<table>
<thead>
<tr>
<th>Title</th>
<th>Multiscale Model of Dynamic Neuromodulation Integrating Neuropeptide-Induced Signaling Pathway Activity with Membrane Electrophysiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors(s)</td>
<td>Makadia, Hirenkumar K.; Anderson, Warren D.; Fey, Dirk; et al.</td>
</tr>
<tr>
<td>Publication date</td>
<td>2015-01-06</td>
</tr>
<tr>
<td>Publisher</td>
<td>Elsevier</td>
</tr>
<tr>
<td>Item record/more information</td>
<td>http://hdl.handle.net/10197/6649</td>
</tr>
<tr>
<td>Publisher's statement</td>
<td>This is the author s version of a work that was accepted for publication in Biophysical Journal. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Biophysical Journal (VOL 108, ISSUE 1, (2015)) DOI: 10.1016/j.bpj.2014.11.1851</td>
</tr>
<tr>
<td>Publisher's version (DOI)</td>
<td>10.1016/j.bpj.2014.11.1851</td>
</tr>
</tbody>
</table>
Multiscale model of dynamic neuromodulation integrating neuropeptide induced signaling pathway activity with membrane electrophysiology

Hirenkumar K. Makadia¹, Warren D. Anderson¹,², Dirk Fey³, Thomas Sauter⁴, James S. Schwaber¹, and Rajanikanth Vadigepalli¹,∗

¹Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; ²Graduate program in Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA, ³Systems Biology Ireland, University College Dublin, Dublin, Ireland; ⁴University of Luxembourg, Life Sciences Research Unit, Luxembourg, Luxembourg

Abstract
We developed a novel multiscale model to bridge neuropeptide receptor-activated signaling pathway activity with membrane electrophysiology. Typically, the neuromodulation of biochemical signaling and biophysics have been investigated separately in modeling studies. We studied the effects of Angiotensin II (AngII) on neuronal excitability changes mediated by signaling dynamics and downstream phosphorylation of ion channels. Experiments have shown that AngII binding to the AngII receptor type-1 (AT1R) elicits baseline-dependent regulation of cytosolic Ca²⁺ signaling. Our model simulations revealed a baseline Ca²⁺ dependent response to AT1R activation by AngII. Consistent with experimental observations, AngII evoked a rise in Ca²⁺ when starting at a low baseline Ca²⁺ level, and a decrease in Ca²⁺ when starting at a higher baseline. Our analysis predicted that the kinetics of Ca²⁺ transport into the endoplasmic reticulum play a critical role in shaping the Ca²⁺ response. The Ca²⁺ baseline also influenced the AngII-induced excitability changes such that lower Ca²⁺ levels were associated with a larger firing rate increase. We examined the relative contributions of signaling kinases PKC and CaMKII to AngII-mediated excitability changes by simulating activity blockade individually and in combination. We found that PKC selectively controlled firing rate adaptation whereas CaMKII induced a delayed effect on the firing rate increase. We tested whether signaling kinetics was necessary for the dynamic effects of AngII on excitability by simulating three scenarios of AngII-mediated Kᵩᵩ channel phosphorylation: (1) an increased steady state, (2) a step-change increase, and (3) dynamic modulation. Our results revealed that the kinetics emerging from neuromodulatory activation of the signaling network were required to account for the dynamical changes in excitability. In summary, our integrated multiscale model provides a novel approach for quantitative investigation of neuromodulatory effects on signaling and electrophysiology.

INTRODUCTION
Neuromodulators are integral to the control of intrinsic neuronal excitability, synaptic integration, and neural network function (1–3). Neuromodulators typically interact with specific G protein-coupled receptors (GPCRs) to activate biochemical signaling pathways and alter the metabolism, transcriptional activity, and electrophysiological responsiveness of the postsynaptic cell (4–7). However, the biochemical signaling and electrophysiological responses to neuromodulators have typically been studied separately in computational studies (8). The integration of signaling with electrophysiology in computational...
models of non-neuronal excitable cells has yielded important mechanistic insights to the diverse fields including cardiovascular physiology (9, 10), platelet biology (11), and insulin metabolism (12, 13). Our objective for this study was to integrate computational models of signaling pathway activation with those of electrophysiology to study the mechanistic underpinnings of neuromodulation.

We investigated neuromodulatory mechanisms of intracellular signaling and excitability responses to Angiotensin II (AngII) in brainstem neurons. AngII is a peptide neuromodulator involved in the regulation of autonomic nervous system activity via its actions within central autonomic nuclei (6, 14–18). Neuromodulatory effects of AngII are primarily stimulated by the binding of AngII to the type-1 angiotensin receptor (AT1R) and by eliciting G-protein mediated pathways (19). In brainstem autonomic neurons, AngII influences the inotropic and chronotropic drive of the heart (20, 21). Neurons in autonomic nuclei such as the nucleus of the solitary tract participate in control of cardiovascular regulation at a beat-to-beat time scale and at the level of long term arterial pressure setpoint control (22). Importantly, aberrations of AngII signaling in the brainstem have been implicated in the pathology underlying neurogenic hypertension (23–26). Thus, deciphering the mechanisms of AngII-mediated regulation of neuronal state is central to our understanding of cardiovascular homeostasis and diseases thereof.

Studies of AngII-mediated changes in cytosolic Ca2+ levels have shown contrasting effects of AT1R activation on intracellular Ca2+ levels, in which both stimulatory and suppressive effects have been reported (27–29). In cultured rat stellate ganglion neurons, it has been demonstrated that this divergence in Ca2+ responses was related to the Ca2+ baseline level. Suppressive effects were found in neurons with higher Ca2+ baseline levels and stimulatory effects were observed in neurons with relatively lower Ca2+ baseline levels (27). However, the mechanisms underlying such divergent Ca2+ baseline-dependent responses to AngII have not been elucidated. Similarly, it is unclear how this baseline-dependent regulation impacts neuronal excitability. Concomitant with the fluctuations of intracellular Ca2+ levels, application of AngII to cultured brainstem neurons in vitro results in an AT1R-dependent increase in action potential (AP) firing rate (30–34). Electrophysiological studies have shown that AngII-stimulated PKC and CaMKII activation leads to the phosphorylation of delayed rectifier potassium (K\textsubscript{DR}) channels, which results in decreased channel conductance and increased firing rate (35–39). The relative contributions of PKC and CaMKII to firing rate response dynamics have not been studied. Our study addresses these mechanistic questions regarding the biochemical basis for divergent Ca2+ responses and the molecular contributions to the biophysical consequences of AngII stimulation.

The effects of AngII-mediated neuromodulation result from nonlinear interactions involving numerous elements, thus necessitating a computational approach to unravel the dynamic mechanisms (40, 41). We employed a multiscale modeling approach to quantitatively study AngII-mediated neuromodulation (42–44). We developed an integrated model to bridge GPCR signaling (19) with membrane electrophysiology (45) through a new biochemical model of ion channel phosphorylation. We examined the molecular contributions to the dynamics of neuromodulation through targeted in silico manipulations. Our model incorporated AngII stimulation via Gq receptor activation of the signaling network. Bridging temporal scales from signaling (10 s) to electrophysiology (10-3 s) enabled us to investigate AngII/AT1R mediated effects on (1) intracellular Ca2+ dynamics, (2) PKC and CaMKII activity and their distinct contributions to downstream neuronal firing, and (3) contributions of dynamic ion channel phosphorylation to firing rate modulation. Our results revealed that controlling the rate of Ca2+ transport to ER generated the dichotomy in Ca2+ baseline-dependent responses. Examining relative contributions of PKC and CaMKII to excitability changes showed nonlinear interactions among distinct kinase contributions to the dynamics of AngII-mediated neuromodulation. We investigated the importance of dynamic AngII-mediated K\textsubscript{DR} channel phosphorylation by simulating multiple scenarios of altering K\textsubscript{DR} channel conductance. We found that that the kinetics of channel phosphorylation were necessary for capturing the dynamics of neuronal excitability. Our multiscale modeling study provides a novel approach to quantitatively investigate the AngII neuromodulatory effects on signaling and electrophysiology, and revealed putative mechanisms underlying the regulation of Ca2+ responses, K\textsubscript{DR} conductance, and neuronal excitability. Understanding the dynamical interactions associated with AngII effects on different Ca2+ baseline states and elucidating the differential modulatory effects of kinases on neuronal properties have larger impact in understanding physiology of blood pressure control and pathophysiology of hypertension development (34, 46, 47).

