<table>
<thead>
<tr>
<th>Title</th>
<th>HF dissociation in water clusters by computer simulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors(s)</td>
<td>Elena, Alin Marin</td>
</tr>
<tr>
<td>Publication date</td>
<td>2013</td>
</tr>
<tr>
<td>Publisher</td>
<td>University College Dublin. School of Physics</td>
</tr>
<tr>
<td>Link to online version</td>
<td>http://dissertations.umi.com/ucd:10000</td>
</tr>
<tr>
<td>Item record/more information</td>
<td>http://hdl.handle.net/10197/6782</td>
</tr>
</tbody>
</table>
HF Dissociation in Water Clusters by Computer Simulations*

Alin M Elena
School of Physics
Scoil na Fisice

Principal supervisor: Prof. Giovanni Ciccotti
Supervisor: Dr. Simone Meloni

University College Dublin
July 10, 2013

*Submitted for publication to the Journal of the American Chemical Society
1 Motivation

2 Methods Developed and Used
 - Collective Variables
 - Restrained hybrid Monte Carlo
 - Rate Constant Calculation

3 Results
 - Collective Variable
 - Model
 - Equilibrium Constant
 - Mechanism of the Reaction
 - Reaction Rate Constat
Motivation

Acid dissociation

\[(AH)_{aq} \rightleftharpoons (A^-)_{aq} + (H^+)_{aq}\]

carbon cycle

biological systems

\[\text{CO}_2 + \text{H}_2\text{O} \rightleftharpoons \text{H}_2\text{CO}_3\]

\[\text{HCO}_3^- \rightarrow \text{H}_3\text{O}^+\]
Motivation

HF dissociation

- Atmospheric chemistry, pockets in proteins...
- Testing ground for development of models for dissociation reaction in bulk

S. Odde et al., *J. Phys. Chem. A*, 2006, **110**, p. 7918
Dissociation of HF in $\text{HF}(\text{H}_2\text{O})_7$

Motivation

Objectives

- Equilibrium constant
- Reaction mechanism
- Reaction rate constant
Outline

1. Motivation

2. Methods Developed and Used
 - Collective Variables
 - Restrained hybrid Monte Carlo
 - Rate Constant Calculation

3. Results
 - Collective Variable
 - Model
 - Equilibrium Constant
 - Mechanism of the Reaction
 - Reaction Rate Constant
Collective Variables

Description of a process by collective variables

\[\rho_\theta(z) = \frac{1}{\mathcal{Z}} \int dx \ e^{-\beta U(x)} \delta(\theta(x) - z) \]

\[\mathcal{Z} = \int dx \ e^{-\beta U(x)} \]

\[F(z) = -\frac{1}{\beta} \ln \rho_\theta(z) \]

\[F(z_B) - F(z_A) = \int_{z_A}^{z_B} dz \frac{dF}{dz} \]

\[\frac{dF(z)}{dz} = -\lim_{\beta k \to \infty} \frac{\int dx \ k(\theta(x) - z) e^{-\beta U(x)} e^{-\frac{\beta k}{2} (\theta(x) - z)^2}}{\int dx \ e^{-\beta U(x)} e^{-\frac{\beta k}{2} (\theta(x) - z)^2}} \]

\[U_k(x, z) = U(x) + \frac{k}{2} (\theta(x) - z)^2 \]
Outline

1. Motivation

2. Methods Developed and Used
 - Collective Variables
 - Restrained hybrid Monte Carlo
 - Rate Constant Calculation

3. Results
 - Collective Variable
 - Model
 - Equilibrium Constant
 - Mechanism of the Reaction
 - Reaction Rate Constant
Restrainted hybrid Monte Carlo

- Random momenta extracted from a Maxwell-Boltzmann distribution at inverse temperature β
- Collective move corresponding to a short MD trajectory with the guiding Hamiltonian $\mathcal{H}_g(x, p) = U(x) + K(p)$
- Acceptance probability is

$$P_A(x^{i+1}, p^{i+1} | x^i, p^i) = \min\{1, e^{-\beta \delta \mathcal{H}_a}\}$$

$$\delta \mathcal{H}_a = \mathcal{H}_a(x^{i+1}, p^{i+1}) - \mathcal{H}_a(x^i, p^i)$$

$$\mathcal{H}_a(x, p) = U_k(x, z) + K(p)$$

- δt determines the acceptance rate
- $\mathcal{H}_a(x, p) \neq \mathcal{H}_g(x, p)$

