<table>
<thead>
<tr>
<th>Title</th>
<th>Compression in wireless sensor networks: A survey and comparative evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors(s)</td>
<td>Razzaque, M. A.; Bleakley, Chris J.; Dobson, Simon</td>
</tr>
<tr>
<td>Publication date</td>
<td>2013-11-01</td>
</tr>
<tr>
<td>Publication information</td>
<td>ACM Transactions on Sensor Networks, 10 (1): 5:1-5:44</td>
</tr>
<tr>
<td>Publisher</td>
<td>Association for Computing Machinery</td>
</tr>
<tr>
<td>Item record/more information</td>
<td>http://hdl.handle.net/10197/7031</td>
</tr>
<tr>
<td>Publisher's statement</td>
<td>© ACM, 2014. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Transactions on Sensor Networks, (VOL 10, ISS 1, (2014)) http://doi.acm.org/10.1145/10.1145/2528948</td>
</tr>
<tr>
<td>Publisher's version (DOI)</td>
<td>10.1145/2528948</td>
</tr>
</tbody>
</table>

The UCD community has made this article openly available. Please share how this access benefits you. Your story matters! (@ucd_oa)

Some rights reserved. For more information, please see the item record link above.
Compression in Wireless Sensor Networks: a survey and the road ahead

M.A. Razzaque,
FSKSM, Universiti of Teknologi Malaysia, Skudai, JB, Malaysia
and
Chris Bleakley
System Research Group, UCD,Dublin, IE
and
Simon Dobson
School of Computer Science, University of St Andrews, Scotland UK

Wireless sensor networks (WSNs) are highly resource constrained in terms of power supply, memory capacity, communication bandwidth, and processor performance. Compression of sampling, sensor data, and communications can significantly improve the efficiency of utilization of three of these resources, namely power supply, memory and bandwidth. Recently, there have been a large number of proposals describing compression algorithms for WSNs. These proposals are diverse and involve different compression approaches. It is high time that these various individual efforts are put into perspective and a more holistic view taken. In this article, we take a step in that direction by presenting a survey of the literature in the area of compression and compression frameworks in WSNs. A comparative study of the various approaches is also provided. In addition, open research issues, challenges and future research directions are highlighted.

1. INTRODUCTION
Wireless Sensor Networks (WSNs) are critically resource constrained by limited power supply, memory, processing performance and communication bandwidth [Akyildiz et al. 2002]. Due to their limited power supply, energy consumption is a key issue in the design of protocols and algorithms for WSNs. Typically, energy consumption is dominated by radio communication [Pottie and Kaiser 2000; Barr and Asanović 2006]. The energy consumption of radio communication is directly proportional to the number of bits of data, i.e. data traffic, transmitted within the

Authors’ addresses: marazzaque@utm.my, FSKSM, Universiti of Teknologi Malaysia, Skudai, JB, Malaysia.

Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 20YY ACM 0000-0000/20YY/0000-0001 $5.00
network [Heinzelman et al. 2000]. Therefore, using compression to reduce the number of bits to be transmitted has the potential to drastically reduce communication energy costs and so increase network lifetime. Similarly, sampling level [Cand’ès and Wakin 2008; J. Haupt and Nowak 2008] as well as communication level [Lu et al. 2010; Tulone and Madden 2006] compressions can reduce energy costs in WSNs and increase network lifetime. In most cases, the savings due to compression are greater than linear since reducing the number of bits transmitted has the knock-on effect of reducing link-level congestion which, in turns, reduces the number of collisions and re-tries in the network. Consequently, researchers have been investigating optimal algorithms for compression of sensed data, sampling, and communications in WSNs.

Unfortunately, most conventional compression algorithms are not directly applicable to WSNs. Firstly, in conventional compression approaches the key objective is to save storage, not energy. In WSNs, energy is more important than memory. Thus energy saving is the primary evaluation metric. Secondly, it has been shown [Sadler and Martonosi 2006] that, in terms of energy consumption, transmission of just one byte of data is equivalent to execution of roughly four thousand (Chipcon CC2420) to two million (MaxStream XTend) instructions. Moreover, these calculations only consider local energy consumption at the compressing node; network-wide energy savings due to compression can further compensate for the energy expense of compression. So compression algorithms with some degree of computational complexity are worth exploring. On the other hand, excessively computationally complex algorithms are not worth pursuing. Finally, conventional compression algorithms, originally designed for desktops or servers, must be re-structured to reduce the code size and dynamic memory usage due to the limited memory capacity of WSN nodes - typically less than 50kB for code memory and even less for data memory. Recently, researchers have addressed these challenges by customizing conventional compression techniques and, some cases, by proposing new approaches.

Compression in WSNs is a very active research area. Papers published in this area are highly diverse in their approaches and implementations. To the authors’ knowledge, there are only two articles [Kimura and Latifi 2005; Srisooksai et al. 2011] which provide survey of the area. However, [Kimura and Latifi 2005] is out-of-date and does not report recent, dominant, works in the field. On the other hand the very recent work [Srisooksai et al. 2011] focuses only on pure data compression techniques. It has excluded aggregation from the data compression techniques list due to its route dependency. But the interdependency between compression and routing [Scaglione and Servetto 2002; Pattem et al. 2004] is a well proven issue in WSNs. Different works have proven it for different compression schemes, such as [Scaglione and Servetto 2002] for distributed source coding(DSC), [Lee et al. 2009; Quer et al. 2009] for compress sensing(CS), [Ciancio et al. 2006; Shen and Ortega 2008a] for transform coding, etc.. Moreover, [Srisooksai et al. 2011] has classified data compression techniques into distributed (exploits spatial correlation) and local (exploits temporal correlation) approaches for dense networks, and sparse networks respectively. But in dense networks spatio-temporal correlation exploitation supports both distributed and local approach [Chu et al. 2006; Baron et al. ACM Journal Name, Vol. V, No. N, Month 20YY.]
Compression in Wireless Sensor Networks: a survey and the road ahead

It also presents CS as a distributed approach but CS exploits intra-signal structures (temporal correlation) within a node. On the other hand, distributed CS (DCS) that exploits inter-signal or spatial correlation [Baron et al. 2005; Baron et al. 2009] is missing in the paper. Considering these, we feel now is an appropriate time to put recent works into perspective and take a holistic view of the field. This article takes a step in that direction by presenting a survey of the literature in the area of compression in WSNs focusing on current 'state-of-the-art' works in the area. A comprehensive overview of compression techniques in WSNs is provided together with a comparative study of the various approaches. Finally, this work points out open research challenges and recommends future research directions.

Section 2 presents the requirements for data compression in WSNs and a brief introduction of data compression in WSNs. Section 3 provides an overview of existing approaches to compression in WSNs along with a comparative study in section 4. Open research challenges and suggestions for future research directions are presented in section 5. Finally, section 6 concludes the work and points to areas of potential future work.

2. COMPRESSION IN WSNs

2.1 Different Compressions

In WSNs, main objective of compression is to reduce the energy consumption. Sensing/sampling, computation, and communication are the three operations, which are mainly responsible for the energy consumption in WSNs. So any technique that directly or indirectly reduces one or more of these operations while maintaining some requirements (e.g. distortion, complexity, etc.) can be considered as compression in WSNs. Based on this compression in WSNs can be classified as below.

Sampling Compression (SC): It is the process of reducing the sensing/sampling operations while keeping the network coverage (for spatially correlated sensors) and/or distortion within a margin. There are a number of research works ([Cardei et al. 2005; Subramanian and Fekri 2006], etc.) that exploit spatially correlated sensor nodes in reducing the sensing tasks most of which primarily focus on keeping the sensors in sleeping state while a minimal number of sensors are put active for each group. These are not the concern of this paper. On the other hand, CS [Cand'es and Wakin 2008; J. Haupt and Nowak 2008] like approaches do the sampling level compression by exploiting temporal correlations within a sensor node.

Data Compression (DC): Data compression is the process of converting an input data stream (the source stream or the original raw data) into another data stream (the compressed stream) that has a smaller size. It can be viewed as the process of discovering any structure that exists in the data and eliminating it by using a more efficient encoding. All nonrandom data has some structure, and this structure can be exploited to achieve a smaller representation of the data - a representation where no structure is noticeable. The terms redundancy and structure are used in the professional literature and they are interchangeable [Salomon 2007; Sayood 2006]. Most of the existing compression works (e.g. Predictive Coding, DSC, transform coding, etc.) for WSN support data level compression.

Communication Compression (CC): Typically, it is the process of reducing
the number of transmissions and receptions, hence reducing the radio on-time of transceivers within a WSN. Longer the packet to be transmitted or received higher the radio on-time of transceivers [Kimura and Latifi 2005; Salomon 2007; Barr and Asanović 2006]. Hence reduced packet or data size (e.g. data compression) reduces radio on-time and reduces communication cost in WSNs. Aggregation, DCS, Predictive coding, etc. support communication level compression.

Usually, there is a hierarchical relationship amongst the aforementioned different compressions (as shown in figure 1). For instance, a reduced number of samples helps in reducing the data/packet length (data compression), which ultimately reduces radio on-time of the transceivers (communication compression). It is desirable to have compression techniques which support these three level of compressions. Unfortunately very few (e.g. CS, DCS, etc.) of the existing compression techniques support so. As shown in figure 1, data compression may work on the compressed samples or non-compressed regular samples.

2.2 Requirements

WSNs are used in a wide range of applications. This leads to a diverse range of requirements for compression algorithms. For example, mission-critical applications such as health monitoring, battlefield, fire rescue, provide real-time user information and so can tolerate only bounded latency and data loss. In contrast, other applications, such as habitat monitoring, may tolerate significant latency and accept certain losses or distortions in the data presented at the sink. Considering these we classify the requirements of compression in WSNs two ways: (i) Generic and (ii) Application Specific. In the following we summarize the key members of each category and these will be used in later sections of this paper in analyzing different compression algorithms.

2.2.1 Generic Requirements. This subsection summarizes the generic requirements of compression in WSNs. This set of requirements mainly contains the resource constraints-based quantitative requirements, redundancy in sensing, typical qualitative requirements (e.g. reliability, robustness, etc.), etc.

