<table>
<thead>
<tr>
<th><strong>Title</strong></th>
<th>A chelating tetrapeptide rhodium complex comprised of a histidylidene residue: biochemical tailoring of a NHC-Rh hydrosilylation catalyst</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Authors(s)</strong></td>
<td>Monney, Angèle; Albrecht, Martin</td>
</tr>
<tr>
<td><strong>Publication date</strong></td>
<td>2012-10-15</td>
</tr>
<tr>
<td><strong>Publication information</strong></td>
<td>Chemical Communications, 48 (89): 10960-10962</td>
</tr>
<tr>
<td><strong>Publisher</strong></td>
<td>Royal Society of Chemistry</td>
</tr>
<tr>
<td><strong>Item record/more information</strong></td>
<td><a href="http://hdl.handle.net/10197/6822">http://hdl.handle.net/10197/6822</a></td>
</tr>
<tr>
<td><strong>Publisher's version (DOI)</strong></td>
<td>10.1039/C2CC35491H</td>
</tr>
</tbody>
</table>
A chelating tetrapeptide rhodium complex comprised of a histidylidene residue: biochemical tailoring of a NHC-Rh hydrosilylation catalyst
t

Angèle Monney and Martin Albrecht*

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/c0xx00000x

Coupling of histidinium salt with a MetAlaAla amino acid sequence followed by metallation with [RhCl(cod)]₂ yields a rhodium(I) NHC complex with a pending peptide residue. Methionine chelation, induced by chloride abstraction from the metal coordination sphere, affords an efficient hydrosilylation catalyst precursor comprised of a peptide macrocyclic chelate backbone.

The combination of organometallic entities and peptides offers attractive opportunities in bioorganometallic chemistry. Peptides provide a biocompatible scaffold, and they induce structural conformations that impact the organometallic site. This approach has furnished, for example, peptide-decorated organometallic complexes and enantioselective organometallic catalysts from achiral complexes deeply buried in enzymatic pockets, and it spurred the development of artificial (organometallic) amino acids for de-novo peptide synthesis.

Based on earlier work by Erker, we have recently disclosed a route to modify histidine stereospecifically to access C-bound histidine metal complexes. These histidylidene complexes combine the fields of N-heterocyclic carbene (NHC) and peptide chemistry, thus providing new opportunities for catalysis. We have become particularly interested in functionalising the amino acid moiety to tailor the catalytic activity of the histidylidene-bound metal centre. Here we have introduced methionine (Met) as potentially chelating amino acid. Chelation through C,S-bidentate bonding was anticipated in a 1+3 arrangement with Met separated by two amino acids from histidylidine. Alanine (Ala) residues were selected as spacers as they promote α-helix formation, thus positioning the two metal-binding amino acids on the same side of two adjacent loops.

The histidinium-containing tetrapeptide was synthesised from the corresponding N- and C-protected histidinium salt Boc-His*·OMe and the Met-Ala-Ala tripeptide (Scheme 1).

Histidine methylation before coupling to the oligopeptide circumvented potential complications arising from partial methylation of the thioether in methionine. The Boc protecting group in the N₈Al₄-dimethylated histidinium salt Boc-His*·OMe (Scheme 1) was removed in excellent yield using a solution of HCl in 1,4-dioxane followed by an ion exchange. Subsequent coupling to Boc-Met-Ala-Ala-OH was achieved by O-(7-Azabenzotriazol-1-yl)-N,N',N''-tetramethyluronium hexafluorophosphate (HATU) activation in THF. The histidinium-containing tetrapeptide Boc-Met-Ala-Ala-His*·OMe was isolated as a highly hygroscopic solid. Successful coupling was indicated by the expected high-resolution mass for the cationic portion, and by the presence of four distinct carbonyl signals in the ¹³C NMR spectrum for the three different amid functionalities and the terminal ester in the 171–176 ppm range. The C₇-bound proton appeared at δ₇ 8.86 ppm. Subsequent carbene formation and installation of rhodium(I) was accomplished under mild conditions using a transmetallation protocol. The use of freshly prepared Ag₂O and the addition of a source of iodide was essential for the formation of the silver carbene intermediate, which was then transmetallated with [RhCl(cod)]₂ to yield 1a. The NMR spectra of 1a revealed the disappearance of the signal due to the C₇-bound proton and a characteristic 0.1–0.15 ppm downfield shift of the methyl wingtip groups of the NHC ligand. Two sets of signals were observed, which was attributed to the formation of two rotamers (e.g. δ₇ 4.01, 3.97, 3.96, 3.92 ppm for the NMe groups).