Outline

1. Motivation

2. Methods Developed and Used
 - Collective Variables
 - Restrained hybrid Monte Carlo
 - Rate Constant Calculation

3. Results
 - Collective Variable
 - Model
 - Equilibrium Constant
 - Mechanism of the Reaction
 - Reaction Rate Constant
Rate constant calculation

\[
\begin{align*}
\dot{n}_r(t) &= -k_{rp} n_r(t) + k_{pr} n_p(t) \\
\dot{n}_p(t) &= k_{rp} n_r(t) - k_{pr} n_p(t)
\end{align*}
\]

\[
N_r + N_p \approx 1
\]

\[
N_r = \frac{1}{Z} \int_{V_r} dx \ e^{-\beta U(x)}
\]

\[
N_p = \frac{1}{Z} \int_{V_p} dx \ e^{-\beta U(x)}
\]

\[
k_{rp} = \frac{\nu}{2N_r}
\]

\[
k_{pr} = \frac{\nu}{2N_p}
\]

\[
\nu = \lim_{\tau \to \infty} \frac{N_{\tau}^{rp}}{\tau}
\]

TST with dynamical corrections

\[\nu = \int \mathrm{d}x \mathrm{d}v \, \dot{\theta}(x) \xi_p(x, v) \xi_r(x, -v) \rho(x, v) \delta(\theta(x) - z^*) \]

\[= \frac{\int \mathrm{d}x \mathrm{d}v \, \dot{\theta}(x) \xi_p(x, v) \xi_r(x, -v) \rho(x, v) \delta(\theta(x) - z^*)}{\int \mathrm{d}x \mathrm{d}v \, \rho(x, v) \delta(\theta(x) - z^*)} \int \mathrm{d}x \mathrm{d}v \, \rho(x, v) \delta(\theta(x) - z^*) \]

\[= \left\langle \dot{\theta}(x) \xi_p(x, v) \xi_r(x, -v) \right\rangle_z \, e^{-\beta F(z^*)} \]

- \(\xi_p(x, v) \) is the probability to reach p before \(z^* \) starting from \((x, v)\)
- \(\xi_r(x, -v) \) is the probability to reach r before p starting from \((x, -v)\)

\[\nu = \frac{e^{-\beta F(z^*)}}{N_s} \sum_{i=1}^{N_s} \dot{\theta}(x_i) \chi_p^i \chi_r^i \]

\[\dot{\theta}(x_i(t = 0)) = \frac{\theta(x_i(\delta t)) - \theta(x_i(-\delta t))}{2\delta t} \]
Outline

1 Motivation

2 Methods Developed and Used
 - Collective Variables
 - Restrained hybrid Monte Carlo
 - Rate Constant Calculation

3 Results
 - Collective Variable
 - Model
 - Equilibrium Constant
 - Mechanism of the Reaction
 - Reaction Rate Constant
Collective variable for acid dissociation
Collective variable for acid dissociation

\[\langle \mathcal{H}_{\text{KS}} \rangle_\alpha = \langle w_\alpha | \mathcal{H}_{\text{KS}}(x) | w_\alpha \rangle \]
\[\langle \mathcal{H}_{\text{KS}} \rangle_\zeta = \langle w_\zeta | \mathcal{H}_{\text{KS}}(x) | w_\zeta \rangle \]
\[w_\chi(r) = \sum_i c_{\chi,i}\phi_i(r) \]

\[\xi_i(x) = \langle \mathcal{H}_{\text{KS}} \rangle_\zeta - \langle \mathcal{H}_{\text{KS}} \rangle_\alpha \]
\[\xi_i < 0 \text{ covalent bond at } \alpha \]
\[\xi_i > 0 \text{ covalent bond at } \zeta \]

\[\theta(x) = \sum_{i=1}^{3} \xi_i(x) \]

Outline

1 Motivation

2 Methods Developed and Used
 - Collective Variables
 - Restrained hybrid Monte Carlo
 - Rate Constant Calculation

3 Results
 - Collective Variable
 - Model
 - Equilibrium Constant
 - Mechanism of the Reaction
 - Reaction Rate Constant
Computational details