Computational Complexity and Memory Requirements: Typically WSNs’ nodes are equipped with limited processing and memory capability. For instance, popular WSNs node platform e.g. Mica, TelosB, and Tmote Sky equipped with Atmel Atmega128L and Texas Instruments MSP430 micro-controllers (4-8 MHz clock speed), which have instruction memory of only 128 and 48 KB, respectively [Sen 2012]. With these limitations, it is essential to design a low complexity and small code-size (light-weight) compression algorithm for WSN applications. Using all these limitations but the simplest of data compression schemes can be challenging.
Compression in Wireless Sensor Networks: a survey and the road ahead

for WSNs [Barr and Asanović 2006; Kimura and Latifi 2005; Sadler and Martonosi 2006]. In this situation, asymmetric computational nature of compression is desirable where most computation takes place at the decoder (sink), rather than at the encoder (sensor nodes), thus sensors with minimal computational performance can efficiently compress data.

Communication Requirements: Since radio communication consumes a significant amount of energy [Sadler and Martonosi 2006; Karl and Willig 2005], compression algorithms are typically designed to eliminate or reduce the redundant information exchange between nodes. Unlike conventional communication networks, the purpose of communication in WSNs is not only moving bits from one node another. Rather, a WSN is anticipated to provide meaningful information and/or actions about a given task: “People want answers, not numbers” [Huang 2003]. This really motivates more processing and less communication. So, if possible compression techniques should minimize communications at the cost of increased computation both at the decoder and / or encoder side.

Redundant Sensing: In some scenarios, the sensing coverage of nodes may overlap, leading to the acquisition, communication and storage of redundant, perhaps duplicate, information. Compression techniques can be used to identify and exploit this redundancy to reduce the amount of data sensed and transmitted. Typically, these approaches use inter-node communication to establish sensing schedules with a reduced frequency of observation. The missing data can then be imputed at the sink based on known data relationships and/or decompression techniques. WSNs which employ energy expensive sensors benefit most from this form of compression.

On-route Compression: Conventional compression algorithms compress the data at the source and decompress at the destination only. In contrast, some WSN applications require that the data is available at intermediate nodes for en-route in-network processing or transformation, for example, for aggregation (see below) or transcoding. Compression schemes allowing on-route compression need to be sufficiently flexible to allow the inspection, modification, addition and/or removal of data at intermediate nodes. On-route compression algorithms can be particularly effective for heterogeneous networks consisting of different types of nodes. Lightweight compression at low performance nodes can be combined with more powerful compression or processing at higher performance or mains power routing nodes.

Reliability: Reliability in WSNs has two aspects: communication reliability and data reliability [Kim 2004; Brown and Sreenan 2007]. Data reliability can be improved by exploiting spatial redundancy in sensor measurements. Communication reliability can be improved by exploiting measurement redundancy or by adding error checking bits. In contrast, compression techniques aim to reduce redundancy in order to increase energy efficiency. Clearly, there is an inter-play or dependency between reliability and compression.

Robustness: Node failure due to power shortage or physical damage and link failure due to unreliable wireless communications are common phenomenon in WSNs. Compression techniques in WSNs need to be robust enough to work properly even if there is a failure. To tolerate node and link failure redundant deployment
is necessary, which clearly conflicts with one of the key requirements (redundancy removal) of compression. Precisely, for robustness we need reliable communications or reliable topology or both [Nath et al. 2008]. So a trade-off between robustness and energy efficiency in WSNs may be needed.

Scalability: As applications of WSNs are diverse, they might include small to large number of nodes (tens to thousands, even hundreds of thousands) [Karl and Willig 2005]. Hence the employed compression technique must be able scale to these numbers.

2.2.2 Application Specific Requirements

WSNs have highly diverse applications in real world with diverse requirements. In the following we briefly describe these diverse and application specific requirements.

Real-time vs. Non Real-time: WSN applications which provide real-time user data or control solution, such as in health care and intelligent transport system (ITS), are tolerant to zero or bounded latency. Therefore, compression may need to be performed one sample at a time. This can limit the compression ratio achieved. However, spatial correlations can still be exploited. Non real-time compression allows the processing of data from several sampling periods in a single batch and for transfer in-bulk. This can significantly increase the compression ratio.

QoS-awareness: Generally a WSN provides services to its users by providing information about the environment where it is deployed. So, in WSNs quality of service (QoS) also means quality of information (QoI). In WSNs multimedia-type QoS metrics might be insufficient; what is relevant is the amount and quality of information that can be extracted at given sinks/decoder about the observed objects or environments [Karl and Willig 2005]. Typical QoS/QoI metrics in WSNs include timeliness, reliability, distortion, etc. The relative importance of these aspects of QoS [Chen and Varshney 2004] is application dependent. For example, timely delivery of compressed data to the sink is more important in real-time applications. Due to computation and communications, removal of redundancy, approximation, etc. in compression, it is really hard to maintain these QoS/QoI metrics.

Security: Most WSN applications (e.g. Body Sensor Networks) require a certain degree of security [Perrig et al. 2004]. However, security and data compression algorithms may conflict. For example, security protocols require that sensor nodes encrypt sensed data prior to transmission and decryption and authentication is only performed at the base station. In contrast, most data compression protocols (e.g. aggregation, wavelet-transform, etc.) process plain text data at intermediate nodes so that energy efficiency is maximized. In addition, lossy compression results in alterations to the sensor data making authentication difficult. Hence, data compression and security protocols should be co-designed so that compression can be performed without sacrificing security.

2.3 Features

A list of typical features of compressions in WSNs is provided below:

Lossless vs. Lossy: Some compression algorithms are designed to support exact reconstruction of the original data after decompression (lossless). In other cases, the reconstructed data is only an approximation to the original (lossy). Use of a lossy algorithm may lead to loss of information, but generally ensures a higher
Compression in Wireless Sensor Networks: a survey and the road ahead

Distortion vs. Accuracy: In the case of lossy compression, there is a trade-off between the data rate (R) achieved and the distortion (D) in the reconstructed data. Mean Square Error (MSE) is a natural distortion metric. However, MSE can be misleading since different types of distortion may have very different effects on the statistical inferences which can be drawn after decompression. In addition, the energy consumption of communication should be taken into account. In order to address this issue, previous work has proposed the use of a Rate-Energy-Accuracy (R-E-A) metric [Chen 2006].

Data Aggregation: In some applications, only a summary of the sensor data is required. For example, statistical queries, such as MIN, AVG, MAX, allow for a very compact responses from the sensors. However, the original sample values cannot be re-constructed from the summarized representation. Aggregation requires in-network processing of sensor data but can greatly reduce communication overhead.

Data Correlation: Since sensor nodes are normally deployed in close proximity, correlations between the sensed values at different nodes is often high (spatial correlation). Furthermore, since sensors observe events in a continuous manner, observed successive discrete signal samples often exhibit high correlation (temporal correlation). WSN compression algorithms typically exploit these correlations in order to improve the compression ratio achieved.

Symmetric vs. Asymmetric: In the case of symmetric algorithms, the computational complexity of compression and decompression are similar. In the asymmetric case, compression and decompression have different computational complexity. Traditional schemes tend to have higher computational complexity on the compression-side. In contrast, in WSNs, it is desirable that compression, which is typically performed on the motes, is low complexity and decompression, which is typically performed at the sink, is high complexity.

Non-Adaptive vs. Adaptive: In non-adaptive compression, the compression operations and parameters are fixed. This type of compression is suitable for stationary data, i.e. when the statistics of the data do not change with time. In contrast, adaptive or dynamic compression methods monitor the raw data statistics and modify their operation and/or parameters in order to improve performance [Lee and Jung 2010]. This approach is more complex but provides better performance for non-stationary data.

3. SURVEY OF EXISTING COMPRESSION ALGORITHMS IN WSNs

Compression is key in reducing the energy consumption in WSNs. Consequently, a large number of compression techniques have been proposed in the literature. Herein, existing works have been categorized based on the compression technique utilized. The following subsections summarize text-based compression, data aggregation, distributed source coding, transform-based compression, compressive sensing and predictive coding and their variants.

3.1 Text-based Compression

The dictionary-based Lempel-Ziv-Welch (LZW) algorithm [Welch 1984] is a popular lossless compression scheme for text data. It encodes new strings based on previous
ously encountered strings. Research works which address the use of dictionary/text-based compression in WSNs are few in number. S-LZW [Sadler and Martonosi 2006] is the only work, to the authors’ knowledge, which explicitly adopts the LZW concept to reduce data transmission in WSN. S-LZW treats sensed data as strings and divides the strings into fixed-size blocks with each being compressed using the LZW algorithm. Although S-LZW is appropriate for sensor nodes, it does not take specific advantage of sensor data characteristics, especially the spatial and temporal correlations which exist in sensed data. Sensor data tends to be repetitive over short intervals. Even sensor data which exhibits large sudden changes in value tends to be repetitive over consecutive samples due to the use of high sampling rates designed to allow accurate capture of these sudden changes. S-LZW was optimized for these situations by means of a Mini-Cache (S-LZW-MC) [Sadler and Martonosi 2006]. In this approach, the most important design decision is the size of the mini-cache. Results show that, in most scenarios, S-LZW-MC with 32 mini cache entries outperforms basic S-LZW.

The S-LZW-MC algorithm conserves energy by taking advantage of the characteristic locality patterns of sensor data through use of the Burrows-Wheeler Transform (BWT) [Burrows et al. 1994]. In this approach, BWT is utilized as a data pre-conditioning step before application of S-LZW. Due to the computational complexity of the method, it does not provide any improvements in energy consumption for nodes with short range radios (CC2420) but does provide savings for nodes with medium and long-range radios at the cost of computational complexity. For structured datasets (e.g., SensorScope, Great Duck Island, etc.), preconditioning using the Structured Transpose (ST) has been shown to be more effective than using BWT [Sadler and Martonosi 2006]. Use of ST shows reasonable improvements in terms of computational complexity and energy savings compared to basic S-LZW.

In summary, S-LZW and its variants are good compression algorithms for WSNs with very little or zero spatial and temporal data correlations as they are not designed to exploit these correlations during compression.

3.2 Data Aggregation

Data aggregation [Rajagopalan and Varshney 2006; Alzaid et al. 2008] is the simplest in-network processing technique for data and communications compression in WSNs. In certain WSN applications, it is not necessary or efficient for all sensors to transmit the data directly to the sink since data generated by sensors in close proximity is often redundant and spatially correlated. Data aggregation combines, or fuses, data from nearby sensors into high quality summary information that is then transmitted to the sink, resulting in conservation of energy and bandwidth. The benefits of aggregation are determined by the distances between the fused data sources relative to that between the sources and the sink and by the size of the summary data relative to that of the original data. For maximum benefit, it is desirable that the aggregator is close to the sources and the routing paths from the sources to the sink pass through the aggregator. This leads to the research problems of determining the optimal aggregation tree/structure and finding the optimal aggregation function [Ozdemir and Xiao 2009; Karl and Willig 2005].

