<table>
<thead>
<tr>
<th>Title</th>
<th>Flavanoid Expoxides - XIII: Acid and Base Catalysed Reactions of 2'-Tosyloxychalcone epoxides. Mechanism of the Algar-Flynn-Oyamada Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors(s)</td>
<td>Gormley, T. R. (Thomas Ronan); O'Sullivan, W.I.</td>
</tr>
<tr>
<td>Publication date</td>
<td>1973</td>
</tr>
<tr>
<td>Publication information</td>
<td>Tetrahedron, 29 (2): 369-373</td>
</tr>
<tr>
<td>Publisher</td>
<td>Elsevier</td>
</tr>
<tr>
<td>Item record/more information</td>
<td>http://hdl.handle.net/10197/6996</td>
</tr>
<tr>
<td>Publisher's version (DOI)</td>
<td>10.1016/S0040-4020(01)93304-6</td>
</tr>
</tbody>
</table>
FLAVANOID EPOXIDES—XIII

ACID AND BASE CATALYSED REACTIONS OF 2'-TOSYLOXYCHALCONE EPOXIDES. MECHANISM OF THE ALGAR-FLYNN-OYAMADA REACTION

T. R. GORMLEY and W. I. O'SULLIVAN*
Department of Chemistry, University College, Dublin 4, Ireland

(Received in the UK 28 August 1972; Accepted for publication 29 September 1972)

Abstract—2'-Tosyloxychalcone epoxide (6a) on reaction with alkali gave flavonol (4a) while similar treatment of 6'-methoxy-2'-tosyloxychalcone epoxide (6b), both at room temperature and at the boiling point of the reaction medium, afforded 5-methoxyaurone (5b). The latter result indicates that an epoxide is not an intermediate in the production of flavonols from 2'-hydroxy-6'-methoxychalcone epoxides on treatment with alkaline hydrogen peroxide (AFO Reaction) at the higher temperature. Epoxide 6a on treatment with boron trifluoride etherate gave a mixture of flavanone and flavonol while epoxide 6b gave formyldesoxybenzoin (9) under similar conditions.

The Algar-Flynn-Oyamada2 (AFO) reaction involves the alkaline hydrogen peroxide oxidation of 2'-hydroxychalcones firstly into flavanones3 (3) and then into flavonols (4) (Scheme I, route 1). If a OMe or Me substituent is present in the 6'-position of the chalcone, aurones (5) (Scheme I, route 2) rather than flavonols are obtained, provided the 2- or 4'-positions do not carry an hydroxyl group, and that the reaction is effected at room temperature. When the reaction is carried out in MeOH or EtOH 6'-methoxychalcones give flavanons as the main products.4 Dean and Podiumuang5 proposed routes 3 or 4 (Scheme I) for the formation of flavanons and flavonols from 2'-hydroxychalcones in the AFO reaction rather than the previously accepted route which presumed the intermediate formation of a chalcone epoxide (route 1). The accepted routes (1 and 2) to 5-methoxyflavanones (at temperatures above 20°) and to 4-methoxyaurones from 2'-hydroxy-6'-methoxychalcones on AFO oxidation were retained by these authors.

The results we now report on the reactions of 6'-methoxy-2'-tosyloxychalcone epoxide are consistent with, but do not prove, route 2 to aurone but they are not in accord with route 1 to flavanols from 2'-hydroxy-6'-methoxychalcones in the AFO reaction carried out at the boiling point of the reaction medium.

2'-Tosyloxychalcone epoxide (6a) and 6'-methoxy-2'-tosyloxychalcone epoxide (6b) were prepared by the action of alkaline H2O2 on the parent 2'-tosyloxychalcones. Treatment of epoxide 6a with alkali at room temperature gave flavonol 4a11 while epoxide 6b on similar treatment gave 5-methoxyaurone (5b) (along with, in one instance, a small amount of 6-methoxyflavanonol; 3b). When the latter reaction was carried out in EtOH at the b.p. aurone 5b was the only product.