The carbene resonance was poorly resolved and was only detectable indirectly through long-range C–H correlation spectroscopy as a broad resonance at δC 182 ppm (δC(CH₃ not resolved), indicative for the rhodium complex as a transmetallation product. The crystal structure of 1a revealed the ligand as a prismatic cationic complex with the C₇-bound proton and a characteristic 0.1–0.15 ppm downfield shift of the methyl wingtip groups of the NHC ligand. Two sets of signals were observed, which was attributed to the formation of two rotamers (e.g. δ₇ 4.01, 3.97, 3.96, 3.92 ppm for the NMe groups).

The carbene resonance was poorly resolved and was only detectable indirectly through long-range C–H correlation spectroscopy as a broad resonance at δC 182 ppm (δC(CH₃ not resolved), indicative for
rhodium bonding at the C_5 position. No epimerisation at C_α was observed provided the reaction with Ag_2O was carried out at room temperature and for short time only (1 h). Comparison of the NMR data of 1a with those of the monopeptidic histidyldiene complexes 3a and 4a (Scheme 2) indicated no spontaneous chelation of the methionine. However, KPF_6-mediated chloride abstraction induced the formation of the macrocyclic cationic complex 2a. Sulfur coordination was most diagnostically indicated by the characteristic shift of the signals due to the cod ligand. Specifically the olefinic C=C resonances moved from δH 4.9 and 3.3 ppm in the neutral complex 1a to 4.7 and 4.0 ppm in 2a. Similar behaviour was observed upon exchange of Cl^− in 3a for a neutral SMe_2 in 4a. The chemical shift of the S–CH_3 protons provides a further—though less diagnostic—probe for sulfur bonding, as the corresponding signal undergoes a small highfield shift from 2.09 in 1a to 2.05 ppm in 2a.

Further confirmation of sulfur coordination was obtained when displacing the cod ligand with CO. In both cationic thioether complexes 2b and 3b, the asymmetric stretch vibration appears at approximately 30 cm\(^{-1}\) higher energy than in the corresponding neutral precursors 1b and 3b, respectively, as expected for the transformation of a formally neutral rhodium center into a cationic residue (Fig. 1). Methionine binding was also supported by NMR spectroscopy, which was facilitated by using isotopically labeled \(^{13}\)CO for cod displacement. In the chelate 2b \(^{13}\)C NMR spectroscopy showed two doublets for the rhodium-bound carbonyl groups located at 188.8 and 187.5 ppm (\(^{13}\)J_{C,H} = 84 and 79 Hz, respectively). These signals are at distinctly lower field than in the monodentate carbene tetrapeptide 1b (\(^{13}\)J_{C,H} = 187.2 and 183.8 ppm, \(^{13}\)J_{C,H} = 53 and 75 Hz, respectively, \(^{13}\)δ_H = 5 Hz). Both the downfield shift of the resonances as well as the increased coupling constants \(^{13}\)J_{C,H} reflect the lower electron density at rhodium in the cationic complex 2b due to bonding of a neutral methionine as opposed to the anionic chloroide in 1b.

Chelation was supported by ESI MS, which indicates a monomeric structure, and spectroscopically by the broad NMR resonances of 2a, which were much poorer resolved compared to 1a and which suggest conformational flexibility. Preliminary CD spectroscopy does not reveal a pronounced α-helical peptide conformation, despite the propensity of alanines to stabilise such secondary structural motifs. Molecular modeling studies (mm2 geometry optimisation) also support a macrocyclic structure as depicted in Scheme 1.

The rhodium complexes 1a–4a were evaluated as catalyst precursors for the hydroisilylation of ketones.\(^{5,6}\) Para-fluoracetophenone was chosen as substrate since conversion is readily detectable by \(^1\)H and \(^19\)F NMR spectroscopy. Hydroisilylation with diphenylsilane in the presence of 1 mol% of rhodium tetrapeptide 1a produced about 80% of the silylether 1I together with minor quantities of the silylenoether 1II and gaseous H_2 within 2 h (entry 1, Table 1).\(^{15}\) Under the same conditions, the histidyldiene rhodium complex 3a showed substantially higher activity and selectivity (entry 3). With this precursor, the same level of conversion was achieved within 5 min with high selectivity towards 1I, even though the first coordination sphere around rhodium is identical in 1a and 3a. The strong influence of the peptidic backbone in 1a supposedly originates from a limited diffusion of the oligopeptide-thioether catalyst and suggests a remote tunability of these carbene metal complexes. In addition, coordination of the dangling thioether of methionine to the catalytically active species may compete in occupying one of the coordination sites available for substrate coordination after cod dissociation, thus leading to severe deactivation. A similar effect was observed when catalytic runs with 3a were carried out in the presence of SMe_2 (1 equiv), resulting in a mere 59% conversion after 30 min. In contrast, the C,S-bidentate chelating tetrapeptide rhodium complex 2a exhibits very high catalytic activity and induced full conversion within less than 10 min (entry 2). This performance corresponds to a turnover frequency at 50% conversion TOF\(_{50}\) ~ 1200 h\(^{-1}\). The selectivity is slightly improved when compared with the neutral complexes, and it is also higher than when using the SMe_2-containing monodentate histidyldiene complex 4a, the most active complex in this series (TOF\(_{50}\) ~ 3200 h\(^{-1}\), entry 4). The thioether group has thus an ambivalent role: it is a catalytic poison when coordinating to the neutral [RhCl(carbene)] fragment as in 1a and 3a, yet a strong promoter when coordinating to the cationic [Rh(carbene)]\(^{+}\) unit (cf. activity of 2a and 4a).