METHODS

An integrated model of neuronal cell signaling and electrophysiology was implemented as a set of ordinary differential equations solved using the ode15s solver in Matlab (Mathworks, USA). The signaling reactions were modeled with either mass-action or Michaelis–Menten kinetics and ion channel electrophysiology was modeled according to the Hodgkin-Huxley formalism. These models were initially validated against their respective data domains independently and were
then integrated to develop a multiscale model of signaling and electrophysiology. The model code in Matlab format and instructions to reproduce the key results are available through accession #156830 in the modelDB resource (48) at http://senselab.med.yale.edu/ModelDB/ShowModel.asp?model=156830

Modeling AngII mediated signaling network dynamics

AngII activated AT1R stimulates phospholipase C (PLC/β) and triggers phosphoinositol (IP) hydrolysis which releases IP3 and DAG, followed by Ca^{2+} mobilization from internal stores and activation of Ca^{2+} dependent enzymes including Protein kinase C (PKC) and Ca^{2+}/Calmodulin dependent protein kinase II (CaMKII) (6). To construct a model of the AngII-mediated signaling network, we started with reaction pathways from an established cellular signaling database (DOQCS, doqcs.ncbi.res.in, accession #31). We employed a model of GPCR-mediated PLC/β activation, IP3 metabolism, Ca^{2+} release by the IP3 receptor (IP3R) in endoplasmic reticulum (ER), and activation of signaling kinases PKC and CaMKII (19) as the basis for our biochemical model. A total of 13 signaling pathways from DOQCS were merged to build the AngII-mediated signaling network (Table S1). Our integrated model comprises of 13 signaling pathways, a biochemical model of ion-channel phosphorylation and an electrophysiological model containing six ion channels. A schematic of the integrated model topology including signaling network is shown in Figure 1A.

We modified the initially collated signaling network in three distinct ways:

1. The DOQCS model of Gq pathway activation was based on metabotropic glutamate receptor (mGluR) signaling. We replaced the mGluR kinetics with those of AngII receptor type 1 (AT1R). The forward rate constant for binding of AngII to AT1R was estimated based on experiments from (49). The corresponding backward reaction kinetics were assumed to be similar to those of mGluR and were obtained from (19). The total AT1R concentration in the model was based on (50). The majority of the parameters were initially taken from the DOQCS resource, as these parameters were tuned based on data from brain tissues (19).

2. We compartmentalized the Ca^{2+} dynamics in the model into three sections: the intracellular (cytosolic), the ER (sequestered), and the peri-membrane space adjacent to calcium channels (extracelluar). Cytosolic Ca^{2+} could be either free or buffered and the IP3 receptor regulated its transport from the ER. Reaction details and parameter values for the Ca^{2+} regulation module are shown in Table S2. Parameters corresponding to non-oscillatory Ca^{2+} response were modified to match the experimental data from neurons (27, 29). Table S2 also shows reactions and/or equations for all of sub-modules of calcium dynamics, except for the Ca_{L} type ion-channel which are reported in Table S3.

3. We augmented the Ca^{2+} regulation module to include the sodium-calcium exchanger (NCX). Electro-diffusion of NCX, characterized by the influx of three Na^{+} ions for the efflux of every Ca^{2+} ion, was modeled based on the Goldman-Hodgkin-Katz (GHK) equation (51). The chemical flux component of the exchanger was modeled with a PKC-dependent regulatory component (52, 53), which also incorporated Michaelis-Menten kinetics for allosteric activation by Ca^{2+} (54) (refer sodium-calcium exchanger module in Table S2 for details).

Modeling the neuronal membrane electrical activity dynamics

Neuronal electrophysiology was modeled using a modified Hodgkin and Huxley formalism (55). We modeled it with an electrical circuit (Figure 1B) containing multiple ionic currents balanced across the membrane (see supporting text section S2 for details). The channel conductance and their current expressions for sodium channel (Na^{+}), delayed rectifier potassium channel (K_{DR}), A-type potassium channel (K_{A}), L-type calcium channel (Ca^{2+}), hyperpolarized calcium dependent potassium channel (K_{AHP}), and a non-specific leak channel are described in Table S3.

The initial parameters of the electrical model were based on the model of cardiorespiratory brainstem neuron (45). The model parameters were modified to match experimental observations of increased firing rates, reduced K_{DR} currents, and increased intracellular Ca^{2+} concentration following AngII application. The following constraints were imposed on the model based on AngII experimental data:

1. The maximal conductances of the different channel types were adopted from (45). This ensured a brainstem neuronal phenotype exhibiting the physiological firing rate at nominal conditions (38).

2. The steady state activation variables of the K_{DR} and K_{A} currents (i.e., m_{K_{DR},\infty} and m_{K_{A},\infty} in Table S3) were chosen to provide a good fit to whole cell patch-clamp data (35, 39).
Modeling ion-channel phosphorylation to bridge signaling pathways and electrical activity

We considered the macroscopic conductance of K_{DR} channel as dependent on phosphorylation by PKC and CaMKII. A new kinetic model was constructed based on mass action kinetics (Figure 1C). Experimental data show that phosphorylation of K_{DR} channels results in a substantial reduction in current (50-90%: (56)). We assumed that phosphorylated K_{DR} channels could be completely inhibited at saturating levels of channel phosphorylation (i.e., g_{K_{DR}}^p = 0). The K_{DR} conductance g_{K_{DR}} was obtained by multiplying basal maximal conductance by the fraction of unphosphorylated channels. The phosphorylation reactions were modeled with first order kinetics as:

\[
\frac{dK_T}{dt} = k_p[K_{U}]^n - k_{dp}[K_p]
\]

\[
K_T = K_{U} + K_p
\]

\[
K_p = K_{PKC} + K_{CaMKII} + K_{PKC, CaMKII}
\]

where \(K_T\) represents the total fraction of potassium channels with \(n\) phosphorylation sites (\(K_{U} = 1\)), \(K_{U}\) represents the fraction of unphosphorylated channels, and \(K_p\) represents the fraction of phosphorylated channels. The levels of phosphorylated channels represent aggregate of channels phosphorylated either by PKC, CaMKII, or both. Kinases were assumed to act independently on distinct phosphorylation sites on these channels. The parameter \(n = 4\) was set for simplification under the assumption that each of the four channel subunits can be phosphorylated. In our integrated model, PKC and CaMKII both phosphorylated K_{DR} (see Table S4 for details).

To simulate phosphorylation-mediated reduction of K_{DR} current, we weighted its peak conductance by the fraction of un-phosphorylated channels in Table S3 (\(K_{U} = 1\) before AngII stimulation):

\[
dI_{K_{DR}}(V) = K_{U} \cdot g_{K_{DR}}^p \cdot n_{K_{DR}}^2 (V - E_K)
\]

To occlude the phosphorylation reactions of a kinase \textit{in silico}, we set \(k_{p, CAMKII}\) and/or \(k_{p, PKC}\) in Table S4 to zero.

RESULTS

Bridging the signaling network with the electrophysiology model

Bi-directional interactions between the signaling and electrophysiological domains arise due to (1) kinases PKC and CaMKII phosphorylating the K_{DR} channel, (2) the dependence of NCX on membrane potential, (3) the contribution of voltage-dependent Ca^{2+} channels to Ca^{2+} regulation, and (4) the effects of Ca^{2+} level on Ca^{2+} dependent potassium channel conductance (K_{AHP}). The signaling network model was modified to incorporate the membrane potential as a dynamic state variable in the NCX description. The maximal conductance of K_{DR} was dependent on the state variables corresponding to active PKC and CaMKII as detailed above. The remaining key interactions involved Ca^{2+} dynamics due to release from cytosolic stores in the signaling model and flux through ion channel currents in the electrical model.

Simulations indicated that the Ca^{2+} levels affecting K_{AHP} had to be considered separately from the levels of free cytosolic Ca^{2+}. Otherwise, large increase in cytosolic Ca^{2+} levels following AngII stimulation activated the K_{AHP} current to saturation and prevented any neuronal firing activity. The hypothesis that there exists a peri-membrane Ca^{2+} compartment distinct from bulk cytosolic Ca^{2+} is supported by experimental data (57) and is typically considered as such in neuronal modeling studies (58). To address this issue, Ca^{2+} dynamics were compartmentalized in the model such that the K_{AHP} and C_{aL} channels were assumed to be closely situated with local Ca^{2+} buffering and were uninfluenced by bulk cytosolic Ca^{2+}.

