 43$^\circ$ to 75$^\circ$) imparts a variable torsion of the triazole moiety as reflected to some extent the depletion of electron density in the triazole ring due to π-hyper conjugation of the heterocycle adjacent to the central phthalazine moiety.
as observed with the formation of the monoalkylated compound 3'. This similarity thus validates the alkylation experiments as useful probes for metal coordination to ligand 2.

Electrochemical and structural analysis of the complexes

The redox properties of complexes 5'' and 6'' were investigated by means of cyclic voltammetry (CV) in acetone (Fig. S10). The cyclic voltammogram of 5'' exhibits two reversible waves that were assigned to the consecutive oxidation of the two ruthenium centers according to Eq. 1 and 2 (2 and terpy ligands not shown for clarity):

\[
\text{[Ru}^{	ext{III}}(\mu-\text{Cl})\text{Ru}^{	ext{II}+}\text{]} + 1e^- \rightarrow [\text{Ru}^{	ext{II}}(\mu-\text{Cl})\text{Ru}^{	ext{II}+}\text{]} + 0.83 \text{ V} \quad (1)
\]

\[
[\text{Ru}^{	ext{III}}(\mu-\text{Cl})\text{Ru}^{	ext{II}+}\text{]} + 1e^- \rightarrow [\text{Ru}^{	ext{III}}(\mu-\text{Cl})\text{Ru}^{	ext{II}+}\text{]} + 1.27 \text{ V} \quad (2)
\]

These two E_{1/2} values (vs. SSCE) confirm the existence of electronic communication between both Ru centers, and are similar to the 0.79 V and 1.20 V half-wave potentials reported for the related bpp-bridged bimetallic complex C^2+ (cf. Fig. 1). This very similar electrochemical behavior of these two complexes is presumably a consequence of the specific donor properties of the two bridging ligands. Hence, the lower \(\sigma\)-donating character of the neutral phthalazine unit in 5'' as compared to the monoanionic pyrazolate ring in the bpp-bridged complex is counterbalanced by the higher \(\sigma\)-donor properties of the triazole ligand in 5'' vs. the pyridine rings in the bpp ligand. The two oxidation processes are slightly more separated in 5'' than in C^2+ (\(\Delta E = 0.44 \text{ mV vs. 0.41 mV}\), which translates into a modestly higher hypermembrane constant \(K_C\).

The mononuclear complex 6'' shows a single reversible wave, which was assigned to the following Ru^II-Ru'' redox process:

\[
[\text{Ru}^{	ext{III}}(\text{Cl})\text{Ru}^{	ext{II}+}\text{]} + 1e^- \rightarrow [\text{Ru}^{	ext{II}}(\text{Cl})\text{Ru}^{	ext{II}+}\text{]}] + 0.86 \text{ V} \quad (3)
\]

This \(E_{1/2}\) value is essentially identical to that of structurally related [Ru^II(N_2Cl)] mononuclear complexes, such as [Ru^II(terpy)(bpy)(Cl)]^+ (0.80 V vs. SSCE)^2 or in-

\[
[\text{Ru}^{	ext{III}}(\text{Hbppy})(\text{terpy})(\text{Cl})]^- (0.86 \text{ V vs. SSCE}),\]

thus further supporting the proposed structure for 6''. Moreover, given the fact that the "out" isomer of [Ru^II(Hbppy)(terpy)(Cl)]^- shows a significantly lower \(E_{1/2}\) potential (+0.63 V vs. SSCE),^2' complex 6'' most probably also features an "in" conformation (i.e. the chloride ligand is trans to the triazone ligand and not trans to the phthalazine nitrogen).

Suitable crystals for X-ray diffraction analysis were obtained for 5(PF_6)_3. Figure 3 displays a POV-RAY plot of the cationic complex with the corresponding labelling scheme (see also Table S3 and Fig. S15). Complex 5(PF_6)_3 crystallizes in a small cell containing two complex molecules, two molecules of acetone and six PF_6' anions. Each ruthenium center features a pseudo-octahedral coordination geometry with two positions occupied by ligand 2, three positions by the meridional terpy ligand and the sixth site filled with a bridging chloride ligand. The complex cation has crystallographic C_2v symmetry as deduced from solution analysis, with one symmetry plane containing ligand 2, the two ruthenium atoms, both central terpyridine nitrogen atoms and the bridging chloride. A second plane perpendicularly bisects the other plane and passes through the chloride center and through the middle of the N4-N4', C5-C5' and C7-C7' bonds of the phthalazine scaffold, thus mutually relating the two terpy ligands by symmetry.