A significant number of works ([Heinzelman et al. 2002; Younis and Fahmy 2004; Lindsey et al. 2002; Samuel Madden and Hong 2002; Nath et al. 2008], etc.) in-
including few good reviews (Rajagopalan and Varshney 2006; Fasolo et al. 2007; Alzaid et al. 2008; Ozdemir and Xiao 2009) on data aggregation in WSNs have been published. In the following we summarize some key works in this area.

Sensor network architectures (SNAs) play a vital role in determining the performance of data aggregation protocols. Generally in flat networks, data aggregation is accomplished by data centric routing and sink initiated query message. The Sensor Protocol for Information via Negotiation (SPIN) [Kulik et al. 2002; Krishnamachari and Heidemann 2004] is based on push diffusion is one of the earliest works on data aggregation which shows significant energy savings compared to flooding. A secured version of SPIN is presented in [Xiao et al. 2006]. Global knowledge requirements and the inability to guarantee data delivery are the main disadvantages of SPIN protocols. Two phases pull diffusion based directed diffusion (DD) is another key approach of data aggregation for flat SNAs [Intanagonwiwat et al. 2000]. It is sufficiently energy efficient than an omniscient multicast scheme. Use of reliable communication makes reliable DD [Stann and Heidemann 2003] robust at the cost higher energy cost. Unlike SPIN it is not necessary to maintain a global network topology in directed diffusion. However, it is inappropriate for applications which require continuous data delivery to the sink.

Excessive communication and computation of flat SNAs can be avoided using hierarchical data aggregation [Heinzelman et al. 2000; Heinzelman et al. 2002; Younis and Fahmy 2004]. Generally in hierarchical data aggregation (e.g. cluster-based, chain-based and tree-based), data fusion occurs at special designated nodes, reducing the number of messages transmitted [Rajagopalan and Varshney 2006]. Low Energy Adaptive Clustering Hierarchy (LEACH) and Hybrid Energy Efficient Distributed Clustering Approach (HEED) are the two key cluster-based aggregation techniques [Heinzelman et al. 2000; Heinzelman et al. 2002; Younis and Fahmy 2004]. LEACH provides improvements in lifetime and accuracy compared to the direct approach but it assumes that all sensors are homogeneous in power and capacity which might not be valid in WSNs. LEACH-Centralized [Heinzelman et al. 2002] overcomes this problem and perform better than LEACH. Unlike LEACH, HEED selects cluster-heads based on a combination of node residual energy and proximity to its neighbors. It shows a better network lifetime than LEACH and achieves a geographically well-distributed set of cluster-heads. However, the requirement for multiple power levels at sensor nodes is a hindrance to widespread adoption. In cluster-based WSNs, nodes further from a cluster-head may require excessive energy in communication. Chain-based aggregations like Power Efficient data GAthering protocol for Sensor Information Systems (PEGASIS) [Lindsey et al. 2002] solve this problem by transmitting only to its nearest neighbor. PEGASIS is more energy efficient compared to LEACH but suffers due to global knowledge and homogeneity of nodes requirements.

In a tree-based SNAs, data aggregation is performed at intermediate nodes in the tree and aggregated data is transmitted to the root node. Tree-based Tiny AGgregation (TAG) [Samuel Madden and Hong 2002] uses a generic aggregation service especially designed for TinyOS based WSNs and monitoring applications. It is energy efficient but suffers due to periodicity requirements and lack of robustness. Power Efficient Data gathering and Aggregation Protocol (PEDAP) [Tan
and Körpeoğlu 2003] utilizes tree-based SNAs. Minimum spanning tree based PEDAP is a very promising approach that uses load balancing to maximize network lifetime. Even with time complexity of $O(n^2)$, the Power Aware version of PEDAP (PA-PEDAP) [Tan and Körpeoğlu 2003] can significantly improve the lifetime of LEACH or PEGASIS. Unfortunately, it relies on centralized operation and global knowledge. Popular directed diffusion also exploit tree-based SNAs. However, aggregating along a tree is highly vulnerable to node and transmission failures, which are common in WSNs [Samuel Madden and Hong 2002]. This is because there is only a single path in the tree from a source to the sink node. In order to overcome this robustness problems in tree-based aggregations, gossip-based techniques [Boyd et al. 2006; Dimakis et al. 2006] can be suitable. But these are not energy efficient. In [Nath et al. 2008] Synopsis Diffusion protocol solves these problems through a multipath approach. Use of multipath routing makes the relation between aggregation and the required routing topology loosely coupled, which ultimately makes Synopsis Diffusion robust and energy efficient. Hybrid approach the Tributaries and Deltas (T and D) protocol [Manjhi et al. 2005] tries to resolve the problems of both tree and multipath structures by combining the best features of both schemes. This may suffer due to high overhead incurred in updating the data gathering structure.

Aggregation techniques (e.g.,[Zhu et al. 2008]) which exploit correlation can capture more information about the source data than their counterparts, but the overheads involved in acquiring the correlation information is potentially prohibitive. Hence, most existing aggregation schemes do not exploit correlations and fail to maximize their compression ratio. The trade-off between these approaches need to be understood in order to choose the most effective approach for a given application.

To make aggregation useful in real applications it is important that data quality requirements are satisfied and the error introduced by aggregation is below a specified threshold. Work on QoS-based aggregation protocols seeks to provide some guarantees on the QoS achieved. The algorithm proposed in [Sadagopan and Krishnamachari 2004; Sensor et al. 2004] tries to maximize the amount of information collected at the sinks subject to constraints on energy, latency and data flows. In contrast, Application Independent Data Aggregation (AIDA) [He et al. 2004] performs aggregation adaptively so as to control congestion and achieve end-to-end reliability. AIDA can reduce end-to-end delay and transmission energy significantly under heavy traffic conditions compared to a ‘no aggregation’ scheme. However, the approach may be too complex for resource constrained sensor nodes. The author’s of [Cappiello and Schreiber 2009] present an aggregation-based compression technique which integrates QoS-awareness as well energy-awareness. QoS parameters include accuracy, precision and timeliness. The initial results are encouraging but are only limited to linear compression algorithms. A recent paper [Jeong et al. 2010], presents a lossless aggregation protocol, called Lump, which employs various properties of packets to, not only to support QoS, but also to maximize the Degree of Aggregation (DoA). Since it is a lossless protocol, the DoA is limited.

Table I summarizes the key aggregation protocols. Data aggregation in WSNs

1Considering the space, we have excluded the references, please use the references from discussion of the schemes. This also applies to other tables of this section.
significantly reduces energy consumption by only transferring a summary of the sensed values to the sink. As such, the technique sacrifices a lot of information about the measured values. Hence, the technique is limited to applications which can tolerate extreme data loss.

3.3 Predictive Coding

Statistical model based sensor data predictions or estimations in the sink or base station are promising ways of compressing data and communications in WSNs. In predictive coding (PC) the inherent temporal correlation between consecutive readings at an individual sensor is used to predict future observations in the sink based on the statistical model and recent measurements. Depending on the nature of the sensor data, PC can use parametric modeling or non-parametric modeling. For parametric modeling it is necessary to know (learning) the statistical parameters, such as mean and variance of sensor data. On the other hand, non-parametric modeling utilizes regression to represent sensor data where it requires very little prior knowledge about the sensor data. A majority of the existing PC schemes ([Deshpande et al. 2004; Chu et al. 2006; Lu et al. 2010; Tulone and Madden 2006; jun Xiao et al. 2006], etc.) are based on parametric modeling where a predictive model is established for every sensor node during a training phase, and that parameters of the model are passed to the sink. Thereafter, nodes only transmit updates to the sink whenever new data arrives or the difference between the model predicted value and the sensed value exceeds a threshold. Thus it reduces the number of communications between source nodes and the sink, hence supports communication level compression. A typical PC technique consists of the followings:

Statistical Model: The Statistical model and its prediction accuracy are the heart of PC [jun Xiao et al. 2006]. Key models are mainly autoregression based.
Autoregressive (AR) models [Tulone and Madden 2006] are computationally simple and predict future observations as a weighted sums of previous measurements. Autoregressive Moving Average (ARMA) models [Lu et al. 2010] use a similar approach but the model is more complex, allowing higher accuracy in some situations, at the cost of greater computational complexity. Autoregressive Integrated Moving Average models (ARIMA) [C. Liu and Tsao. 2005] support modeling non-stationary data as well as stationary data but are even more computationally complex.

Learning Phase: The learning phase is to teach the model about statistical parameters of it, which can be centralized or distributed. In the centralized case [Deshpande et al. 2004], all sensor nodes send their readings to the sink, or central node, which determines the parameters of the prediction model and transmit them back to the nodes. In distributed case [Lu et al. 2010; Tulone and Madden 2006], sensor calculates their own model parameters and, if necessary, transmit them to the sink.

Model Update: At the sink it can be done in one of two ways: (i) Pull: the sink requests updates as they are needed [Deshpande et al. 2004], and (ii) Push: the sensor sends updates as they are needed or become available [Chu et al. 2006]. In lossless applications, sensors transmit all prediction errors, or residues. These prediction errors replace the raw observations and reduce the amount of data transmitted data. In lossy applications, updates are only sent when the prediction error exceeds a pre-defined threshold. Clearly, the lossy approach allows for a greater reduction in the number of communications.

One of the most important early works in PC is the BBQ system [Deshpande et al. 2004]. BBQ uses probabilistic modeling techniques to optimize data acquisition for sensor network queries. The BBQ approach is 'pull-based', normally employing a complex centralized learning phase that must be re-run if the data statistics change. It uses dynamic Kalman filter to exploit temporal data correlations. Ken [Chu et al. 2006] addresses the 'SELECT' problem related to sensor data query in WSNs. It is a robust approximation technique that uses replicated dynamic probabilistic models to minimize communication between source nodes and sink. In contrast to BBQ, it is well suited to anomaly and event detection applications. Moreover, BBQ exploits only temporal correlations at individual nodes whereas Ken exploits spatio-temporal correlations between nodes. BBQ and Ken are geared toward different application domains and are largely complementary. Unification of these techniques would be a promising approach to data prediction in WSNs. Both BBQ and Ken require heavyweight learning phases, which may not work well for non-stationary data. The Probabilistic Adaptable Query (PAQ) system [Tulone and Madden 2006] provides a method for approximating the values of sensors in a WSN based on time series forecasting relying on AR models built at each sensor to predict local measurements. Unlike Ken or BBQ, PAQ is predicated on using lightweight models that can be learned by the individual nodes in the network and retrained quickly when faced with non-stationary distributions. Along with energy efficiency, the method is effective for outlier detection, adaption to dynamic changes in the data statistics, and tolerance of missing sensor data.