Integrated AngII signaling and electrophysiology model accounts for the dynamics of K_{DR} channel phosphorylation

Our integrated model quantitatively simulated AngII/AT1R-mediated neuromodulation by recapitulating experimental findings from brainstem neurons. To fit the electrophysiological data with that of signaling network interactions, we varied the ratio of (K_{DR}) phosphorylation to dephosphorylation rate constants (\(k_p/k_{dp}\)) for PKC and CaMKII (Figure 1D). The model was calibrated to account for the 30% reduction in K_{DR} current observed following application of 100 nM AngII (37). Evidence suggests that this current reduction is attributable to K_{DR} channel phosphorylation (37). We then tuned the \(k_p\) and \(k_{dp}\) parameters for PKC and CaMKII that rendered the 30% reduction in the fraction of un-phosphorylated K_{DR} channels. This calibration recapitulated the kinetics of K_{DR} current reduction following the application of 100 nM AngII (Figure 1E), as well as the shift in the K_{DR} current-voltage relation observed in voltage-clamp data (Figure 1F) (37). Our results showed that
Figure 1: Integrated model of the intracellular signaling and electrophysiology. (A) An overview of the integrated model topology, showing AngII activation eliciting multiple signaling pathways and subsequently modulating membrane electrophysiology. (B) Circuit diagram of the electrophysiology model. (C) Schematic depicting the phosphorylation reactions underlying the AngII-mediated reduction of KDR conductance. (D) Plot showing the fractional reduction of un-phosphorylated KDR channels as a function of phosphorylation / de-phosphorylation reaction rate ratios \(k_p/k_{dp} \) for both PKC and CaMKII. Data correspond to simulations in which \(K_{ss} \) indicates the fraction of un-phosphorylated KDR channels following 100 nM AngII at steady state and \(K_{ii} \) refers to the fraction of unphosphorylated KDR channels before the application of AngII. The relative phosphorylation and dephosphorylation rates were set to yield approximately 30% reduction in un-phosphorylated channels to fit the experimental data in panel E (See Table S4 for reaction details). (E) Model fit to dynamic KDR current data following the application of 100 nM AngII to cultured brainstem neurons (37). (F) I-V relations for KDR from experiments (37) and simulations under baseline conditions and following 100 nM AngII application to cultured brainstem neurons.

The combined effects of PKC and CaMKII were required to attain the experimental results. The fitted CaMKII rate constants were equal for phosphorylation and dephosphorylation and the PKC dephosphorylation rate constant was twice that of the PKC phosphorylation rate constant. Our integrated model with known signaling network interactions, when appropriately tuned with channel phosphorylation kinetics, accounted for the experimentally observed dynamics of excitability changes in response to AngII stimulation.

Ca\(^{2+}\) baseline-dependent bifurcation of signaling responses to AngII

AngII application resulted in a dose-dependent AT1R-signaling pathway response, including regulation of PKC and CaMKII by Ca\(^{2+}\). Cytosolic Ca\(^{2+}\) levels in neurons are maintained by chemical and electrochemical fluxes due to L-type Ca\(^{2+}\) channels (Ca\(_L\)), the sodium-calcium exchanger (NCX), and plasma membrane Ca\(^{2+}\) pumps (EPump) (See Figure 2A). Excess intracellular Ca\(^{2+}\) is stored in the ER until the buffer reaches its saturating limit, and is released following IP3R binding. Experimental observations have shown that AngII elicits divergent neuronal responses depending on Ca\(^{2+}\) baseline levels (see insets in Figure 2D and F) (27). To determine why such divergent responses occur, we individually varied all of the parameters in the Ca\(^{2+}\) regulation module to search for variations that could reproduce this nonlinear behavior. We found that reducing the rate of Ca\(^{2+}\) transport into the ER \((k_{ER}^{Ca^{2+}}) \) increased the cytosolic Ca\(^{2+}\) baseline levels at steady state without AngII (Figure 2B), thus...
A Cytosolic Ca\(^{2+}\) Sequestered Ca\(^{2+}\)

IP3R

CaBuffer → Sequestered Ca\(^{2+}\) → CaTransp → Extracellular Ca\(^{2+}\)

Ca\(^{2+}\) transport to ER

B

Time (s) → [Ca\(^{2+}\)]\(_{cyt}\) (nM)

Low Baseline [Ca\(^{2+}\)]\(_{cyt}\) response

AngII (nM)

10 pM AngII

Time (s) → [Ca\(^{2+}\)]\(_{cyt}\) (nM)

High Baseline [Ca\(^{2+}\)]\(_{cyt}\) response

AngII

Time (s) → [Ca\(^{2+}\)]\(_{cyt}\) (nM)
Figure 2 (previous page): Nonlinear baseline Ca2+-dependent response to AngII stimulus, in which low cytosolic Ca2+ baseline levels resulted in an increase in cytosolic Ca2+ and high cytosolic Ca2+ levels resulted in a decrease in cytosolic Ca2+ levels. (A) Schematic of Ca2+ regulatory dynamics. (B) Dynamic traces of cytosolic Ca2+ as a function of change in the rate constant of Ca2+ transport into the ER \((k_{ER}^{Ca})\). Solid black lines indicate the time period where 100 nM AngII was applied whereas solid gray lines indicate steady state levels preceding AngII application. Decreasing the \(k_{ER}^{Ca}\) from 3600 to 36 \(\mu\text{M}^{-2}\text{s}^{-1}\) increases the Ca2+ baseline levels from approximately 72 to 136 nM (dotted line). (C) Dynamic traces of unbound calcium buffer levels as a function of change in \(k_{ER}^{Ca}\). For plot details, see (B). Decrease in \(k_{ER}^{Ca}\) drains out all stored Ca2+ in the buffer prior to AngII application (Total capacity of the saturated buffer = 9901 nM). (D) AngII dose-dependence of cytosolic Ca2+ response for low cytosolic Ca2+ baseline condition. Inset, top right panel shows the intracellular calcium tracings taken from cells (see (D) for details) with a higher baseline (greater than 200 nM). (G) High Ca2+ baseline condition upstream responses of PLC\(\beta\) and active IP3R, and downstream kinase responses of PKC and CaMKII.

Instantiating the high baseline Ca2+ condition. Reduction in this rate constant (from 3600 to 36 \(\mu\text{M}^{-2}\text{s}^{-1}\)) initiates an efflux of all stored Ca2+ from the ER to the cytosol. This efflux resulted in an empty ER buffer in the high Ca2+ baseline condition (Figure 2C). This is because the decreased influx rate of Ca2+ into the ER induced an imbalance in Ca2+ flux between ER and cytosol. Since the outward rate (3125 \(\mu\text{M}^{-1}\text{s}^{-1}\)) remained the same, the increase in rate difference (outward vs. inward) introduced a driving force that favored Ca2+ extrusion from ER. At steady state the ER Ca2+ buffer transferred all of its sequestered Ca2+ into the cytosolic region, resulting in an increase in the intracellular Ca2+ baseline level. Additionally, most of the Ca2+ that entered cytosol was quickly moved to the extracellular region in order to maintain intracellular equilibrium. Thus, due to a change in the amount of Ca2+ available in ER store for different Ca2+ baseline conditions, application of AngII led to a divergence in cytosolic Ca2+ and buffer responses to AngII.

AngII was applied to a neuronal state that was characterized by a higher rate of Ca2+ transport into ER, or the corresponding low cytosolic Ca2+ baseline condition. Our simulations resulted in an increase in cytosolic Ca2+ level followed by a response adaptation. The Ca2+ level returned to the initial baseline state after withdrawal of AngII (Figure 2D). The peak Ca2+ response increased nonlinearily as a function of AngII dose (Figure 2D). The time point of the initial Ca2+ peak after stimulation was observed within approximately 45 s in stellate ganglion cells (27). Our simulation results showed an initial peak within 50-120 s and thus provided a good match to these data in terms of the observed time response. The absolute peak values were comparable in both experimental data sets and were matched well by the model. For AngII concentrations up to 1 nM the Ca2+ response was negligible, though the response increases sigmoidally for AngII concentrations up to 1 nM (Figure S2A). The dynamics of PLC\(\beta\), IP3, PKC, and CaMKII exhibited saturating responses with distinct amplitudes and kinetics (Figure 2E). PLC\(\beta\) and bound IP3R showed peak responses followed by either sustained or transient adaptations, respectively. PKC showed a peak response followed by adaptation, whereas CaMKII, which is activated solely by Ca2+, showed a relatively delayed increase without adaptation. The CaMKII responses showed initial kinetics and a dose-response relation similar to that of Ca2+, while other species showed a markedly reduced kinetics and cooperativity (Figure 3). These results are in agreement with experimental results from (59). Simulations with a higher Ca2+ baseline indicated that Ca2+ decreased significantly after AngII stimulation, but returned to the initial steady state levels after withdrawal of AngII (Figure 2F). For high baseline condition, PLC\(\beta\), IP3, and PKC showed increases in their levels following AngII stimulation but showed saturated response at high AngII doses (Figure 2G). The CaMKII response, however, displayed a decrease in levels as it was activated solely by intracellular Ca2+.