Various suggestions have been presented as to why cyclisation of the putative AFO 6-methoxychalcone epoxide intermediate takes place by attack of the 2'-O' group at the a-rather than at the β-position. One such suggestion is that displacement of the carbonyl group out of the plane of the phenolic ring by steric interaction with the 6'-methoxyl group increases the distance of the phenolic oxygen from the β-position more than from the α-position. Another is that the said steric interaction favours the product with the smaller heterocyclic ring.12 Dean and Podiumuang* suggested that such effects are not large and that at temperatures above 20° they diminish rapidly and pyrone derivatives are again the main products. However, the results of the present work indicate that once an intermediate chalcone epoxide is formed in the AFO reaction the presence of a 6'-methoxyl substituent plays a practically decisive role, over a range of temperatures, in determining the position of attack by the 2'-O' group, i.e. α-position (route 2), on cyclisation to form products. A more plausible explanation for flavonol formation on the oxidation of 2'-hydroxy-6'-methoxy-chalcones at temperatures greater than 20° is that the inhibition to resonance between the 2'-O' ion and the carbonyl group13 caused by steric interaction between the 6'-methoxyl group and the ketone group, which facilitates epoxide formation, is overcome at higher temperatures and that the reaction then pro-

*To whom all correspondence should be addressed.
†The epoxidation of α,β-unsaturated ketones by the hydroperoxide ion is hindered because of the coulombic repulsion of the reagent as well as internal electronic inactivation as indicated in structure 7.*
ceeds by routes 3 or 4 without the formation of an intermediate epoxide.

Two further experiments gave results which are in agreement with these conclusions. When 2'-tosyloxy-2,4,4',6'-tetramethoxychalcone (8) in MeOH was allowed to react with alkaline H$_2$O$_2$ at room temperature for 24 h the corresponding flavanone was obtained in low yield. This result suggests that hydrolysis of the tosylate group had taken place and that the partial deactivation of the α,β-unsaturated ketone moiety by the 2'-O$^-$ ion (which is not fully conjugated with the carbonyl group) and by the 2'- and 4'-methoxyl groups disfavoured epoxide formation and the reaction proceeded by the alternative routes 3 or 4. Had epoxidation occurred the corresponding aurone would have been the expected product. In another experiment 2-chloro-4',6'-dimethoxy-2'-tosyl-oxyacetophenone on condensation with anisaldehyde under alkaline conditions afforded 4,4',6-trimethoxyaurone. It is probable that this reaction proceeded by a Darzens type condensation.
Flavanoid epoxides—XIII

Scheme 2

\[
\text{MeO} \quad \text{OTs} \quad \text{CHCl} \quad + \quad \text{MeO} \quad \text{HOC-OOMe} \quad \xrightarrow{\text{NaOH}} \quad \text{MeO} \quad \text{CH-} \quad \text{O-Me}
\]

to give an intermediate epoxide13 which then cyclised to the aurone (Scheme 2). Attempts to isolate tosyloxychalcone epoxides in the latter two reactions were without success.

Reactions of 2'-tosyloxychalcone epoxides with boron trifluoride

The reaction of epoxide 6a with boron trifluoride etherate under N\textsubscript{2} afforded a mixture of flavanonol (3a; 70%) and flavonol (4a; 10%). When air was not excluded from the reaction the yields were 33% of 3a and 37% of 4a. The action of BF\textsubscript{3}·Et\textsubscript{2}O on epoxide 6b produced α-formyldesoxybenzoin 9, which on heating with alkali gave desoxybenzoin 10.

Flavanonols are produced by the reaction of 2'-benzyloxychalcone epoxides with acids and their formation was formulated as follows:14

A similar mechanism may be operative in the cyclisation of epoxide 6a by means of BF\textsubscript{3}·Et\textsubscript{2}O. The steric factors, suggested earlier, which hindered attack of the 2'-O'-moiety at the β-position of 6'-methoxyl substituted chalcone epoxide in alkali would also, presumably, be operative in impeding attack of the 2'-oxy group at the β-position in 6'-methoxy-2'-tosyloxychalcone epoxide on reaction with BF\textsubscript{3}·Et\textsubscript{2}O. An alternative pathway (Scheme 3) is followed with this compound involving migration of the aryl group to produce the α-formyldesoxybenzoin 9. The reaction of 4'-methoxyl substituted 2'-benzyloxychalcone epoxides with BF\textsubscript{3} was reported14 to give analogous results.