A key trade-off in PC is the accuracy of the prediction model. Accurate models tend to provide high prediction accuracy at the cost of requiring more model parameters. Addition of parameters leads to greater computation complexity in model.
fitting and greater transmission cost in sharing the models between the sources and sink. Hence flexible models can be less usable in real applications when the data statistics change frequently. Adaptive Model Selection (AMS) [Le Borgne et al. 2007] takes this trade-off into account by allowing sensor nodes to autonomously and adaptively select the best performing prediction model. The rationale of this AR-based approach is to only use complex prediction models if they prove to be more efficient both in terms of computation and communication savings. The results demonstrate the potential of AMS. However, 'racing' [Oded Maron 1997](a mechanism, which allows to discard poorly performing models from the set of candidate models) between candidate models may be a concern in real applications.

A central concern of recent works in the area is to introduce in-network data prediction and aggregation into the query processing. ADaptive AGgregation Algorithm for sensor networks with data Prediction (ADAGA-P) [Matos et al. 2010] implements a linear regression based data prediction function within an existing in-network data aggregation operator. It employs dynamic adjustment of the regression model and outperforms the previous version, ADAGA [Brayner et al. 2008], in terms of energy savings. As the sinks are responsible of calculating the model coefficients and send them back to the sensor nodes energy efficiency is a concern. Moreover, correct synchronization between sensor nodes is required.

PREdictive STOrage (PRESTO) [Li et al. 2009], a model-driven predictive and two-tier sensor architecture that comprises sensor proxies at the higher tier, each controlling tens of remote sensors at the lower tier. PRESTO proxies and sensors interact and cooperate for acquiring data and processing queries. It relies on an asymmetric prediction technique, and Seasonal ARIMA [Box and Reinsel. 1994]. PRESTO proxy builds the model order and parameters in its initialization phase and distributes them to the responsible sensors. It shows improvement in the energy required for data and query management and the query latency. Downside of this approach is that spatially correlated sensors update their parameters almost at the same time causing high traffic for the entire network. Moreover it is limited only to periodic dataset.

In conclusion, the performance of PC is determined by the effectiveness of the statistical model in terms of its accuracy, parameter size, update rate and computational complexity. Model needs to be robust enough to handle message loss, especially update message and node failures. Due to the cost of model update and re-training, PC based compression performs poorly in dynamic networks and environments where frequent updates are necessary.

3.4 Distributed Coding

Distributed Source Coding (DSC) is an extension of source coding and compression techniques from conventional networks to WSNs. It is asymmetric in complexity nature as it transfers the computational burden of source nodes to the sink and exploits the spatial correlation amongst adjacent sensors readings. DSC is the compression of multiple correlated sensor outputs where the sensors do not communicate with each other as shown in figure 2. Sensors send their compressed data to a central point, or sink, for joint decoding [Pradhan et al. 2002; Zixiang Xiong 2004]. The theoretical foundation of DSC is based on the Slepian and Wolf [Slepian and Wolf 1973] theorem. It shows that the optimal centralized compression effi-
ciency can be achieved by compressing each sensor’s data in a distributed manner only using statistical knowledge of the data at the other sensors, but not the actual value of the sensor data.

Slepian-Wolf’s foundational work on DSC was only for lossless source coding of discrete sources. For lossy source coding in WSNs, the theory was extended to incorporate a model of the distortion arising in the encoding processing. Lossy distributed compression based on Slepian-Wolf theorem was first considered by Wyner and Ziv [Kaspi and Berger 1982]. The results show that there is no performance degradation for lossy compression with side information (information from other sources) only available at the decoder (figure 2(ii)) compared to a scheme with side information available at both the encoder and decoder (figure 2(i)). Rate-distortion extension of the theory provides a tool to characterize the communication required to achieve given a distortion in a network with highly spatially correlated data [Cristescu et al. 2003].

The results published in [Slepian and Wolf 1973; Kaspi and Berger 1982] are solely theoretical. Practical DSC schemes for WSNs involve two key operations: gathering and tracking of correlation knowledge, and code construction [Chou and Petrovic 2003]. Correlation gathering and tracking can be done in a centralized [Chou and Petrovic 2003] or distributed (localized) manner [Yuen and Li 2008]. In the centralized case, an individual node, such as the sink, is responsible for collecting and tracking all of the correlations within the network whereas, in the distributed case, cluster-heads are responsible for gathering and tracking correlation data for a subset of nodes and a summary is shared with the sink [Yuen and Li 2008]. Encoding can be done in four different ways [Marco and Neuhoff 2004]: No-Slepian-Wolf Scheme (NOSW), Sequential Slepian-Wolf scheme (SEQ), Slepian-Wolf Clustered (CL), and Slepian-Wolf Master Slave (MS).

A number of constructive encoding schemes have been proposed [Garcia-Frias and Zhao 2001; Angelos D. Liveris and Georghiades 2002; Pradhan and Ramchandran 2003; Chou and Petrovic 2003; Zixiang Xiong 2004]. In general, the decoding of a sensor’s message relies on the successful decoding of the messages from other sensors. For example, if sensor A encodes based on statistical knowledge of the

Fig. 2. (i) Joint encoding of X and Y using local communication. (ii) DSC based on Slepian and Wolf theorem.
data at sensors B and C then messages from B and C must be successfully decoded at the destination before sensor A's message can be decoded. Consequently, the loss of a single message may cause decoding failure for multiple other messages, hence the robustness of the schemes. Channel coding is a way to protect against message loss and is well supported by Wyner's realization of the close connection between DSC and channel coding [Zixiang Xiong 2004]. Hence, most practical proposals for DSC integrate channel coding, such as Turbo codes [Garcia-Frias and Zhao 2001] and LDPCs (Low Density Parity Codes) [Angelos D. Liveris and Georghiades 2002]. In [Garcia-Frias and Zhao 2001], the authors exploit punctured Turbo codes for compression of correlated binary sources. Unfortunately, the lack of a proper theoretical link between Slepian-Wolf and Turbo code design has, thus far, prevented effective integration of the methods. LDPC codes seem to be more suited for WSN DSC applications [Angelos D. Liveris and Georghiades 2002]. All LDPC code design techniques are applicable to DSC and they perform better than any Turbo coding scheme suggested so far.

The authors of [Pradhan et al. 1999] present a practical encoding method for distributed compression in an attempt to achieve the bounds predicted by [Slepian and Wolf 1973; Kaspi and Berger 1982]. Distributed source coding using syndromes (DISCUS) [Pradhan et al. 2000; Pradhan et al. 2002] address the new area of collaborative information communication and processing. Although promising, the correct choice of correlated side information is essential to ensuring the performance of the algorithm and is normally not well known in practice. This limits the feasibility of the approach when applied to real WSNs. In [Chou and Petrovic 2003], a novel approach to reducing energy consumption in sensor networks using a distributed adaptive signal processing framework and algorithm is proposed. The algorithm employs a sink-based centralized approach for the correlation gathering and tracking and a modulo-based sequential coding scheme for code construction. This approach enables sensor nodes to blindly compress their readings with respect to one another without inter-sensor communication. Results show significant energy savings for typical sensor data across a multitude of sensor modalities.

In [Zixiang Xiong 2004], the authors presented a sequel to [Pradhan et al. 2002] along with their own work on DSC and other relevant research efforts ignited by DISCUS. Through analysis and examples they [Slepian and Wolf 1973; Kaspi and Berger 1982] showed that Slepian-Wolf source coding and Wyner-Ziv coding are in fact source-channel coding problems. They also suggested cross-layer design and joint design of distributed source codes, channel codes and modulation schemes. Work in [Paolo et al. 2006] presents a joint performance analysis of DSC topologies and packet aggregation (PA) with fragmentation schemes. It considers the four coding schemes proposed in [Marco and Neuho 2004], and their integration with three alternatives aggregation techniques. Expressions for the performance of DSC and PA are derived in terms of packet loss probability and average number of transmitted bytes along with energy efficiency. The work concludes that DSC topologies with a master-slave approach and fragmentation of packets exhibit better performance (e.g. robustness, etc.).

The distributed framework [Yuen and Li 2008] jointly optimize rate allocation and transmission in the presence of capacity constraints. For the optimization it
exploits data correlation among the sensor nodes and the effect of location depend-
dent contention in the wireless channels. To exploit data correlations within sensor
nodes it adopts localized slepian-wolf coding, an approximated version of Slepian-
Wolf coding. Even with their potentiality in asynchronous network settings, mobile
and multisink sensor networks, it will not work well in practice as it considers static
link capacity and avoids routing issues. Moreover, as it considers an approximated
slepian-wolf coding it suffers when the neighborhood size is small (not scalable). In
a recent work [Hong et al. 2010], author present the performance of a DSC-based
system (slotted ALOHA) in terms of throughput, delay, and energy efficiency. They
provide a closed-form expression for average throughput based on approximations
of the average traffic load in each time slot and derive the average delay and en-
ergy consumption via Markov Chain analysis. Results show a possible trade-off
between the average delay and energy consumption for different probability assign-
ment schemes and for fixed and adaptive MAC protocols. They also highlight the
importance of cross-layered transmission control for the efficient delivery of DSC
messages as a key to the overall success of DSC.

Works on DSC for WSNs are directly, or indirectly, inherited from the Slepian-
Wolf theorem. Hence, all proposed DSC algorithms require prior knowledge of the
data correlations at different sensors, which limits the effectiveness of the methods
in real WSN applications. Moreover, lack of robustness and scalability is a concern
for these works.

3.5 Transform-based Compression

Transform-based compression approaches are very common for image and video
signals. Generally, transform-based approaches support lossy compression. Raw
data are transformed into a set of coefficients for appropriate basis functions, for
example wavelet functions, which can be used to reconstruct the signal at the
receiver. In most cases, a reduced number of quantized and non-zero coefficients
are sufficient to recover an approximation of the original data with low distortion.
Entropy coding is typically applied to the coefficients to further reduce data rate.
The Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT)
have been used extensively in image and video compression applications (e.g., DCT
is used in JPEG and DWT is used in JPEG2000).

Sensed environmental data, such as temperature, humidity, light, etc. can be
modeled as an image map and standard image compression methods can be ap-
plied to the map. However, some of the unique characteristics of WSNs - limited
computation, distributed processing, degree of correlation, faulty readings - make
direct implementation of these approaches inefficient. In the following we briefly
review the algorithms for in-network linear transform-based compression in WSNs.
Interestingly, transform-based methods have also been used in the training phase
of DSC-like algorithms for the purposes of gathering correlation knowledge [Dang
et al. 2007].