We examined the dose-dependency of AngII-mediated peak Ca2+ response for the high and low Ca2+ baseline conditions. Hill equation fits for the high Ca2+ baseline condition yielded a lower \(K_{0.5}\) compared to that of the low Ca2+ baseline (Figure 3A). This suggests that there is differential sensitivity to AngII for the high versus low Ca2+ baseline. We fitted Hill equations to both peak and steady state (t = 300 s) AngII dose-response relations for PLC\(\beta\), IP3, PKC, and CaMKII (Figure 3B and Table S5). The results showed similar dose response profiles for PLC\(\beta\), IP3, and PKC in the high and low Ca2+ baseline conditions. This similarity trend was obtained for both the peak and steady state responses of PLC\(\beta\), IP3, and PKC (Table S5). In contrast, the deactivation of CaMKII following AngII application to the high Ca2+ baseline condition had a lower \(K_{0.5}\) compared to the low Ca2+ baseline condition. This suggests that the deactivation of CaMKII in the high Ca2+ baseline condition is more sensitive to AngII concentration when compared to the activation of CaMKII in the low Ca2+ baseline condition. Although active PKC levels were elevated in the high Ca2+ baseline condition, the responsiveness of PKC to AngII stimulation was similar in both Ca2+ baseline conditions. However, while the changes in CaMKII levels were relatively small in the high Ca2+ baseline condition, the AngII dose-dependence of CaMKII deactivation relation was left-shifted compared to the low Ca2+ baseline condition.

Further, we found that the baseline firing rate were elevated in the high Ca2+ baseline...
state (Figure S2). This increase in baseline firing rate was due to increase in baseline CaMKII levels, and application of AngII induced a slow and small change in excitability resulting in a comparable electrophysiological state as that of the low Ca^{2+} baseline state (see details in supporting text section Section S3).

Figure 3: AngII dose-dependence of divergent Ca^{2+} responses. (A) Baseline-subtracted peak deflections were normalized and plotted for high and low Ca^{2+} baseline phenotypes. Dose-response data were fitted with the Hill equation:
\[
\frac{[\text{AngII}]}{K_{0.5}} + K_{0.5}^{nH}.
\]
Fit results indicate that the high Ca^{2+} baseline phenotype is more sensitive to AngII as compared to that of the low Ca^{2+} baseline phenotype (K_{0.5} = 2.0 nM and K_{0.5} = 9.3 nM, respectively). However, the cooperativity coefficients were nearly identical (n_{H} = 1.85, 1.82). (B) steady state responses (t = 300 s) of PLC, IP3, PKC, and CaMKII were baseline-subtracted, normalized, and fitted as described above. Dose-response relations for PLC, IP3, and PKC were nearly identical for the high- and low- Ca^{2+} baseline phenotypes (see Table S4 for all fit parameters). Because CaMKII is activated by cytosolic Ca^{2+}, active CaMKII levels decrease along with Ca^{2+} in the high baseline condition. The AngII-dependence of the CaMKII response is pronounced in the high baseline phenotype relative to the low Ca^{2+} baseline condition (K_{0.5} = 2.4 nM and K_{0.5} = 12.6 nM, respectively), while the cooperativity coefficients were similar (n_{H} = 1.52, 1.59). Dose response relations for peak responses yielded similar trends (Table S4).

Distinct dynamic contributions of CaMKII and PKC to AngII–mediated changes in neuronal excitability

To examine the relative contributions of PKC- and CaMKII-mediated phosphorylation of K_{DR} channels to AngII-mediated firing rate responses, we simulated ‘in silico’ blockade of each phosphorylation mechanism by removing the corresponding reactions from the model individually and in combination (Figure 4A). Such scenarios are biologically plausible if the phosphorylation sites are unavailable due to genetic polymorphisms with potential therapeutic implications (60). The wildtype simulation (Figure 4B, condition 1) showed an excitability increase following AngII stimulation that exhibited adaptation in the continuous presence of AngII. Occluding PKC-dependent channel modulation (Figure 4B, condition 2) significantly altered the response to result in a faster, but delayed, increase in firing rate without adaptation. Blocking CaMKII-dependent phosphorylation (Figure 4B, condition 3) had an effect on overall gain but not on the pattern of neuronal adaptation. Blocking modulation by both kinases (Figure 4B, condition 4) abrogated the AngII-mediated increase in neuronal excitability. These
Figure 4: Distinct dynamic contributions of PKC and CaMKII to AngII-mediated excitability changes. (A) The neuronal response to AngII was simulated in four conditions: (1) the wildtype reference simulation, (2) occluding PKC phosphorylation of KDR, (3) occluding CaMKII phosphorylation of KDR, and (4) occluding both CaMKII and PKC-mediated phosphorylation of KDR. (B) Firing rate responses to 100 nM AngII (starting at $t=0$ s) are shown for all four conditions. (C) Membrane potential time-series at $t=0$, 90, 250 s showing increases in excitability following AngII application to the wildtype model (1). (D-E) Responses at a range of AngII input levels are shown for the wildtype and single kinase phosphorylation occlusion conditions (1-3). (F) Baseline-subtracted firing rate responses at steady state ($t=300$ s) are plotted as a function of AngII concentration for conditions 1-3. Each relation was fitted with a Hill equation: $[\text{AngII}]^n / ([\text{AngII}]^n + K_{\text{nH}}^n)$. (G) Phase-space representations of APs at the times of peak responses to AngII for conditions 1-3 (same legend as in panels B,F). (H) Inter-spike interval biophysical properties of conditions 1-3 at times of peak responses to AngII. Abbreviations: V_m = membrane potential, Na^+ = Na$^+$ current, K_{DR} = K$_{\text{DR}}$ current, K_{AHP} = K$_{\text{AHP}}$ current.
results indicate that NCX alone does not influence the neuronal firing rate under the conditions of our simulations, whereas CaMKII and PKC have distinctive effects on the dynamics of neuronal firing rate responses to AngII stimulation. Both conditions of kinase phosphorylation occlusion resulted in similar steady state firing rates that were approximately 75% of the wildtype response, indicating a nonlinear interaction among kinases.

We next investigated the dose-response effects of AngII on excitability (Figure 4D–F). We applied a range of AngII doses and fitted Hill equations to the rate versus dose relations at peak and at steady state (Table S6). The results for steady state fits showed that the wildtype phenotype (1) had a reduced sensitivity to AngII when compared to the individual in silico blockade conditions (1,2), both of which showed similar sensitivities to AngII (Figure 4F). These results suggest that pronounced reductions in the activity of either kinase individually will reduce the excitability response amplitude but increase the sensitivity to AngII. Results for fits to peak firing rates showed similar trends (see Table S6 and Figure S4). While firing rates were different at the times of peak responses in conditions 1-3, AP waveforms were similar indicating the absence of KDR phosphorylation effects on AP threshold or repolarization (Figure 4G). To interrogate the electrophysiological basis for the observed effects, we examined the ionic contributions to the AngII firing rate responses in conditions 1-3 at times of peak AngII responses in each respective condition. The results showed that occluding phosphorylation of KDR led to subtle changes in Na+, K_AHP, and KDR currents during inter-spike intervals (Figure 4H). This suggests that differences in KDR phosphorylation, as determined by the relative contributions of PKC and CaMKII, alter the contributions of other ionic conductances and thereby modify the overall electrophysiological response to AngII stimulus.

Kinetic channel modulation is required to account for the dynamics of AngII-mediated excitability changes

We hypothesized that the kinetics of AngII signaling pathway activation are required to shape the dynamic response profile. To test this hypothesis, we evaluated the electrophysiological response under three distinct KDR phosphorylation conditions: (1) higher steady state phosphorylation, (2) step change to instantaneously increased phosphorylation, and (3) signaling kinase mediated dynamic changes in phosphorylation (Figure 5A). The results showed that a steady state reduction of KDR conductance produced a constant firing rate (Figure 5B). A step reduction in KDR conductance produced a transient excitability increase followed by a constant firing rate. The dynamic profile of the firing rate change due to kinetic signaling activity was strikingly different from those elicited by steady state and well as step changes in KDR phosphorylation (Figure 5B). Hence, we conclude that the signaling kinase-mediated phosphorylation of KDR is required to reproduce the dynamics of the experimentally observed neuronal response to AngII stimulation (Figure 1E).