![POV-RAY plot of 5+ with adopted atom labeling scheme (PF_6', anions and co-crystallized solvent molecules omitted for clarity).](image)

It is instructive to compare the structure of 5+ with those of related bimetallic ruthenium complexes such as complex C^2+ (cf. Fig. 1c) and with complex D^2+, which comprises six-membered heterocycles at the periphery of the phthalazine core (Fig. 4). Moreover, the terpy ligand in the latter complex is replaced by a chelating carboxylate ligand and two axial unsupported picoline groups.

![Schematic representation of D^2+.](image)

The most relevant structural features around the metal centers (bond distances and angles) of all three complexes are listed in Table 1. Replacement of the five-membered pyrazole unit in C^2+ with a six-membered phthalazine ring in 5+ results in longer Ru–N4 bonds and shorter Ru–Ru’ and Ru–Cl distances. These changes are also reflected in the 5° smaller Ru–Cl–Ru’ angle in 5+. All these differences are in agreement with the expected better accommodation of the two ruthenium(II) centers in 5+ due to the presence of a six-membered central heterocycle when compared with the bpp ligand scaffold. Specifically, this less constrained situation induces an undistorted Ru–N4–N4’–Ru’ dihedral angle (0°), while in C^2+ the ruthenium coordination axis are severely distorted as demonstrated by the large dihedral angle (Ru–N4–N4’–Ru’ = 18.69°).
In this work we have described the synthesis of a novel phthalazine-triazole ligand (2) by a Sonogashira cross-coupling reaction of iodophthalazine with an acetylene derivative, followed by a click reaction with methyl azide. Furthermore, two different methylation products of 2 were obtained (3⁺ and 4⁺), which demonstrate the nucleophilicity of the central phthalazine unit. Metalation provides a dinuclear complex $[\text{Ru}^2(\mu^2\text{Cl})(\text{2}(\text{terpy}))]^+$ (5⁺), as well as the mononuclear compound $[\text{Ru}^2(\text{Cl}(2))]^+$ (6⁺). Electrochemical data on 5⁺ indicate strong electronic communication between the two ruthenium centers, and X-ray diffraction studies demonstrate an excellent accommodation of both metal centers, since the phthalazine-triazole scaffold displays a completely planar conformation. Further work will be directed towards exploiting the catalytic potential of 5⁺ and 6⁺ in various redox processes in order to evaluate whether structural optimization also induces improved activity. Moreover, the optimized ligand structure should also benefit the mutual arrangement of other (hetero-)bimetallic structures, thus providing access to a novel scaffold for cooperative catalysis and self-assemblies such as coordination polymers.

In addition, the triazolium salts obtained from alkylation of the peripheral heterocycle afford potentially chelating abnormal carbene precursors, which have been established as powerful ligands for metal-catalyzed oxidation reactions. The incorporation of such triazolylidene ligands into multimetallic systems may constitute a promising approach for improving catalytic activity.

Table 1

<table>
<thead>
<tr>
<th>Complex</th>
<th>Ru-N1</th>
<th>C-N5</th>
<th>D-N5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru-N1</td>
<td>1.993(4)</td>
<td>2.054(3)</td>
<td>1.925(10)</td>
</tr>
<tr>
<td>Ru-N4</td>
<td>2.089(4)</td>
<td>1.999(3)</td>
<td>1.995(10)</td>
</tr>
<tr>
<td>Ru-N5</td>
<td>2.069(4)</td>
<td>2.079(4)</td>
<td>2.080(11)</td>
</tr>
<tr>
<td>Ru-N6</td>
<td>1.964(4)</td>
<td>1.967(3)</td>
<td>n.a.</td>
</tr>
<tr>
<td>Ru-N7</td>
<td>2.068(5)</td>
<td>2.060(3)</td>
<td>2.085(10)</td>
</tr>
<tr>
<td>Ru-C1</td>
<td>2.396(12)</td>
<td>2.446(7)</td>
<td>2.438(3)</td>
</tr>
<tr>
<td>Ru'-Cl</td>
<td>2.396(12)</td>
<td>2.446(7)</td>
<td>2.432(3)</td>
</tr>
<tr>
<td>Ru-Ru'</td>
<td>3.657</td>
<td>3.876</td>
<td>3.576</td>
</tr>
<tr>
<td>Ru-Cl-Ru'</td>
<td>99.84(6)</td>
<td>104.77(4)</td>
<td>94.51(11)</td>
</tr>
<tr>
<td>N5–Ru–N7</td>
<td>158.77(15)</td>
<td>158.15(14)</td>
<td>171.8(4)</td>
</tr>
<tr>
<td>Ru-N4–N4’–Ru’</td>
<td>0.0</td>
<td>18.7</td>
<td>4.7</td>
</tr>
</tbody>
</table>