Transform-based methods can be viewed as data-dependent and structure-dependent
techniques, as they exploit statistical correlations in the data and the network’s
structure respectively. Most design techniques for transform-based compression
can be viewed as either Transform Driven or Routing Driven. Transform Driven
approaches [Wagner et al. 2005; Wagner et al. 2006; Ciancio et al. 2006] focus on
utilization of a specific transform. Routing and processing strategies are then developed that allow computation of the transform in the network. These approaches are effective from a data de-correlation standpoint. However the routing and processing strategies may not be always efficient in terms of data transportation cost. For instance, nodes may be required to transmit their data multiple times [Wagner et al. 2005; Wagner et al. 2006], or transmit multiple copies of the same coefficients [Ciancio et al. 2006], or may even be required to transmit data away from the sink [Gastpar et al. 2006; Wagner et al. 2005; Wagner et al. 2006]. These strategies can outperform raw data gathering for very dense networks, but can produce considerable communication overhead for small to medium sized networks. Routing Driven approaches focus on establishing an efficient routing tree (e.g., shortest path routing tree) and use transform computations on the routing paths in the tree. These approaches are typically more efficient since the transforms are computed as data is routed to the sink along efficient routing paths. These transforms can be easily integrated within existing routing protocols, allowing such schemes to be easily applied in WSNs - as demonstrated by the SenZip [S. Pattem and Ortega 2009] compression tool.

The Karhunen-Loève Transform (KLT) [Gastpar et al. 2006] is commonly used for compression and is a key ingredient of many signal processing and communication systems. The Discrete KLT (DKLT) shows potential for WSN data compression since it achieves maximum data de-correlation and can be utilized in a distributed fashion [Gastpar et al. 2006]. However, one of the prerequisites for the DKLT is knowledge of the global correlation statistics. In addition, being non unidirectional, that is, data sometimes travels away from the sink, which could be very expensive in terms of communication cost. Thus a direct implementation of the KLT is unsuitable for practical WSNs applications. To address this problem, a unidirectional tree-based KLT (T-KLT) has been presented in [Shen et al. 2009]. The method applies the KLT to data collected at each node and its descendants. This 'whiten', or de-correlates, the data. The coefficients of the transform are then encoded and forwarded to the parents node which applies the inverse KLT to recover the original data. To perform the TKLT, each node must know the second-order statistics of its sub-tree. This incurs learning costs associated with discovering and disseminating these statistics.

A number of works [Lee et al. 2007; Wang et al. 2009; Dang et al. 2007] have adopted the DCT for data compression in WSNs. The JPEG-based method in [Lee et al. 2007] exploits the DCT for energy efficient communication of images in WSNs. DCT-supported compressed communication is shown to have better time and energy efficiency than uncompressed communication. The authors in [Wang et al. 2009] adopts the DCT and differential coding to reduce data redundancy. Moreover, [Dang et al. 2007] shows that the DCT is suitable for smooth signals whereas wavelet-based transforms are more suitable for piecewise constant data. Generally speaking, DCT-based compression methods improve energy efficiency compared to uncompressed communications at the cost some undesirable side-effects, for example, the complexity of de-correlation at block boundaries, blocking artifacts, and difficulties in adapting to data source statistics.

Numerous methods have been proposed to exploit wavelets and their variants in
analyzing and compressing sensed data [Wagner et al. 2005; Wagner et al. 2006; J. Acimovic and Cristescu 2005; Ciancio and Ortega 2004; Ciancio et al. 2006; Ciancio 2006]. The majority of the earlier wavelet transform based works on WSNs (e.g.[Servetto 2003; Ciancio and Ortega 2005], etc) are non-unidirectional and assume a regular-grid placement of sensor nodes. Authors in [Servetto 2003] have used 1D regular-grid wavelet transforms to solve the 2D sensor broadcast problem. The Lifting Scheme based Wavelet Transform (LSWT) [Ciancio and Ortega 2005] exploits the regular-grid nature of some WSNs and employs 1D wavelet decomposition along paths through the 2D measurement field. It minimizes inter-node communication by transmitting partial coefficients in an forward direction and updates future sensors (e.g. next sensors in the direction to the sink) until the full coefficients are computed. However, no means for determining the optimal path is given. In real WSNs applications, it seldom that nodes are placed in regular grids. WSNs with irregularly placed nodes requires different algorithms. A version of the lifting algorithm was proposed for applying the wavelet transform by tracing through the path in the minimum spanning tree and performing the wavelet filter [Ciancio and Ortega 2005]. The method implicitly assumes that the path will be long enough to apply wavelet analysis effectively. Moreover, it is not clear how to choose the best path for compression and spatial correlation is not fully explored. The system described in [Ciancio and Ortega 2005] could be extended to use irregular-grid 1D wavelets, using a method similar to the 1D Haar protocol described in [J. Acimovic and Beferull-Lozano 2005]. However, the approach would not be capable of fully capturing the higher-dimensional spatial dependencies between the measurements. The work in [R. Wagner and Baraniuk 2005] provides an irregular-grid, fully 2D, distributed wavelet transform for sensor networks, based on piecewise-constant multiscale approximation and multiscale routing structures. This work has been extended in [Wagner et al. 2005] to develop a fully distributed, irregular-grid wavelet transform and protocol for sensor networks that is capable of piecewise planar multiscale approximation. The paper presents distributed solutions to implementation issues included mesh building, filter coefficient calculation, and transform coefficient calculation.

Reference [Ciancio and Ortega 2004] is one of the first Routing Driven transform based methods to exploit the wavelet transform to de-correlate WSNs data in a distributed fashion. Using a flexible means of exploiting trade-offs between processing and communication costs, the method can maximize energy efficiency, as well as network performance, according to given device specifications. This work considers spatially correlated WSN data, not temporal correlations within intra-sensor data. In [J. Acimovic and Cristescu 2005], the authors provide adaptive and distributed processing algorithms for large-scale WSNs where the data gathering algorithm is selected adaptively based on the properties of the signal field. They claim that wavelet based processing is well-matched to the challenge of compression of deterministic signals, such as piecewise constant signals, and prediction based on Differential Pulse Code Modulation is optimal for random Gaussian data in correlated fields. Results clearly show the energy efficiency of the distributed de-correlating process as well as en-route in-network transformation and the unidirectionality of the method. The authors of [Ciancio et al. 2006] consider a slightly
different scenario in which a number of compression schemes are available at each node and the objective is to select the best possible on the basis of the expected computation/communication cost trade-off. They addressed scheme assignment in a two dimensional field assuming that the routing structure is known by using a heuristic extension of dynamic programming based on an optimal solution for a one dimensional network, presented in [Ciancio and Ortega. 2006]. Results show that by optimizing compression algorithm selection, overall energy consumption can be significantly reduced compared to the case where data is just quantized and forwarded to the central node. However, the analysis only considers predefined routing topologies which are not always available in real WSNs. Moreover, independent selection of routing and coding algorithms may not be optimal in all cases.

The key focus of works on distributed wavelet based algorithms [Ciancio 2006], is to maximize the data quality at sink for a given a target energy consumption at the nodes. Unlike previous works [Wagner et al. 2006; J. Acimovic and Cristescu 2005; Ciancio et al. 2006], it considers entropy based variable length encoding of DWT coefficients. Along with other improvements (e.g. 2D instead of 1D), the work considers the possibility of using compressive sampling to reduce the overall power consumption. The authors of [Shen and Ortega 2008b] present a unidirectional 2D transform for an arbitrary routing tree, allowing the transform to exploit 2D spatial correlations to a greater extent than earlier path-wise transforms (e.g. [Ciancio and Ortega 2004; Ciancio et al. 2006]) without incurring the overhead of more general 2D transforms. The proposed optimization framework exploits the trade-off between higher local costs for more intricate coding in return for a lower final transport cost. The results show the potential of the proposed method, compared to earlier techniques, in terms of transform computation cost and coefficient transport cost. These improvements are mostly due to unidirectional computation of the 2D transform and the effectiveness of unidirectional computation in offsetting excessively high local communication costs, especially in the backward direction. The main objective of a recent work [Shen 2010] is to find a general set of en-route in-network (or unidirectional) transforms for given routing trees and schedules in conjunction with a set of conditions for their invertibility. This general set includes a wide range of existing unidirectional transforms and has also inspired new transform designs which perform better than existing transforms in the context of data gathering in WSNs. The proposed unidirectional, Haar-like, transform leads to significant improvements over existing unidirectional transforms.

Quite a few compression frameworks have been proposed to use wavelets and their variants in analyzing and compressing the sensed data([Ganesan et al. 2005; Xu et al. 2004; Dang et al. 2007], etc.). DIMENSIONS [Ganesan et al. 2005] is one of the first frameworks addressing multi-resolution data access and spatio temporal pattern mining in a sensor network using wavelet compression. Like DIMENSIONS [Ganesan et al. 2005], Wisden [Xu et al. 2004] presents WSN framework for structural monitoring. It employs wavelet transform-based compression technique to reduce the communication in real-time. Wagner [Wagner et al. 2005; Wagner et al. 2006] presents a distributed wavelet transform and data harvesting architecture for sensor networks that removes the assumption about the regularity of the grid. The

ACM Journal Name, Vol. V, No. N, Month 20YY.
Table II. Summary of the key Transform-based Compression Techniques

<table>
<thead>
<tr>
<th>Technique</th>
<th>Key Features</th>
<th>Advantages</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>KLT</td>
<td>Behaves like PCA (Principal Component Analysis), DKLT and T-KLT suit WSNs</td>
<td>T-KLT has unidirectionality, hence efficient</td>
<td>Global knowledge needed, Scalability</td>
</tr>
<tr>
<td>DCT</td>
<td>Exploits cosine function, variants DCT-I to DCT-VIII</td>
<td>Multi-resolution</td>
<td>Blocking artifacts</td>
</tr>
<tr>
<td>DWT</td>
<td>Exploits wavelets, variants available (e.g. LSWT, 1-D, 2-D, etc.)</td>
<td>Robustness, unidirectionality possible</td>
<td>Scalability</td>
</tr>
</tbody>
</table>

Transform sparsifies piecewise-smooth sensor measurement fields.

As summarized in Table II, transform-based compression techniques (e.g., wavelet-based approaches [Wagner et al. 2005; Ciancio et al. 2006; Shen and Ortega 2008a] and the distributed KLT [Gastpar et al. 2006]) suffer in scalability. This is due to the critical sampling requirement of the phenomenon, which causes the cost of gathers to scale with the number of sensors and could lead to poor performance in large deployments.