Figure 5: Dynamic KDR channel modulation emerging from signaling activities is necessary to account for the dynamics of AngII induced neuronal excitability. (A) Simulated fractions of un-phosphorylated KDR channels for three scenarios describing AngII-mediated KDR channel phosphorylation: (1) a steady state increase, (2) a step-change increase, and (3) dynamic modulation. (B) AngII induced firing rate responses (100 nM starting at \(t = 0 \) s) for the three simulated scenarios. The inset highlights the distinct effects of dynamic phosphorylation corresponding to scenario (3) as compared to those of non-dynamic phosphorylation (scenarios 1 and 2).
DISCUSSION

Neuromodulation is a subject under intense investigation in experimental and computational neuroscience given its role in a plethora of physiological, behavioral, and cognitive functions of the central/peripheral nervous systems in health and disease (1–3, 61–63). The present work integrates a large scale biochemical signaling network with a detailed Hodgkin-Huxley-like model of membrane electrophysiology to study dynamic neuromodulation. While biochemically detailed models have been developed that incorporate neuromodulator induced signaling influences on specific ion channels, these models do not contain a cadre of ion channels sufficient for suprathreshold membrane potential dynamics and action potential firing (64–66). Models have been developed that integrate temporal and spatial scales of calcium dynamics and multiple channels in dendrites to investigate mechanisms underlying synaptic plasticity (42–44, 67–69). Some models of cardiac physiology incorporated GPCR-mediated modulation of signaling cascades (9, 10), while others either do not include GPCRs or simulate their effects as steady state parameter changes (70–72). In addition, the majority of the published neuromodulation models have simulated the modulatory influences on electrophysiology with steady state parameter variations, whereas only some models have included kinetics based on coarse-grained abstractions of the underlying cell signaling pathways (8). A quantitative study of neuromodulation, therefore, must integrate GPCR-neuropeptide interactions, biochemical signaling pathways, calcium dynamics, and membrane electrophysiology to thoroughly interrogate the underlying dynamical interactions (40, 41). Because signaling events evolve over seconds and electrophysiological dynamics span milliseconds, integrative modeling of neuromodulation necessitates the bridging of time scales. It also entails signaling events that span multiple spatial components, from organelle to cell. Thus, we developed a multiscale modeling approach to study neuromodulation in the context of AngII-mediated influences on brainstem neurons.

Our model captured two distinct experimentally observed divergent AngII-mediated response patterns. AngII elicits a cytosolic Ca2+ increase at low baseline Ca2+ levels and a Ca2+ decrease at high baseline Ca2+ levels (27). Effects of intracellular Ca2+ diffusion particularly during its transport to and from ER have been noted in oscillatory Ca2+ releases (73). However, Ca2+ diffusion within the cell cytoplasm is much slower compared to transport due to secondary messenger such as IP3 (74). Since our model contains non-oscillatory Ca2+ mobilization, we considered that the flux due to Ca2+ diffusion has minimal impact in comparison to the fluxes of channels/pumps, and ignored the former component in the present model. Further analysis of the simulation results revealed that the decrease in cytosolic Ca2+ can be explained by reducing the rate constant of Ca2+ flux into the ER. These results suggest that the signaling system is re-calibrated in conditions of high Ca2+ such that the ER Ca2+ stores are completely eliminated. This finding indicated that the augmentation of Ca2+ baseline levels elevated baseline neuronal firing frequency but diminished the changes in AngII-induced excitability. These observations are consistent with data showing that repeated applications of AngII lead to tachyphylaxis (75, 76). The Ca2+ baseline-dependence of AngII-mediated responses is also consistent with the observation that AngII elicits divergent effects on blood pressure in vivo via actions within the rostral brainstem (77). Such alterations of Ca2+ responses may have important implications for AngII-mediated effects on gene expression and gene regulatory influences on autonomic control of cardiovascular physiology (78, 79).

Pharmacological studies have implicated a definitive role of PKC and CaMKII in the modulation of various ion channels. In particular, the delayed rectifier potassium (KDR) current decreases upon AT1R activation by AngII in brainstem neurons (35–39). The inhibition of KDR current is believed to occur following direct phosphorylation of Kv2.2 subunits (35, 36). While it is still unclear whether direct phosphorylation of Kv2.2 occurs, Kv2.1 channels have been shown to be directly phosphorylated (80). Inhibition of KA has also been shown to occur following direct phosphorylation of the Kv1.4-a subunit at putative PKC and CaMKII sites (81). However, we found that inhibition of KA current did not alter firing rate significantly relative to changes in KDR conductance in our model. Hence, we did not simulate kinase mediated phosphorylation reactions with KA channels. Our assessments of the relative contributions of PKC and CaMKII to AngII-mediated modulation of firing rate showed that these kinases reduced the neuronal sensitivity to AngII. The steady state excitability response to saturating AngII doses is largely intact in the complete absence of either of the kinases, suggesting a high degree of redundancy in the dual kinase system within our model. The kinetic contributions of each kinase is also distinct such that PKC determines the initial response kinetics and firing rate adaptation, whereas CaMKII contributes exclusively to firing rate gain while reducing the extent of adaptation. Overall, our simulations suggest that PKC and CaMKII fine tunes the degree, timing, and adaptation of excitability responses to AngII. Our simulation results could be experimentally tested via targeted perturbations of these kinases in brainstem cardiac control regions which could ameliorate the aberrant effects of AngII on sympathetic overdrive observed in conditions such as hypertension and heart failure (21).

Molecular neuronal pathways elicited by AngII binding to AT1R in brainstem neurons are involved in the regulation of blood pressure and development of hypertension (14, 82–84). These activated pathways include both that trigger short term increase
in neuronal firing rate, and those that affect gene expressions and protein levels for longer term effects leading to sustained changes in neuronal activities (6, 33, 85, 86). Our model-based results show that alteration in Gq-mediated signaling have short term implications on electrophysiological behavior by linking it through activation of PKC and CaMKII, in consistency with experimental findings (6, 33). Our results predict that each of the two signaling kinases provide distinct regulatory influence on neuronal excitability, suggesting a differential pathway-specific sensitivity of the neuronal circuit controlling blood pressure. Experimentally observed aberrations in the kinase activities in pathophysiological conditions can be interpreted through our model based approach to understand the effects of AngII on the balance between excitatory and inhibitory effects on sympathetic neurons (34, 46, 47). Opportunities exist for an unbiased approach to identify key sensitivities in the integrated multi-scale network, for example, utilizing global sensitivity analysis and decision trees (78). AngII effects on overall cardiovascular physiology are difficult to predict due to the involvement of AngII signaling in multiple cell types in the control circuit, leading to speculate a “push–pull” hypothesis of AngII action (77). Our integrated model can be extended across multiple cell types to explore the network balances in computationally testing the “push–pull” hypothesis towards explaining the nonlinear effects of AngII on sympathoexcitation as well as sympathoinhibition (20, 21, 87).

A key characteristic of our model is the inclusion of a highly detailed signaling cascade, validated with experimental data from neurons (19). Building on models that consider instantaneous parameter perturbations to simulate the effects of neuromodulators on downstream targets, we examined the effects of signaling kinetics on firing rate dynamics. Simulations support the hypothesis that dynamic neuromodulation is critical for AngII-mediated excitability dynamics, which cannot be captured by simulating neuromodulation as steady state or step reductions of the KDR conductance. Overall, our modeling work suggests that the dynamic interplay between neuromodulatory influences, ionic conductances, and membrane potential determine neuromodulator response in a nonlinear fashion.

Our modeling approach can be expanded to address several physiological questions. Simulations of subthreshold membrane dynamics and synaptic integration can be performed to study the neuromodulation of excitatory and inhibitory input processing. Neuromodulator effects on neural circuits can be studied using our model as a basis for simulating individual cells. The combination of signaling pathway activity with electrophysiology can be integrated into morphologically detailed neuronal models which incorporate experimentally determined spatial variations in channel distributions (88, 89). Our model can also be integrated with AngII signaling-induced transcriptional regulatory networks to bridge neuromodulation of signaling and electrophysiology with gene expression (78). In the context of autonomic regulation of cardiovascular control, our model could be expanded to study the mechanisms and consequences of aberrant AngII signaling in brainstem neurons from hypertensive rats, based on extensive data on signaling activity and electrophysiological responses to AngII in spontaneously hypertensive rats (47, 90–92). Hence, our multiscale model of integrated signaling and electrophysiology offers broader utility as a platform for studies of neuromodulatory mechanisms underlying physiological function.

ACKNOWLEDGMENTS
This study was supported by NIGMS R01 GM083108 and NHLBI R01 HL111621.