- Restrained hybrid Monte Carlo developed and implemented in CP2K
- DFT-GPW, HCTH120 exchange correlation functional, GTH pseudo-potentials, m-TZV2P basis set, cubic box of side 14.0 Å and a plane wave cut-off of 300 Ry
- 24k hMC steps per z point to converge the mean force (relative error $\approx 10^{-4}$)
- Almost uniform grid in z space, [-16.6,16.3] eV, with an average step of 0.95 eV
- $k = 50 \text{ eV}^{-1}$ for the biased potential
- $T = 25, 75, 150, 225$ and 300 K
Outline

1 Motivation

2 Methods Developed and Used
 - Collective Variables
 - Restrained hybrid Monte Carlo
 - Rate Constant Calculation

3 Results
 - Collective Variable
 - Model
 - Equilibrium Constant
 - Mechanism of the Reaction
 - Reaction Rate Constant
Equilibrium Constant

pK_a

\[K_a = \frac{P_p}{P_r} \quad pK_a = -\log K_a \]

Graph showing the relationship between pK_a and temperature (T) with two different conditions: cluster (comp.) and bulk (exp.).
Contributions to the free energy

\[\Delta F / T \Delta S [\text{eV}] \]

- \[\Delta F \]
- \[\Delta E \]
- \[T \Delta S \]

\[T [\text{K}] \]

HF Dissociation in Water Clusters...
Equilibrium Constant

\[S_{\text{h-vib}} = \sum_{i=1}^{N_m} \left\{ \frac{\beta \hbar \nu_i e^{-\frac{\beta \hbar \nu_i}{2}}}{1 - e^{-\frac{\beta \hbar \nu_i}{2}}} - \ln \left(1 - e^{-\frac{\beta \hbar \nu_i}{2}} \right) \right\} \]
Outline

1 Motivation

2 Methods Developed and Used
 - Collective Variables
 - Restrained hybrid Monte Carlo
 - Rate Constant Calculation

3 Results
 - Collective Variable
 - Model
 - Equilibrium Constant
 - Mechanism of the Reaction
 - Reaction Rate Constant
Results

Mechanism of the Reaction

Mean path

\[x(z) = \langle x \rangle_z \]
Results

Mechanism of the Reaction

Hydrogen bond chain length

\[L(z) = \sum_{i=1}^{3} d_i(z) = \sum_{i=1}^{3} || r_i^\alpha(z) - r_i^\zeta(z) ||^{1/2} \]

Graph showing the hydrogen bond chain length at different temperatures (T=25 K, T=75 K, T=150 K, T=225 K, T=300 K). The graph plots L(z) in Å vs. z in eV. The variation in L(z) with temperature is observed.
Results

Mechanism of the Reaction

\[\xi_i \text{ VS } z \]

\[\xi_i(x) = \langle \mathcal{H}_{KS} \rangle_z - \langle \mathcal{H}_{KS} \rangle_{\alpha} \]

Graph showing the change in energy \(\xi_i(x) \) with respect to \(z \) at different temperatures: 300 K, 225 K, 150 K, and 75 K. The graph includes curves for different reactions:
- F - H - O_1
- O_1 - H - O_2
- O_2 - H - O_3

HF Dissociation in Water Clusters...
Results

Mechanism of the Reaction

Intermediate state

Outline

1. Motivation

2. Methods Developed and Used
 - Collective Variables
 - Restrained hybrid Monte Carlo
 - Rate Constant Calculation

3. Results
 - Collective Variable
 - Model
 - Equilibrium Constant
 - Mechanism of the Reaction
 - Reaction Rate Constant
Results

Reaction Rate Constant

Reaction rate constant

$T [K]$

$k_{rp} [S^{-1}]$

$\Delta F^* / k_B T$

We studied dissociation reaction of HF in water clusters by using statistical mechanics of rare events combined with \textit{ab initio} MD.

RhMC was implemented in CP2K.

We developed a CV which is able to monitor and steer the reaction without any strong \textit{a priori} knowledge of the mechanism.

HF is a stronger acid in cluster than in bulk.

HF gets a strong acid at lower T.
Weak acidity of HF has an entropic origin

Negative ΔS is due to two opposite contributions a positive intra-molecular one and a dominant negative inter-molecular

The deprotonation process is "cooperative" but asynchronous and triggered by the compression of HB chain

Reaction rate constant in cluster is higher than in bulk
Acknowledgements

Giovanni and Simone

SFI Science Foundation Ireland
ICHÉC Irish Centre for High-End Computing
PRACE
MARIE CURIE