3.6 Compressed Sensing

Three inherent inefficiencies of transform coding motivate the need for alternative compression techniques: Firstly, compressing a high-dimensional signal, means processing a large number of samples n. Secondly, the encoder must compute all transform coefficients θ(n), even though it will discard all but K(n ≫ K) of them. Finally, the encoder must encode the indices of large coefficients. This increases the coding rate since these indices change with each signal. In this context, Compressed Sensing (CS) has been considered as a potential alternative since the number of samples required (i.e., number of sensors that need to transmit data), depends on the characteristics (sparseness) of the signal [Donoho 2006; Candes E. and Tao 2006; Candes and Romberg 2007]. Sparsity arises in WSNs data due to spatio-temporal correlations within the sensor readings. The asymmetric computational nature of CS also makes it attractive for WSN data compression. In CS, most computation takes place at the decoder (sink), rather than at the encoder (sensors), thus sensors with minimal computational performance can efficiently encode data.

The CS field (also known as compressive sampling) field has existed for at least four decades, but recently (about 2004) researchers’ interest in the field has exploded due to several important results obtained by David Donoho, Emmanuel Cands, Justin Romberg and Terence Tao [Donoho 2005; 2006; Candes E. and Tao 2006]. CS is a novel sensing/sampling paradigm that goes against the traditional understanding of data acquisition. Donoho, Cands, Romberg and Tao showed in their milestone works on CS that if a signal has a sparse representation in one basis then it can be recovered from a small number of projections onto a second basis which is incoherent with the first one. A prerequisite for CS is tractable recovery procedure that can provide exact recovery of a signal of length n and sparsity K. In other words, a signal can be written as a sum of K basis functions from some known basis, where n ≫ K. CS is promising for many applications, especially in sensing...
signals that have a sparse representation in some basis. Rather than sampling a \(K \)-sparse signal \(n \) times, only \(M = O(K \log n) \) incoherent measurements are sufficient. Moreover, at the encoder, no manipulation is required for the \(M \) measurements except, possibly, some quantization. For more advanced and detailed information on CS theory, readers are referred to [Candes and Wakin 2008; J. Haupt and Nowak 2008; Mohammadeza 2011] and references therein.

CS exhibits similar benefits to DSC including a simple encoding process, avoidance of inter-node data exchange, and decoupling of compression from routing. In addition, CS has two further advantages: graceful degradation in the event of abnormal sensor readings and data reconstruction is insensitive to packet loss. In CS, all messages received at the sink are equally important. On the other hand, in DSC, received data is predefined as main or side information. Losing main information causes serious errors to the decoder. These merits make CS a promising solution to the data gathering problem in large-scale WSNs [Luo et al. 2009]. Research on CS for WSNs is at an early stage. Even though the number of publications in this area is limited, they are quite diverse in terms of the issues studied (e.g. routing, performance, etc.). In the following, we briefly summarize the existing works.

CS works for WSNs can be categorized according to correlations they exploit: (i) temporal (ii) spatial and (iii) spatio-temporal. Most early proposals for CS in WSNs exploit temporal (intra-signal) structures only. They only exploit temporal correlations within multiple sensor readings at a single sensor and do not exploit spatial (inter-signal) correlations amongst nearby sensors. Early CS works on multi-sensor scenarios consider only standard CS for the joint measurements at single time instances (e.g. [Waheed U. Bajwa and Nowak 2007]). These schemes ignore the intra-signal or temporal correlations. On the other hand spatio-temporal approaches [Vuran et al. 2004; Duarte et al. 2005] exploit the spatial correlation structures within different nearby sensors and the temporal correlation structure of each sensor’s time variant readings.

In [Bajwa et al. 2006], the authors introduced and analyzed the concept of Compressive Wireless Sensing (CWS) for energy efficient estimation at the sink of sensor data that is compressible in some basis. Their analysis was based on a function which depends on the number of sensor nodes and the associated power-distortion-latency tradeoffs. Even though CWS is not optimal, it is universal in the sense that it provides us with consistent field estimation, even if little or no prior knowledge of the sensed data is available. Universality comes at the cost of optimality in terms of a less favorable power-distortion-latency trade-off which is a direct consequence of not having sufficient prior knowledge of the sensed data. CWS uses phase synchronization between the nodes instead of in-network communications and processing. The approach can decrease the latency of data gathering in a single-hop network by delivering linear projections of sensor readings through synchronized amplitude modulated analogue transmissions. However, difficulties in synchronization make it less practical for large-scale sensor networks.

The authors in [J. Haupt and Nowak 2008] describe how CS techniques can be utilized to reconstruct sparse or compressible networked data in a variety of practical settings, such as general multi-hop networks and WSNs. The central focus of the work is management of resources during the encoding process, which is
important as well as challenging. The work presents a procedure, based on random gossiping, for general multi-hop networks to exploit CS in storage and retrieval of networked data from multiple points instead of a single sink or Fusion Centre (FC). A two step procedure is used to calculate the projections and deliver them to every subset of nodes in the network using gossip techniques or clustering and aggregation. It employs an analogue mechanism similar to the one used in CWS to transmit sensor readings to the FC. This encoding oriented work mainly exploits temporal relationships in calculating projections, not spatial or spatio-temporal.

The key objectives of Compressive Data Gathering (CDG) [Luo et al. 2009] are to compress sensor readings to reduce global data traffic and to distribute energy consumption evenly so as to prolong network lifetime in large scale WSNs. As in DSC, the decoder exploits the data correlation pattern in this pioneering work. Moreover, compression and routing are decoupled and therefore can be separately optimized. The paper also includes an analysis of the capacity CDG in WSNs, which shows that CDG can achieve a capacity gain of $\frac{n}{M} (n \gg M)$ over baseline transmission. CDG is well suited to large scale WSNs but suffers in small scale WSNs where signal sparsity may not be sufficient. CDG works well in networks with stable routing structures, as frequent node failure or dynamic route changes lead to high control overheads that, potentially, cancel out the gain obtained from the compression.

A key focus of CS theoretical developments is to minimize the number of measurements (sampling compression), rather than on minimizing the cost of each measurement. To make CS an efficient compression technique for WSNs, an explicit trade-off between measurement cost and reconstruction quality is necessary. In [Lee et al. 2009] authors have proposed an energy-efficient CS for WSNs using spatially-localized sparse projections. In order to keep the transmission cost for each measurement low, the method gathers measurements from clusters of adjacent sensors and utilizes localized projection within each cluster. Joint reconstruction provides better performance than independent reconstruction since it can exploit measurements from multiple clusters. The proposed approach outperforms standard CS techniques for sensor networks. The key to the success of the approach is optimal clustering, which is not a trivial problem.

Event detection is a key application of WSNs. For large scale WSNs, events are relatively sparse compared to the number of sources. Considering this, the authors of [Meng et al. 2009] propose a CS method for sparse event detection in WSNs. They show that the number of active (awake) sensors can be greatly reduced. In fact, the number of sensors can be similar of the number of sparse events, much less than the total number of sources. For signal reconstruction, they consider a fully probabilistic Bayesian framework which helps in significantly reducing the sampling rate while still guarantee a large detection probability. Moreover, use of a marginal likelihood maximization algorithm and a heuristic algorithm for the Bayesian framework leads to higher detection probability than traditional linear programming.

Reference [Baron et al. 2009] extended the theory and practice of CS to multi-signal, distributed settings. It presents a new theory for Distributed Compressive Sensing (DCS) that facilitates new distributed coding algorithms for multi-signal
ensembles. These new compression algorithms rely on a new concept - the joint sparsity of a signal ensemble - and exploit spatio-temporal correlation structures. The work characterizes the fundamental performance limits of DCS for jointly sparse signal ensembles in the noiseless measurement case, for three different modes of CS (i.e., single-signal, joint, and distributed). To demonstrate the potential of the compression framework, detailed examples of three models for jointly sparse signals were presented and practical algorithms for joint recovery of multiple signals from incoherent projections are developed. For two of the three models, performance predictions match the results obtained from practical algorithms.

In [J. Luo and Rosenberg 2010], the authors investigate the benefit of CS in data collection of WSNs. It compares a non-CS method (aggregation) with a simple CS algorithm called plain-CS and concludes that, in terms throughput, plain-CS is outperformed by non-CS. The key finding of the work is that applying CS naively may not bring any improvement, and hybrid-CS can achieve significant improvements in throughput as compared with non-CS. Selection of non-CS and CS points within the hybrid-CS scheme is critical in getting the benefit of CS. In a very recent work [Caione 2012], authors showed that DCS suffers compared to a mixed protocol in large scale WSNs and real technological constrains. They also claimed that CS can be a powerful tool for energy saving in WSN if network size and compression are both taken into consideration in network design.

Thus far, the problems of identifying sparsity requirements, finding the proper basis for random projection calculations, ensuring local communication have limited the usefulness of CS and DCS in WSNs. In addition, the high decoding complexity could be a problem for real-time time applications in large scale WSNs.

4. COMPARATIVE STUDY

This section provides a comparison of the performance of each category of compression algorithm described in the previous section. Due to the very limited use of text-based compression in WSNs, it is excluded from the study. Clearly, the proposals within each category are diverse in nature and implementation, making it difficult to come up with a generic and common performance study. However, to take a holistic view of these diverse proposals it is important to make the comparative study as generic as possible.

This section is structured as follows. Firstly, the assumptions on which the evaluation is based on are described. Secondly, the performance metrics are introduced. Thirdly, expressions for the metrics are derived for each category and finally, the performance of the approaches is compared with the aid of numerical analysis.