References

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting BJ Online at http://www.biophysj.org.
Supporting Material
Multiscale model of dynamic neuromodulation integrating
neuropeptide induced signaling pathway activity with membrane
electrophysiology

Hirenkumar K. Makadia1,†, Warren D. Anderson1,2,†, Dirk Fey3,†, Thomas Sauter4,
James S. Schwaber1, and Rajanikanth Vadigepalli1,*

1Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology,
Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia,
PA, USA
2Graduate program in Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
3Systems Biology Ireland, University College Dublin, Dublin, Ireland
4University of Luxembourg, Life Sciences Research Unit, Luxembourg, Luxembourg

†These authors contributed equally to this work.
*Correspondence: Rajanikanth.Vadigepalli@jefferson.edu.
S1 Material balance of cytosolic calcium

Intracellular Ca\(^{2+}\) levels in the model were modulated by calcium currents \((I_{CaL} \text{ and } I_{NaCa})\), in addition to a capacitive Ca\(^{2+}\) entry to the ER, a membrane calcium pump, and Ca\(^{2+}\) buffering processes in the ER (Figure 2A). Excess Ca\(^{2+}\) in intracellular levels is transported to ER and stored in Ca\(^{2+}\) buffer, which is released by IP3R activation. The mass balance of intracellular (cytosolic) Ca\(^{2+}\) is given by:

\[
\frac{d[Ca^{2+}]_{cyt}}{dt} = - \left(I_{CaL} \left(k_{ER}^{Ca^{2+}} \cdot [CaBuffer]_p \right) - I_{NaCa} \right) \cdot \frac{1}{v_{cell} \cdot F} + r_{pump} + N \cdot [CaBuffer]_i \cdot \left(k_{ER}^{Ca^{2+}} \cdot [CaBuffer]_p \right) \cdot (1 - [CaBuffer]_p) - k_{ER}^{Ca^{2+}} \cdot [CaBuffer]_p
\]

where \(I_{NaCa}\) is the NCX current, \(I_{CaL}\) is the L-type calcium channel current, \(z\) \((z=2)\) is valency of Ca\(^{2+}\) ion, \(F\) is the Faraday’s constant, \(v_{cell}\) is the soma volume, \(r_{pump}\) is the rate of Ca\(^{2+}\) transfer through extracellular pump, \(N\) \((=40)\) is the number of binding sites on CaBuffer, \([CaBuffer]_p\) is the total concentration of Ca\(^{2+}\) buffer in ER, \([CaBuffer]_i\) is the concentration of bounded Ca\(^{2+}\) buffer in ER, \(k_{ER}^{Ca^{2+}}\) is the inward rate of Ca\(^{2+}\) flux to the ER, and \(k_{CaER}^{Ca^{2+}}\) is the outward rate of Ca\(^{2+}\) flux from the ER.

S2 Electrophysiology model details

We modeled neurophysiology with an electrical circuit (Figure 1B) containing multiple ionic currents balanced across the membrane as shown in eqs. (2) to (5)

\[
C \frac{dV}{dt} = - \sum g_i(V) \cdot (V - E_i)
\]

\[
g_i(V) = g_{max,i} \cdot M_i(V) \cdot H_i(V)
\]

\[
r_{m,i} \frac{dm_{i}}{dt} = m_{\infty,i} - m_i ; \quad \tau_{m,i} = h_{\infty,i} - h_i ; \quad h_{\infty,i} = 1 + \exp \left(\frac{V - V_{1/2,m,i}}{k_{m,i}} \right) \bigg.^{-1}
\]

\[
m_{\infty,i} = \left(1 + \exp \left(\frac{V - V_{1/2,m,i}}{k_{m,i}} \right) \right)^{-1}
\]

where \(C\) is the membrane capacitance; \(V\) is the voltage across the membrane; and for each ion channel \(i\), \(g_i\) is the conductance; \(E_i\) is the reversal potential; \(g_{max,i}\) is the maximal conductance, \(m_i\) is the activation variable, \(h_i\) is the inactivation variable, and \(M_i\) and \(H_i\) are suitable parameters that are dependent on the kinetics of the channel activation/inactivation.

The time-varying membrane potential-dependent functions \(m_i(V), h_i(V)\) in eq. (4) are typically described using nonlinear functions (e.g., \(m_{\infty,i} = f(V)\)) depending on the parameterized form of Boltzmann functions characterized by half-activation voltage, \(V_{1/2}\) and activation curve slope factor, \(k\).

For channels characterized by the Hodgkin-Huxley formalism, the gating variable \((p_i, \text{ analogous to } m_i \text{ and } h_i)\) is based on the probability of an individual gate being in a permissive state. Thus \((1 - p_i)\) is the probability of a non-permissive state. The transition between these states is described by first order kinetics:

\[
\frac{dp_i}{dt} = \alpha_i(V)(1 - p_i) - \beta_i(V)p_i
\]

in which \(\alpha_i\) and \(\beta_i\) are voltage-dependent rate constants describing the “non-permissive to permissive” and “permissive to non-permissive” transition rates, respectively. The time course for approaching the equilibrium value of the gating variable \((p_{\infty,i})\) can be described by a \(1/e\) term. The resulting expressions used for solving eq. (6) are:

\[
p_{\infty,i} = \frac{\alpha_i(V)}{\alpha_i(V) + \beta_i(V)} \quad \tau_{p,i} = \frac{1}{\alpha_i(V) + \beta_i(V)}
\]

\[
\tau_{p,i} = \frac{1}{\alpha_i(V) + \beta_i(V)}
\]
In our modified model, K_{DR} activation was represented by a fourth order Boltzmann function ($x = 4$ in eq. (5)) based on experimental data from rat brain thalamic relay neurons [1]. The half activation voltage was set to 2.3 mV based on voltage-clamp data from brainstem neurons [2]. Our electrophysiology model was simulated as a single compartment (Figure 1B) with the following properties [3]: cell area = 0.0025 mm2, membrane capacitance $C_m = 1$ uF/cm2, and E_{leak} was set to maintain baseline firing rates at approximately 1.1 Hz in all simulations.

S3 Calcium baseline-dependent dampening of electrophysiological responses to AngII

We found that the baseline firing rate was elevated in the high Ca$^{2+}$ baseline state (Figure S2A). This finding is consistent with elevated levels of active PKC and CaMKII leading to increased levels of K_{DR} phosphorylation and coincident reduction in hyperpolarizing drive. The excitability response for the high Ca$^{2+}$ baseline condition was smaller and slower than that of the low Ca$^{2+}$ baseline response. However, the steady state firing rates ($t = 300$ s) for high and low Ca$^{2+}$ states were nearly identical, indicating that AngII normalizes the firing rates of cells with divergent Ca$^{2+}$ baseline levels. To determine the electrophysiological basis of the observed excitability differences, we first examined membrane potential traces before and after applying AngII (Figure S2B). Membrane potentials during inter-spike intervals were at approximately -50 mV for both Ca$^{2+}$ baseline conditions. Action potential waveforms and thresholds were also similar for high and low Ca$^{2+}$ baseline states, both before and after applying AngII (Figure S2C). These results suggest that subtle differences in ionic currents during inter-spike intervals account for the Ca$^{2+}$ baseline-dependent differences in firing rates.

To assess the ionic contributions to the membrane potential during inter-spike intervals, we examined membrane potential and current waveforms mediated by Na$^+$, K_{DR}, and K_{AHP} channels during intervals between APs (K_A and Ca\mathbf{L} currents were omitted because these did not vary in our simulations) (Figure S2D). For the high Ca$^{2+}$ baseline state, firing rates were faster but the membrane potential was more hyperpolarized between APs. The high Ca$^{2+}$ baseline state showed reduced Na$^+$ and K_{DR} currents along with increased K_{AHP} current between APs, compared to the low Ca$^{2+}$ baseline state. These results are consistent with increased excitability in the high Ca$^{2+}$ baseline states associated with enhanced Na$^+$ recovery from inactivation (Figure S3). Following AngII application, excitability properties were nearly identical for the low and high Ca$^{2+}$ baseline states. This suggests that AngII drives divergent Ca$^{2+}$ baseline neuronal conditions to a comparable electrophysiological state.
Table S1: List of signaling pathway models.

<table>
<thead>
<tr>
<th>No.</th>
<th>Signaling pathway models</th>
<th>Initial parameter Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gq pathway activation</td>
<td>[4–6]</td>
</tr>
<tr>
<td>2</td>
<td>PLCβ hydrolysis</td>
<td>[4]</td>
</tr>
<tr>
<td>3</td>
<td>IP3 3-kinase activation</td>
<td>[4]</td>
</tr>
<tr>
<td>5</td>
<td>I(1345)P4 dephosphorylation</td>
<td>[4]</td>
</tr>
<tr>
<td>6</td>
<td>Multiple inositol polyphosphate phosphatase</td>
<td>[4]</td>
</tr>
<tr>
<td>7</td>
<td>Interactions between Inositol high polyphosphates</td>
<td>[4]</td>
</tr>
<tr>
<td>8</td>
<td>Dynamics of IP4 interactions</td>
<td>[4]</td>
</tr>
<tr>
<td>9</td>
<td>I(134)P3 dephosphorylation</td>
<td>[4]</td>
</tr>
<tr>
<td>10</td>
<td>Calcium regulation</td>
<td>[3, 4, 7–11]</td>
</tr>
<tr>
<td>11</td>
<td>Calcium binding to calmodulin</td>
<td>[4]</td>
</tr>
<tr>
<td>12</td>
<td>CaMKII activation</td>
<td>[4, 12]</td>
</tr>
<tr>
<td>13</td>
<td>Protein kinase C activation</td>
<td>[4, 7, 12, 13]</td>
</tr>
</tbody>
</table>
Table S2: Calcium regulation model. A schematic of the model is shown in Figure 2A.