* from ref. 6; † from ref. 23; ‡ atom numbering adapted to 5⁺ (Fig. 3).

The presence of 2 and that of 3⁺ increases the N5–Ru–N7 angle from 158.77° to 171.8°, an arrangement that is closer to an ideal trans disposition.

Conclusions

Experimental section

In addition, the triazolium salts obtained from alkylation of the peripheral heterocycle afford potentially chelating abnormal carbene precursors, which have been established as powerful ligands for metal-catalyzed oxidation reactions. The incorporation of such triazolylidene ligands into multimetallic systems may constitute a promising approach for improving catalytic activity.

General

Materials. All reagents used in the present work were obtained from Aldrich Chemical Co. and were used without further purification. Reagent-grade organic solvents were obtained from Scharlab. RuCl₃·3H₂O was supplied by Alfa Aesar and used as received. The starting ligand 1,4-diodophthalazine, [12] RuCl₃[1PPh₃]₂[12] and [RuCl₃(terpy)] were prepared as described in the literature. All synthetic manipulations were routinely performed under nitrogen atmosphere using Schlenk tubes and vacuum-line techniques.

Equipment and analyses. NMR spectroscopy was performed on a Bruker DPX 250 MHz, DPX 360 MHz or a DPX 400 MHz spectrometer or in a Varian 500 MHz or 300 MHz NMR System. Samples were run in CDCl₃, CD₃CN or acetone-D₆ with internal references. Electrospray ionization mass spectrometry (ESI-MS) measurements were carried out on an HP298s gas chromatography (GC-MS) system from the SAQ-UAB. Cyclic voltammetry experiments were performed on an i-l-Cambria HI-660 potentiostat using a three-electrode cell. A glassy carbon electrode (2 mm diameter) was used as working electrode, platinum wire as auxiliary electrode and a SSCE as a reference electrode. Working electrodes were polished with 0.05 micron Alumina paste washed with distilled water and acetone before each measurement. The complex was dissolved in acetone containing the necessary amount of n-BuNPF₆, as supporting electrolyte to yield 0.1 M ionic strength solution. E(U)/E(U) values reported in this work were estimated from CV experiments as the average of the oxidative and reductive peak potentials (E(U) + E(U))/2.

X-ray diffraction studies. Crystal data for 3⁺, 4⁺ and 5⁺ were collected using an Oxford Diffraction SuperNova A diffractometer fitted with an Atlas detector. All samples were measured with Mo–Kα (0.71073 Å). An at least complete dataset was collected, assuming that the Friedel pairs are not equivalent. An analytical absorption correction based on the shape of the crystal was performed for all these crystals. The structures were solved by direct methods using SHELXS-97 and refined by full matrix least-squares on F^2 for all data using SHELXL-97. Their isotropic thermal displacement parameters were fixed to 1.2 times for methyl groups) the equivalent one of the parent atom. Anisotropic thermal displacement parameters were used for all non-hydrogen atoms. CCDC numbers 948959–948961 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Synthetic procedures

1,4-bis(trimethylsilyl)ethynyl)phthalazine (1). A mixture of C₉H₇CO₃ (0.41 g, 1.3 mmol) and 1,4-diodophthalazine (120 mg, 0.314 mmol) were cooled in a Schlenk flask to −15 °C and placed under argon by applying several vacuum/argon cycles. Dry, degassed THF (4 mL) was added via canula, and the mixture was flushed with argon. PuCl₃[1PPh₃]₂ (22.1 mg, 0.031 mmol) and Cu (6 mg, 0.03 mmol) were added. The flask was degassed again, and trimethylsilylacetylene (101 μl, 0.69 mmol) was added. The
mixture was stirred for 30 min at -15 °C and 4 h at room temperature. The reaction mixture was then poured into H₂O:NH₄Cl (30 mL; 2:1) and the product was extracted with EtOAc (20 mL). The organic fraction was washed with H₂O:NH₄Cl until no more blue colour was observed. Finally, it was washed with water (2 × 20 mL) and brine (2 × 100 mL) and dried over anhydrous Na₂SO₄. After evaporation of the solvents, the solid residue was purified by column chromatography (SiO₂; hexane/EtOAc 98:2).