4.1 Assumptions

Herein, we assume a centralized optimal scheduler, which schedules communication in the network. Thus, there are no collisions. WSN topology can play an important role in the energy efficiency of it. Topology may vary according to application, hence the performances of the compression schemes. Considering the diversity of WSNs applications, it is very hard to consider all the possible topologies and their corresponding performances. In this work we are considering a specific WSN topology shown in the figure 3 as a basis and trying to make the derivation of the performance metrics as generic as possible so that they apply to all the possible
topologies with little or no change. Explicit dependency of metric on topology will be discussed in the corresponding section. As shown in the figure 3, each sensor node corresponds to a vertex in the graph G with radius R. Two vertices are connected if their corresponding sensor nodes can communicate directly. Parent nodes can act as aggregation points or transform calculators. The number of nodes n, node degree d (i.e., the average number of child nodes or no. of nodes in a cluster for cluster-based topology, etc.), average hop count to the sink H and network depth D (i.e., maximum number of hops to the sink) are the parameters of the network. Within the network considered we assume that node density is sufficiently high so that there is significant spatial correlation between data collected at neighboring nodes. We also assume that the node level sampling rate is high enough to maintain intra-signal temporal correlation. Since the network is a highly connected, node degree d can be expressed in terms of the number of nodes n [Eschenauer and Gligor 2002]:

$$d = \frac{n}{n-1} \left(\ln(n) - \ln(- \ln(P_c))\right)$$ \hspace{1cm} (1)

where P_c is the probability that the network or graph is connected (P_c is close to 1 for highly connected networks). Based on this, the depth of the network D can be expressed as $D = \frac{\ln(n)}{\ln(d)}$. Above calculations consider a uniform WSN structure which might not be always true in real life. In real WSNs d and D might vary within a range, hence the metrics depend on them.

4.2 Performance Metrics

The following performance metrics are used in the performance analysis.

Compression Ratio (CR): The data compression ratio is the ratio of the uncompressed data size, in bits, b_r to the compressed size b_c, also in bits, and is given by:

$$CR = \frac{b_r}{b_c}$$ \hspace{1cm} (2)
amount of time that the MCU is on. For modern MCUs supporting sleep modes, compression, which is directly proportional to the number of samples taken. Thus when applying WSN applications. In all cases, it is proportional to the total sampling time power hungry sensors [Device 2010]. Consequently the energy of switching states, and consumption of a node can be expressed as:

\[
E_{\text{total}} = E_{\text{sam}} + E_{\text{comp}} + E_{\text{sw}} + E_{\text{comm}}
\]

where \(E_{\text{sam}}\) is the sampling energy, \(E_{\text{comp}}\) is the computational energy, \(E_{\text{sw}}\) is the energy of switching states, and \(E_{\text{comm}}\) is the communication energy.

The energy cost of sampling is not always insignificant, especially when using power hungry sensors [Device 2010]. Consequently \(E_{\text{sam}}\) is highly dependent on the WSN applications. In all cases, it is proportional to the total sampling time which is directly proportional to the number of samples taken. Thus when applying compression, \(E_{\text{sam}}\) scales with \(SR - 1\).

The energy associated with computation \(E_{\text{comp}}\) is directly proportional to the amount of time that the MCU is on. For modern MCUs supporting sleep modes,
the amount of time that the MCU is on is dependent on the number of clock cycles N_{op} required for the task. The total energy overhead due to the encoding and decoding process is given by E_{coding}.

The switching energy E_{sw} is expended when the radio or MCU switches between states (e.g. sleep, idle, listen/Rx, Tx, etc.). Switching energy for the MCU is not significant. On the other hand, the cost of switching the radio [Jurdak et al. 2010] is not negligible. The use of data compression itself does not typically reduce the number of times that the radio must be activated and de-activated since the compressed source data must still be routed across the network. However, sampling compression reduces the number of radio activations and de-activations by a factor of $(SR - 1)$.

The energy cost of communication E_{comm} is the most important constituent of E_{total}. It is directly proportional to the on time of the radio, both for transmission and reception. It also depends on the distance between sender and receiver nodes. For a fixed network and for the purposes of the analysis herein, we can note that the energy consumption of communication when using compression E_{comm} scales according to $(CR - 1)$.

Overall, the energy saving E_{saving} achieved by using compression can be expressed as:

$$E_{saving} \approx (1 - \frac{1}{SR})(E_{samp} + E_{sw}) - E_{coding} + (1 - \frac{1}{CR})E_{comm}$$

(5)

where E_{coding} is the energy required for encoding or processing the compression.

In most deployments, the $(1 - \frac{1}{CR})E_{comm}$ term dominates energy savings [Pottie and Kaiser 2000; Barr and Asanović 2006]. For most the compression algorithms (e.g. aggregation, DSC, PC, transform-based, etc.) except for CS/DCS $(SR = 1)$ approaches equation (5) can be simplified to:

$$E_{saving} \approx (1 - \frac{1}{CR})E_{comm} - E_{coding}$$

(6)

Distortion: In lossy compression techniques, distortion measures the difference between the original and reconstructed data. In most cases, the distortion is defined as the expected value of the square of the difference between original and reconstructed signal (i.e., the mean squared error). Figure 5(i) shows the relationship between Rate (bits/sample which is $\frac{1}{CR}$), Energy Consumption and Distortion in compressed and uncompressed situations and Figure 5(ii) shows Rate-Distortion relationship. These figures clearly show that higher the compression higher the distortion, hence the energy efficiency. Typically, bounded distortion is desirable in most of the lossy compression schemes, which makes the R-E-D relationship an optimization problem.

Latency: In WSNs, latency is the average delay incurred in delivering a message from a source to the sink node. Without compression, the main contributor to overall delay is the communication delay T_{comm} of sending the raw information. Typically, for a fixed channel capacity or bandwidth, the latency of communication is directly proportional to amount of data to be transferred. Hence, when using compression, the latency of the communication is inversely proportional to the Compression Ratio. However, extra processing delays are incurred both at the
encoder T_{encoding} and decoder T_{decoding}. Thus the overall latency T when using data compression can be approximated as:

$$T \approx T_{\text{encoding}} + (1 - \frac{1}{CR}) \times T_{\text{comm}} + T_{\text{decoding}}$$

(7)

For a given MCU, T_{encoding} and T_{decoding} are directly proportional to the number of clock cycles N_{op} needed for the encoding and decoding tasks, respectively, including processing and memory access. When using data compression, these additional processing delays are offset by the resulting reductions in the communication time.

4.3 Performance Metrics for Each Category

For all the calculations we assume a data set of n_s consists of spatially or temporally correlated samples and k is the number of bits per sample in the non-compressed case.

4.3.1 Aggregation. Compression Ratio: In aggregation CR is same as the degree of aggregation (DoA), which is defined as the ratio of the number of bits present in all the samples aggregated and the number of bits in the aggregation output. If H_l is the header’s bit length of a packet and E_b is the extra bits cost for aggregation, then the CR or DoA is:

$$CR_{Ag} = \frac{n_s(k + H_l)}{k + H_l + E_b}$$

(8)

For node level (temporal) aggregation n_s is equal to the number of samples generated within the aggregation period but for spatially distributed signals n_s depends on the node degree d of the concerned aggregator.

Computational Complexity: Finding an optimal aggregation tree in WSNs and calculating the aggregation function over the collected data at the aggregation points are mainly responsible for the CC of aggregation. For a given and deterministic (as majority of WSN applications deployments use) aggregation tree, CC depends on the aggregation functions (e.g., max, sum, average, variance, etc.). For instance CC for data aggregation based on distributive functions(e.g. max, min,
etc.) is of the order $\Theta(D + d_{\text{max}}(G))$, where d_{max} is the maximum node degree of the graph G [Li et al. 2010]. So the overall N_{op} in a deterministic aggregation structure is directly proportional to D and d. In case of dynamic WSNs CC of aggregation is dominated by the aggregation structure formation.

Energy Efficiency: Using CR (equation 8) and CC in equation (6) we can determine the approximate energy saving as follows,

$$E_{\text{Ag saving}} \approx (1 - \frac{k + H_l + E_b}{n_s(k + H_l)})E_{\text{comm}} - E_{\text{coding}}(D, d) \quad (9)$$

Distortion: Typically aggregation is a lossless compression technique, hence should be distortionless. As shown in equation 8, distortion has no direct impact on data aggregation’s CR. Distortion may appear due to the missing of sensor readings (e.g. node failure, link failure, etc.), quantization error, etc.

Latency: The delay incurred in the entire data aggregation process is equal to the maximum delay of gathering data from the source that is farthest from the sink. In data gathering, the delay at each hop of the aggregation tree includes transmission delay, contention delay and aggregation delay. Transmission delays are typically small compared to the delay involved in aggregation. So for the collision free WSN topology, main contributor of the latency is the aggregation delay comprising the processing time for aggregation at each node and the time that an aggregation node has to wait for data from downstream nodes to reach it. Thus, the overall latency of aggregation is directly proportional to R (hop count is proportional to R) and d. For centralized aggregation scheduling, latency bound can be approximated as $23R + d_{\text{max}} + 18$ [Huang et al. 2007] and for distributed aggregation schedule as $16R + d_{\text{max}} - 14$ [Xu et al. 2009].

4.3.2 Predictive Coding. **Compression Ratio:** If the prediction error $r(k)$ is within the range $|r(k)| \leq th_{err}$ then for a lossy scheme, there will be no real communications between source and sink. However for loss-less scheme, source nodes will transmit the encoded $r(k)$ values or the real values to update the model at the sink/sinks. In general, $r(k)$ is assumed to follow a normal distribution with zero mean $N(0, \sigma)$, where σ is the standard deviation. Based on this, the $r(k)$ that is within the range $[-th_{err}, th_{err}]$ is $f(th_{err}, \sigma) = erf(\frac{th_{err}}{\sigma\sqrt{2}})$ [Polastre et al. 2007]. Exploiting $f(th_{err}, \sigma)$ in equation(2) we define CR_{pc} for both loss-less as well lossy PC as

$$CR_{pc\text{lossless}} = \frac{k}{k(1 - erf(\frac{th_{err}}{\sigma\sqrt{2}})) + erf(\frac{th_{err}}{\sigma\sqrt{2}})(k')} \quad (10)$$

$$CR_{pc\text{lossy}} = \frac{1}{1 - erf(\frac{th_{err}}{\sigma\sqrt{2}})} \quad (11)$$

where k' is the number of bits per sample transmitted in compression mode and depends on the encoding scheme.

Computational Complexity: In PC, learning and regular prediction are the main computationally complex operations. CC in PC mainly depends on the order of the statistical model and number of samples. As the order of an AR /ARMA
Compression in Wireless Sensor Networks: a survey and the road ahead

When the ARIMA model increases, the number of unknowns as well as the number of equations increases. Hence the complexity of executing a model parameter estimation process is bounded by $O(m^3 n_{ls})$, where m is the order of the model (which is p for $AR(p)$, $\max(p, q + 1)$ for $ARMA(p, q)$, and $\max(p, q + 1)$ for $ARIMA(p, d, q)$) and n_{ls} the length of the data record [Deng et al. 1997] or learning samples which is directly proportional to n. After estimating the model parameters, forecasting requires $p, p + q$, and $p + q$ multiplications and $p, p + q$ and $p + d + q$ additions to calculate the next prediction value for $AR(p)/ARMA(p, q)/ARIMA(p, d, q)$ respectively, where q is the order of MA and d is the differencing times value for ARIMA [Lu et al. 2010; Le Borgne et al. 2007; C. Liu and Tsao. 2005].