Experimental

2'-Tosyloxychalcone. A mixture of 2'-hydroxychalcone (2·5 g), p-TsCl (1·5 g), K\textsubscript{2}CO\textsubscript{3} (1·5 g) and dry acetone (15 ml) was heated under reflux for 2 h and added to water. The oil which separated was dissolved in ether and the resulting solution washed successively with NaHC\textsubscript{2}O\textsubscript{3} (5%), NaOH (10%) and water and then dried (Na\textsubscript{2}SO\textsubscript{4}). The solid obtained on removal of solvent was recrystallised (MeOH) to give 2'-tosyloxychalcone (1·8 g), m.p. and m.m.p. 84° (IR spectrum identical with that of an authentic16 sample).

2'-Tosyloxy-6'-methoxychalcone was prepared in the same way from 2'-hydroxy-6'-methoxychalcone in 61% yield; white plates from MeO:Et\textsubscript{2}O, m.p. 82°; vmax (KBr) 1639, 1592 cm-1 (Found: C, 67·1; H, 4·9; S, 7·7; MeO, 7·8.

C\textsubscript{24}H\textsubscript{20}O\textsubscript{5}S requires: C, 67·6; H, 4·9; S, 7·6; MeO, 7·6%)

2'-Tosyloxy-2,4,4',6'-tetramethoxychalcone (8) was similarly prepared from 2'-hydroxy-2,4,4',6'-tetramethoxychalcone in 57% yield; white needles from MeOH, m.p. 137-138° (Found: C, 62·2; H, 5·3. C\textsubscript{24}H\textsubscript{24}O\textsubscript{10}S requires: C, 67·3; H, 5·2%)

Formation of 2'-tosyloxychalcone oxide 6a. To a solution of 2'-tosyloxychalcone (4·5 g) in MeOH (60 ml) was added H\textsubscript{2}O\textsubscript{2} (12 ml; 30%) and NaOH (5 ml; 9%) at 0°. After 1 h the mixture was acidified with HCl (10%) and

Scheme 3

\[
\text{MeO} \quad \text{OTs} \quad \xrightarrow{\text{H\textsubscript{2}O}} \quad \text{MeO} \quad \text{CHCHO} \quad \xrightarrow{\text{OH}} \quad \text{MeO} \quad \text{O-H}\quad \text{CH}_2\text{Ph}
\]
separated crystals recrystallised (EtOH) to give needles of 2'-tosyloxychalcone oxide (36-g), m.p. 122°C. (Found: C, 67; H, 4; S, 8; CuH1204S requires: C, 67; H, 4; S, 8; 18%; m.p. 122°C. (KBr) 1690-1700 cm\(^{-1}\). 1H(CDCl; TMS), 7.65-6.58, 5.83-5.55, aromatic protons). 2 H, 5.88, 5.83, J 17 Hz, epoxide protons)

To a suspension of 2'-tosyloxy-6'-methoxychalcone oxide (1.8 g) in MeOH (50 ml) was added NaOH (0.12 g, 50 ml; 8%) and the mixture stirred at room temp for 2 h. A white solid precipitated which was collected and recrystallised from EtOH to give plates of 2'-tosyloxy-6'-methoxychalcone oxide (1.4 g) m.p. 104-106°C. (Found: C, 65; H, 4.7; S, 7.5; OMe, 12.8%).

Reaction of 2'tosyloxy-6'-methoxychalcone oxide (6a) with alkali. To a solution of 6a (0.5 g) in MeOH (50 ml) was added NaOH eq. (8 ml; 8%) and the mixture stirred for 15 h at 17°C and then acidified with HCl (10%).

The reaction was repeated at 35°C in air. The neutral ether fraction afforded dihydroflavonol (3b) (0.12 g) and the NaOH extract on neutralisation with HCl (10%) gave flavanone (4a) (0.12 g, m.p. 169°C).

REFERENCES

1Communication XII, B. A. Brady, W. I. O'Sullivan and A. M. Duffield, Org. Mass Spectrom. 5, 519 (1972)

4T. A. Geissman and D. K. Fukushima, J. Am. Chem. Soc. 70, 1686 (1948)

9F. M. Dean and V. Podunjav, J. Chem. Soc. 3978 (1945)

Flavanoid epoxides—XIII