<table>
<thead>
<tr>
<th>Modulation</th>
<th>Reaction</th>
<th>Parameters</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium transport to ER</td>
<td>(2Ca^{2+}_{\text{cYT}} + \text{CaTransp} \xrightleftharpoons{\text{kb}} \text{CaTransp} - 2Ca^{2+})</td>
<td>(k_f = 3600 , \mu\text{M}^{-2}\text{s}^{-1}; , k_b = 144 , \text{s}^{-1})</td>
<td>[4]</td>
</tr>
<tr>
<td></td>
<td>(\text{CaTransp} - 2Ca^{2+} \xrightleftharpoons{\text{kf}} \text{CaTransp} + 2Ca^{2+} _\text{seq})</td>
<td>(k_f = 25 , \text{s}^{-1})</td>
<td>[4]</td>
</tr>
<tr>
<td></td>
<td>(Ca^{2+}{\text{seq}} + \text{CaTransp} \xrightleftharpoons{\text{kf}} \text{CaTransp} + Ca^{2+}{\text{cYT}})</td>
<td>(k_f = 8 , \text{s}^{-1}; , k_b = 8 , \text{s}^{-1})</td>
<td></td>
</tr>
<tr>
<td>Calcium buffer</td>
<td>(5Ca^{2+}_{\text{seq}} + \text{CaBuffer} \xrightleftharpoons{\text{kf}} \text{CaBuffer} - 5Ca^{2+})</td>
<td>(k_f = 0.000489 , \mu\text{M}^{-5}\text{s}^{-1}; , k_b = 1 , \text{s}^{-1})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5Ca^{2+}_{\text{seq}} + \text{CaBuffer} - 5Ca^{2+} \xrightleftharpoons{\text{kf}} \text{CaBuffer} - 10Ca^{2+})</td>
<td>(k_f = 0.000489 , \mu\text{M}^{-5}\text{s}^{-1}; , k_b = 1 , \text{s}^{-1})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5Ca^{2+}_{\text{seq}} + \text{CaBuffer} - 10Ca^{2+} \xrightleftharpoons{\text{kf}} \text{CaBuffer} - 15Ca^{2+})</td>
<td>(k_f = 0.000489 , \mu\text{M}^{-5}\text{s}^{-1}; , k_b = 1 , \text{s}^{-1})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5Ca^{2+}_{\text{seq}} + \text{CaBuffer} - 15Ca^{2+} \xrightleftharpoons{\text{kf}} \text{CaBuffer} - 20Ca^{2+})</td>
<td>(k_f = 0.000489 , \mu\text{M}^{-5}\text{s}^{-1}; , k_b = 1 , \text{s}^{-1})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5Ca^{2+}_{\text{seq}} + \text{CaBuffer} - 20Ca^{2+} \xrightleftharpoons{\text{kf}} \text{CaBuffer} - 25Ca^{2+})</td>
<td>(k_f = 0.000489 , \mu\text{M}^{-5}\text{s}^{-1}; , k_b = 1 , \text{s}^{-1})</td>
<td></td>
</tr>
<tr>
<td>Capacitive entry to ER</td>
<td>(Ca^{2+}_{\text{seq}} + \text{Capactive} \xrightleftharpoons{\text{kf}} \text{Capactive} _\text{active})</td>
<td>(k_f = 0.6912 , #^{-1}\text{s}^{-1}; , k_b = 6.25 , \text{s}^{-1})</td>
<td>[4]</td>
</tr>
<tr>
<td>Calcium extracellular pump</td>
<td>(Ca^{2+}_{\text{ext}} + \text{CaEpump} \xrightleftharpoons{\text{kf}} \text{CaEpump} - Ca^{2+})</td>
<td>(k_f = 1800 , \mu\text{M}^{-1}\text{s}^{-1}; , k_b = 288 , \text{s}^{-1})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\text{CaEpump} - Ca^{2+} \xrightleftharpoons{\text{kb}} \text{CaEpump} - Ca^{2+} _\text{ext})</td>
<td>(k_f = 72 , \text{s}^{-1})</td>
<td>[4]</td>
</tr>
<tr>
<td></td>
<td>(Ca^{2+}{\text{seq}} + \text{CaEpump}{\text{seq}} \xrightleftharpoons{\text{kf}} \text{CaEpump}{\text{seq}} + Ca^{2+}{\text{cYT}})</td>
<td>(k_f = 0.2 , \text{s}^{-1}; , k_b = 0.2 , \text{s}^{-1})</td>
<td>[4]</td>
</tr>
<tr>
<td></td>
<td>(Ca^{2+}{\text{seq}} + \text{CapactiveChannel} \xrightleftharpoons{\text{kf}} \text{CapactiveChannel} + Ca^{2+}{\text{cYT}})</td>
<td>(k_f = 0.01 , \text{s}^{-1}; , k_b = 0.01 , \text{s}^{-1})</td>
<td></td>
</tr>
<tr>
<td>IP3R activation</td>
<td>(IP3R + 3IP3-143 \xrightleftharpoons{\text{kf}} IP3R_{\text{active}})</td>
<td>(k_f = 0.05 , \mu\text{M}^{-3}\text{s}^{-1}; , k_b = 1 , \text{s}^{-1})</td>
<td>[4]</td>
</tr>
<tr>
<td></td>
<td>(Ca^{2+}{\text{seq}} + IP3R{\text{active}} \xrightleftharpoons{\text{kf}} IP3R_{\text{active}} + Ca^{2+}_{\text{cYT}})</td>
<td>(k_f = 3125 , \text{s}^{-1}; , k_b = 3125 , \text{s}^{-1})</td>
<td>[4]</td>
</tr>
</tbody>
</table>

\[m_{\text{chemical}} = \left(1 + \frac{K_{\text{PKCmod}}}{k_{\text{PKCmod}} + [\text{PKC}] + [\text{Ca}]_{\text{cYT}}} \right) \left(\frac{[\text{Ca}]_{\text{cYT}}}{\mu\text{M}^{-1}} \right) \left(\frac{[\text{Ca}]_{\text{cYT}}}{\mu\text{M}^{-1}} \right) \]

\[m_{\text{GHK}} = -\frac{\left([\text{Ca}]_{\text{cYT}}[\text{Na}]_{\text{ext}}^{-1}\exp(\gamma) - ([\text{Ca}]_{\text{cYT}}[\text{Na}]_{\text{ext}}^{-1}\exp((\gamma - 1))\right)}{1 + m_{\text{NaCa}} \left([\text{Ca}]_{\text{cYT}}[\text{Na}]_{\text{ext}}^{-1} - ([\text{Ca}]_{\text{cYT}}[\text{Na}]_{\text{ext}}^{-1})\right)} \]

\(m_{\text{NaCa}} \) - total \(Ca^{2+} \) flux, \(e_{\text{cYT}} \) - nominal flux gradient, \(m_{\text{GHK}} \) - electro-chemical flux across NCX, and \(m_{\text{chemical}} \) - chemical gradient

\(K_{\text{PKCmod}} = 0.5, \, K_{\text{PKC}} = 10, \, D_{\text{PKC}} = 2, \, k_{\text{m}} = 2, \, m_{\text{NaCa}} = 0.2 \)

\(\gamma = 0.5, \, \zeta = \frac{\mu\text{M}^{-1}}{\mu\text{M}^{-1}}, \, z = 2, \, F = 96500 \, \mu\text{C} \cdot \text{mol}^{-1}, \, T = 310 \, \text{K}, \, R = 8.314 \, \text{J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}, \, D_{\text{NaCa}} = 0.05 \, \text{nM}^{-4} \)

cyt – cytosolic; seq – sequestered; ext – extracellular; and \(V_m \) – membrane potential
Table S3: Equations for the voltage dependence and kinetic current for brainstem neurons.