Lowering the catalyst loading to 0.1 mol% decelerated the reaction significantly and allowed for a better comparison of the catalytic activity of cationic complexes 2a and 4a. The monopeptide complex 4a is moderately better performing than the chelating tetrapeptidic catalyst derived from 2a, reaching TOF\(_{50}\) values of 910 h\(^{-1}\) vs 610 h\(^{-1}\) under these conditions (entries 5, 6).\(^{16}\) It is worth noting that a lower catalyst loading
catalytic procedures and model of vast opportunities in catalysis and for novel active site models providing new organometallic/peptide hybrid systems with optimise the activity of the organometallic entity, thus peptide modifications provide interesting routes to further histidylidene amino acid and a chelating methionine residue.

− carried out at 18 °C, binding of prochiral substrates, even in catalytic reactions hydrolysed silylether by chiral HPL consistently about 70%, independent of the catalyst loading. In contrast, the sel

Table 1

<table>
<thead>
<tr>
<th>entry</th>
<th>complex</th>
<th>% conversion (selectivity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1a</td>
<td>n.d.</td>
</tr>
<tr>
<td>2</td>
<td>2a</td>
<td>56 (83)</td>
</tr>
<tr>
<td>3</td>
<td>3a</td>
<td>77 (90)</td>
</tr>
<tr>
<td>4</td>
<td>4a</td>
<td>91 (75)</td>
</tr>
<tr>
<td>5</td>
<td>2a</td>
<td>n.d.</td>
</tr>
<tr>
<td>6</td>
<td>4a</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

General conditions: ketone (1 mmol), silane (2 mmol), catalyst precursor (1 mol%) in CD2Cl2 (1 mL) at rt.

Conversion (selectivity towards II in parentheses) determined by 1H and 19F NMR spectroscopy; n.d. = not determined.

−0.1 mol% catalyst precursor.

reduced the product selectivity of 2a and afforded a 3:1 ratio of silyl ether and silylenolether (cf. 9:1 ratio at 1 mol% 2a). In contrast, the selectivity of the histididyliene complex 4a is consistently about 70%, independent of the catalyst loading.

Despite the α-helical backbone of the catalyst precursors, no asymmetric induction was observed when analysing the hydrolysed silyl ether by chiral HPLC. The bidentate coordination mode apparently fails to induce stereoselective binding of prochiral substrates, even in catalytic reactions carried out at −18 °C, possibly because the chirality of the peptide macrocycle is too remote from the active metal centre. Better stereo-discrimination may become accessible through biochemical optimisation, e.g. by further modification of the tetrapeptide backbone particularly at the C-terminus.

In conclusion, we disclosed a convergent de-novo synthesis of a metalloenzyme analogue featuring a C-bound histididyliene amino acid and a chelating methionine residue. Chelation substantially enhanced the catalytic competence of the bound rhodium centre, affording highly active hydroisylolation catalysts. Biochemical strategies such as peptide modifications provide interesting routes to further optimise the activity of the organometallic entity, thus providing new organometallic/peptide hybrid systems with vast opportunities in catalysis and for novel active site models of metalloenzymes.

We thank Y. Ortin and A. Phillips (UCD) for technical assistance, F. Nastri (Univ. Napoli) for preliminary CD measurements, and the European Research Council (ERC-StG 208561) and the Swiss National Science Foundation for financial support.

Notes and references

School of Chemistry & Chemical Biology, University College Dublin.

Belfield, Dublin 4, Ireland. Fax: +353 1716 2501; Tel: +353 1716 2504; E-mail: martin.albrecht@ucd.ie

† Dedicated to Gerard van Koten on the occasion of his 70th birthday and in admiration of his ground-breaking work in many areas of organometallic chemistry, including bioinorganic and organometallics.

‡ Electronic Supplementary Information (ESI) available: Synthetic and catalytic procedures and model of 2b. See DOI: 10.1039/b000000x/