Yield: 22 mg (20%). 1H NMR (500 MHz, CDCl₃): δ = 8.31 (dd, 2H, J₆= 6.3 Hz, J₇= 3.3 Hz, H7), 7.92 (dd, 2H, J₁₄= 3.3 Hz, H₁₄), 7.73 (s, 1H, H1), 7.68 (t, 1H, J₈= 7.8 Hz, H₈), 7.27 (d, 2H, J₇= 6.3 Hz, J₈= 3.3 Hz, H₇), 0.38 (s, 18H, H₃). Chemical shifts were observed, H NMR (500 MHz, CDCl₃): δ = 9.73 (dd, 2H, J₆= 6.3 Hz, J₇= 3.3 Hz, H₇), 8.20 (s, 2H, H₂), 7.93 (dd, 2H, J₇= 6.3 Hz, J₈= 3.3 Hz, H₈), 4.28 (s, 6H, H₆), 131.13 (C₁₁) NMR (500 MHz, CDCl₃): δ = 135.21 (C₈), 129.11 (C₇), 128.59 (C₂), 126.23 (C₆), 37.36 (C₁). Elemental analysis calculated for C₁₃H₁₃N₃O: C, 75.37; H, 5.75; N, 18.41. Found: C, 75.67; H, 4.19; N, 18.36.

1,4-bis(1-methyl-1H,1,2,3-triazol-4-yl)phthalazine (2). MeN₃ was generated in situ by stirring a mixture of Mel (76.7 μl, 1.2 mmol), sodium azide (240 mg, 3.69 mmol) and 7 mL of THF:H₂O:MeCN (1:1) in a microwave flask overnight at room temperature. After that time, 1 (75 mg, 0.233 mmol), CuSO₄·5H₂O (23.22 mg, 0.093 mmol) and K₂CO₃ (63.25 mg, 0.465 mmol) were added and the mixture was irradiated with a microwave reactor (100 W, 5 × 30 min, 100 °C). The reaction mixture was then poured into CH₂Cl₂ (50 mL) and the organic fraction was washed with H₂O:NH₄Cl:MeCN 2:1 (3 × 50 mL, until no blue colour was observed). H NMR (500 MHz, CDCl₃): δ = 10.04, 9.45, 8.74, 8.69, 8.53, 8.35, 8.06, 7.84, 7.75, 7.52, 7.42, 7.23, 6.97, 6.52, 6.13, 5.85, 5.22, 4.63, 4.52, 4.40, 4.28, 4.08, 3.96, 3.87, 3.75, 3.64, 3.49, 3.29, 3.07, 2.99, 2.94. Chemical shifts were observed, H NMR (500 MHz, CDCl₃): δ = 10.04, 9.45, 8.74, 8.69, 8.53, 8.35, 8.16, 8.03, 7.95, 7.86, 7.58, 7.53, 7.35, 4.76, 4.18. Due to the low quantity of product, ¹³C NMR resonances were not sufficiently resolved.

Acknowledgements

We thank Dr. Jordi García-Anton for assistance in generating the X-Ray structure figures and Science Foundation Ireland and MINECO (CTQ2011-26440, CTQ 2010-21497 and CTQ2010-21532-C02-02) for financial support. J.A. gratefully acknowledges a PIF doctoral grant from UAB.

Notes and references

6) Department of Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Catalonia, Spain. Fax: +34 5812477; E-mail: luis.escriche@uab.cat, xavier.sala@uab.cat

10) Supplementary Electronic Information (ESI) available: spectra of all compounds, electrochemical analyses, perspective views of the structures, and crystallographic data. See DOI: 10.1039/b000000x/

A new phthalazine-bis(triazole) ligand has been developed that provides a suitable binding pocket for coordinating two ruthenium(II) centers in a coaxial octahedral RuN5Cl environment, enabling the metals to efficiently communicate with each other.