<table>
<thead>
<tr>
<th>Current</th>
<th>Expression</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{Na}</td>
<td>$\tilde{g}{Na} \cdot m{Na}^{2} \cdot h_{Na} \cdot (E_{Na} - V)$</td>
<td>$m_{\infty Na} = \frac{0.091 \cdot (V + 38)/((1 - \exp(-(V + 38)/5)))}{0.091 \cdot (V + 38)/(1 - \exp(-(V + 38)/5)) + 0.062 \cdot (V + 38)/(\exp((V + 38)/5) - 1)}$</td>
</tr>
<tr>
<td>τ_{mNa}</td>
<td>$1/(0.091 \cdot (V + 38))/((1 - \exp(-(V + 38)/5)) + 0.062 \cdot (V + 38)/(\exp((V + 38)/5) - 1))$</td>
<td></td>
</tr>
<tr>
<td>h_{Na}</td>
<td>$0.016 \cdot \exp(-(V + 55)/15)$</td>
<td></td>
</tr>
<tr>
<td>τ_{Na}</td>
<td>$1/(0.016 \cdot \exp(-(V + 55)/15)) + 2.07/(1 + \exp(-(V - 17)/21))$</td>
<td></td>
</tr>
<tr>
<td>I_{KDR}</td>
<td>$\tilde{g}{KDR} \cdot m{KDR}^{2} \cdot (E_{K} - V)$</td>
<td>$m_{\infty KDR} = \frac{1}{1/(1 + \exp(V + 36/20))}$</td>
</tr>
<tr>
<td>τ_{mKDR}</td>
<td>$1/(exp(V + 35.82)/19.69) + \exp(-(V + 79.69)/12.7) + 0.37$</td>
<td></td>
</tr>
<tr>
<td>h_{KDR}</td>
<td>$1/(1 + \exp(V + 78/6))$</td>
<td></td>
</tr>
<tr>
<td>τ_{KDR}</td>
<td>$1/(exp(V + 46.05)/5) + \exp(-(V + 238.4)/37.45))$ if $V < -63$, else $\tau_{KDR} = 60.0$</td>
<td></td>
</tr>
<tr>
<td>I_{KAHP}</td>
<td>$\tilde{g}{KAHP} \cdot m{KAHP}^{2} \cdot (E_{K} - V)$</td>
<td>$m_{\infty KAHP} = \frac{1 \cdot 10^{-8} [Ca_{cyt}^{2+}]^2}{(1 \cdot 10^{-8} [Ca_{cyt}^{2+}]^2 + 2.5)}$</td>
</tr>
<tr>
<td>τ_{mKAHP}</td>
<td>$1000/((1.25 \cdot 10^{-8} [Ca_{cyt}^{2+}]^2 + 2.5))$</td>
<td></td>
</tr>
<tr>
<td>h_{KAHP}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ_{KAHP}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{CaL}</td>
<td>$\tilde{g}{CaL} \cdot m{CaL}^{2} \cdot (E_{Ca} - V)$</td>
<td>$m_{\infty CaL} = \frac{1.6/\exp(-0.072 \cdot (V - 5))}{(1.6/\exp(-0.072 \cdot (V - 5))) + (0.02 \cdot (V - 1.31)/\exp((V - 1.31)/5.36) - 1)}$</td>
</tr>
<tr>
<td>τ_{mCaL}</td>
<td>$1/(1.6/\exp(-0.072 \cdot (V - 5))) + (0.02 \cdot (V - 1.31)/\exp((V - 1.31)/5.36) - 1))$</td>
<td></td>
</tr>
<tr>
<td>I_{leak}</td>
<td>$\tilde{g}{leak} \cdot (E{leak} - V)$</td>
<td>$- \frac{dV_m}{dt} = \frac{1}{C_m} \cdot (I_{Na} + I_{KDR} + I_{KA} + I_{KAHP} + I_{CaL} + I_{leak})$</td>
</tr>
</tbody>
</table>

Note that Ca_{cyt}^{2+} used in this Table is different from the cytosolic Ca^{2+} in Table S2. See first subsection of the results for details.

I_{Na} – Fast sodium current, I_{KDR} – Delayed rectifier potassium current, I_{KAHP} – Fast activating potassium current I_{KAHP} – Hyperpolarized calcium dependent potassium current, I_{CaL} – High threshold calcium current

Table S4: Model of phosphorylation of ion-channels through intermediate kinetics.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rates</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_{U} + 4PKC \xrightarrow{k_{p,PKC}} K_{PKC} + 4PKC$</td>
<td>$k_{p,PKC}[K_{U}][PKC]^{4} - k_{d,PKC}[PKC]^{4}$</td>
<td>$k_{p,PKC} = 10$, $k_{d,PKC} = 0.7312$</td>
</tr>
<tr>
<td>$K_{U} + 4CaMKII \xrightarrow{k_{p,CaMKII}} K_{CaMKII} + 4CaMKII$</td>
<td>$k_{p,CaMKII}[K_{U}][CaMKII]^{4} - k_{d,CaMKII}[CaMKII]^{4}$</td>
<td>$k_{p,CaMKII} = 1$, $k_{d,CaMKII} = 3.3215$</td>
</tr>
<tr>
<td>$K_{CaMKII} + 4CaMKII \xrightarrow{k_{p,CaMKII}} K_{PKC,CaMKII} + 4CaMKII$</td>
<td>$k_{p,CaMKII}[K_{CaMKII}][PKC][CaMKII]^{4} - k_{d,CaMKII}[PKC][CaMKII]^{4}$</td>
<td>$k_{p,CaMKII} = 1$, $k_{d,CaMKII} = 3.3215$</td>
</tr>
<tr>
<td>$K_{PKC} + 4PKC \xrightarrow{k_{p,PKC}} K_{PKC,CaMKII} + 4PKC$</td>
<td>$k_{p,PKC}[K_{PKC}][CaMKII][PKC][PKC]^{4} - k_{d,PKC}[PKC][PKC]^{4}$</td>
<td>$k_{p,PKC} = 10$, $k_{d,PKC} = 0.7312$</td>
</tr>
</tbody>
</table>

K_{U} – Unphosphorylated potassium ion-channels (K_{DR}); K_{PKC}, K_{CaMKII} and $K_{PKC,CaMKII}$ – phosphorylated potassium ion-channels (K_{DR})
Table S5: Hill function models of signaling responses to AngII. Peak and steady state responses were separately normalized and fitted as functions of AngII concentration. Value pairs refer to the peak parameter value followed by the steady state parameter value.

<table>
<thead>
<tr>
<th></th>
<th>Low Ca(^{2+})</th>
<th>High Ca(^{2+})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K(_{0.5}) (nM)</td>
<td>nH</td>
</tr>
<tr>
<td>PLC</td>
<td>4.8, 5.51</td>
<td>1.06, 1.21</td>
</tr>
<tr>
<td>IP3</td>
<td>11.1, 9.3</td>
<td>1.06, 1.11</td>
</tr>
<tr>
<td>PKC</td>
<td>3.4, 3.3</td>
<td>1.07, 1.37</td>
</tr>
<tr>
<td>CaMKII</td>
<td>12.6, 12.6</td>
<td>1.59, 1.59</td>
</tr>
</tbody>
</table>

Table S6: Hill function models of excitability responses to AngII. Peak and steady state responses were separately normalized and fitted as functions of AngII concentration. Value pairs refer to the peak parameter value followed by the steady state parameter value.

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>K(_{0.5}) (nM)</th>
<th>nH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wildtype</td>
<td>25.6, 26.4</td>
<td>1.55, 1.53</td>
</tr>
<tr>
<td>Blocking PKC site</td>
<td>7.8, 6.3</td>
<td>1.09, 1.24</td>
</tr>
<tr>
<td>Blocking CaMKII site</td>
<td>4.1, 4.3</td>
<td>1.16, 1.50</td>
</tr>
</tbody>
</table>
Figure S1: **Additional plots to Figure 2 of AngII elicited responses to different Ca\(^{2+}\) baseline conditions.** Low Ca\(^{2+}\) baseline and high Ca\(^{2+}\) baseline response plots to different doses of AngII for sequestered Ca\(^{2+}\), CaTranp, DAG, CaEpump:Ca, CaEpump, CaTranp:2Ca, IP3R and NCX current (\(I_{NaCa}\)).
Figure S2: Low Ca\(^{2+}\) baseline neuronal state exhibits a larger increase in AngII-induced excitability. (A) Firing rate responses to AngII (100 nM at \(t = 0\) s) are shown for low and high Ca\(^{2+}\) baseline levels. (B) Membrane potential waveforms are shown before (\(t = 0\) s) and after (\(t = 200\) s) AngII effects have stabilized. (C) Phase-space representations of APs before and after AngII (same legend as in panel A). (D) Biophysical differences between the low and high Ca\(^{2+}\) baseline conditions (same legend as in panel A). All data are plotted during normalized time intervals between two APs (AP-1 and AP-2) to show the inter-spike interval properties either before (left, \(t = 0\) s) or after (right, \(t = 200\) s) AngII stimulation. Abbreviations: \(V_m\) = membrane potential, Na\(^+\) = Na\(^+\) current, K\(_{DR}\) = K\(_{DR}\) current, K\(_{AHP}\) = K\(_{AHP}\) current.
Figure S3: Inactivation variable (h) for Na$^+$ channel at steady state for high and low Ca$^{2+}$ baseline states. Normalized time between two action potentials are represented from 0 to 1 on x-axis.

Figure S4: Peak dose response curves for different blocking conditions of kinases.
Supporting References