Energy Efficiency: For the given WSN topology, using CR (equation 11) and CC in equation (6) we can approximate the possible energy saving (upper bound as no learning cost is considered), hence the energy efficiency of lossy PC (ARMA based) in the considered WSN by the following equation:

$$E_{PC_{saving}} \approx erf(\frac{th_{err}}{\sigma \sqrt{2}})E_{comm} - E_{coding}(p, q)$$ (12)

Similarly we can derive $E_{PC_{saving}}$ for the loss-less PC.

Distortion: In lossy PC certain distortion is allowed to have better savings in energy consumption. As the residue or distortion $r(k)$ in general is assumed to follow a normal distribution with zero mean $N(0, \sigma)$, where σ is the standard deviation, the probability that it will be bounded within the range $[-th_{err}, th_{err}]$ is $erf(\frac{th_{err}}{\sigma \sqrt{2}})$ [Polastre et al. 2007]. As shown in equation 11, distortion has direct impact on CR, hence on the energy efficiency (equation 12). So a trade-off between distortion and energy efficiency is necessary.

Latency: In PC (lossy), at the sink predicted values can be generated almost instantly (only the time required for m sum and product operations, which is negligible for the sink). If $r(k) \leq th_{err}$ then latency will be t_p, the predefined waiting time at sink to check whether there any real sensor value update from any source node or not. In the loss-less case, it is $t_p + CC_{updt}$, where CC_{updt} is the model update or learning processing time. The value t_p depends on the longest source to sink path delay.

4.3.3 Distributed Source Coding. Compression Ratio: If Y_1, \ldots, Y_{n_s} are n_s binary sequences/samples of length k correlated such that the Hamming distance between two consecutive sequences is at most t. DSC being a source-channel coding problem, a (n_c, k) linear channel code (n_c is the code-word, k is the data-word) C that can correct up to $M \geq t$ errors per n_c bit block. DSC uses a total of $n_c + (n_s - 1)(n_c - k)$ bits to encode the n_s samples and is sufficient for perfect reconstruction of all of them at the sink [Gehrig and Dragotti 2005]. Hence CR for DSC based on Slepian-Wolf scheme can be expressed as:

$$CR_{dsc_{lossless}} = \frac{n_c n_s}{k + (n_s - 1)(n_c - k)}$$ (13)

Considering the rate-distortion function based on Wyner and Ziv [Kaspi and Berger 1982], for Gaussian sources [Scaglione and Servetto 2002] $R(D_s) = \frac{1}{2} \log(\frac{\sigma^2}{D_s})$
and \(CR_{\text{dsc,lossy}} \) can be expressed as

\[
CR_{\text{dsc,lossy}} = \frac{H(Y_i)}{\frac{1}{2}\log \frac{2^r}{2^r}}
\]

(14)

where \(H(Y_i) \) is the entropy of the samples.

Computational Complexity: Correlation knowledge gathering and tracking is computationally very expensive, especially for dynamic WSNs where correlation structures may change very frequently. As for PC, the complexity of centralized correlation learning based on linear prediction is \(O(m^3n_s) \). Source nodes are only responsible for rate allocation, in general is not a computationally expensive operation. For instance, for Modulo-code, and syndrome code-based, CC of encoders or source nodes are \(O(1) \) and \(O(n_c) \) respectively, whereas CC for the decoders are \(O(\log_2 n_c) \) and \(O(n_c^2 k) \) respectively, where \(n_c \) is the length of the codeword. As the decoder involves a binary-matrix multiplication, complexity is so high [Annamalai et al. 2008; Chou and Petrovic 2003].

Energy Efficiency: Like PC, using \(CR \) (equation 13 or 14) and \(CC \) in equation (6) we can approximate the energy saving (upper bound as no learning cost is considered) for lossy DSC (syndrome code based) as

\[
E_{\text{DSC saving}} \approx \left(1 - \frac{\frac{1}{2}\log \frac{2^r}{2^r}}{H(Y_i)}\right)E_{\text{comm}} - E_{\text{coding}}(n_c)
\]

(15)

Similarly we can derive \(E_{\text{DSC saving}} \) for loss-less DSC.

Distortion: In lossy DSC, a bounded distortion is allowed to have better compression, hence better energy efficiency. This comes at the cost of increased complexity. This complexity occurs in finding the rate needed to encode \(Y_i \) under the constraint that the average distortion between \(Y_i \) and \(Y_i' \) is \(E[d(Y_i, Y_i')] \leq D \), assuming the necessary side information is available only at the decoder. As shown in equation 14, distortion and \(CR_{\text{dsc,lossy}} \) are closely related. In some cases a trade-off between these two might be necessary.

Latency: If correlation knowledge gathering and tracking maintains an up-to-date correlation, then the latency of DSC based compression depends on the encoding time and the longest source to sink path delay and on the computation delay which is very much similar to the other compression approaches. Decoding in DSC-based compression approaches contributes more to latency compare to its counterparts (e.g. PC, aggregation) as most DSC decoders have a sequential decoding requirement. This latency is very sensitive to the packet losses. Missing of a packet increases the latency, and even can cause failure of the decoding. Maximum latency is bounded by the communication and computation, and processing delay of the furthest node from the sink after successful reception of all messages \(Y_1, Y_2, \ldots, Y_{n-1} \) from nodes \(S_1, S_2, \ldots, S_{n-1} \) which are closer to sink than \(S_n \).

4.3.4 **Transform-based Coding.** Due to its performance, we derive metrics for the lifting scheme wavelet transform (LSWT) [Daubechies and Sweldens 1998].

Compression Ratio: In this category CR greatly depends on the level of DWT, the higher the transform level \(L \) more sensors have low-energy (detail) data, that
can be coded using less bits and better the CR, but at the cost of increased inter-node communication. For simplicity, we consider a 1-level transform and after the transform the data set n_s is replaced by n_d coefficients (high-pass filter output) and n_{sv} updated source value (low pass filter’s output). In lossless compression these updated data sets are to passed through lossless entropy coding, whereas for lossy coding contents of the new data sets have to be quantized before entropy coding. Let b_d and b_{sv} be the average bit contents of the coefficients (n_s) and the remaining updated data set (n_{sv}) respectively. Exploiting these values we can define the CR as

$$CR_{DWT} = \frac{n_s k}{b_d n_d + b_s n_{sv}}$$

where $n_d + n_{sv} = n_s$ and $k \geq (b_d + b_s)/2$. Inclusion of thresholding (i.e. coefficients lower than a certain threshold will be discarded) increases CR but at the cost of increased distortion. Unidirectional and partial calculation based DWT require more transform levels compare to their counterparts.

Computational Complexity: Transform-based compression approach works on sampled raw sensor data. Generally it consists of three steps: LSWT, scalar quantization and source coding (DSC). The computation complexity can be expressed as:

$$CC_{DWT}(n_s, L) = CC_{LSWT} + CC_{quan} + CC_{DSC}$$

The computation of the scalar quantization matrix is nontrivial but it can be reduced to $O(n)$ [Liu and Ch 2006]. Source coding complexity based on DSC is $O(n)$ and finally the computation complexity of LSWT is $O(n)$, where n is the number of samples and for the critically sampled case it is equal to the number of source nodes. So, the overall CC_{DWT} is bounded by $O(n)$.

Energy Efficiency: Using CR (equation 16) and CC in equation(6) we can determine the approximate energy saving of DWT based compression as follows

$$E_{DWT, saving} \approx (\frac{n_s k - b_d n_d - b_s n_{sv}}{n_s k})E_{comm} - 3E_{coding}(n)$$

Distortion: Transform-based lossy compression methods can achieve much higher compression at the cost of signal distortion. The signal distortion induced by the transformed-based lossy data compression is due to quantization and thresholding operations. Depending on the quantizer bit number, signal distortion caused by the LSWT-based lossy data compression typically occurs in the frequency bands corresponding to weak signal components. By selecting different quantizer bit numbers or threshold values, users have the flexibility to decide whether they want to have highly-compressed data with a certain level of signal distortions or higher-quality data with less compression. So, a trade-off between distortion and compression ratio or energy consumption is needed.

Latency: In transform-coding based compression, along with the common communication and processing latencies, the latency introduced by encoder in calculating the transform coefficients, averages (low frequency values), and quantized values.
is significant. It includes processing and local communication latencies. L has an impact on latency, the greater the L the more calculations are needed, hence more delay. The additional level requirement of partial calculation process compared to complete calculation causes little extra latency. The overall latency of DWT is bounded by encoding latency as both decoding and communication latencies are less than encoding.

4.3.5 Compressed Sensing. **Compression Ratio:** In CS/DCS a temporally or spatially correlated signal of length n_s with a K-sparse representation only $M = O(K \log n_s)$ incoherently measured samples require to recover the signal with high probability, where $K \ll n_s$. In CS/DCS this sampling or sensing level compression plays the key role in compression which can be expressed as

$$SR_{cs} = \frac{n_s}{M}$$

(19)

where $M \approx KC\log(n_s)$ for dense RP and C is a some small constant, and for sparse RP $M \approx \log n_s$. In particular, as suggested by the “four-to-one” practical rule introduced in [Cand‘es and Wakin 2008], $M = 4K$ is generally sufficient for dense RP.

Computational Complexity: In CS/DCS, each source node only needs to compute its incoherent projections (M measurements) of the signal it observes and no manipulations are required for the M measurements, except possibly for some quantization. CS/DCS exploits a random projection (RP) method [Bingham and Mannila 2001; Duarte et al. 2006; J. Haupt and Nowak 2008; Wang et al. 2007] to compute incoherent projections. CS is applicable to temporally correlated signals where computational complexity is reduced from $O(n_s)$ to $O(M)$. For spatially correlated signals DCS is needed where RP specifically sparse RP (SRP) calculation requires pre-processing communication amongst the nodes, which is the main contributor to the overall complexity of DCS. In DCS, SRP based projections calculation requires an average of $O\left(\frac{n}{K}\right)$ packets transmission per sensor, hence the average computation cost per sensor is $O\left(\frac{n}{K}\right)$ whereas the decoding cost of CS/DCS is bounded by $O(n^3)$. For SRP, $\frac{n}{K}$ can be approximated by $\log(n)$. CS/DCS requires only $O(K\log(n))$ RPs to obtain an approximation error comparable to the best k-term approximation.

Energy Efficiency: Using SR (equation 19) and CC in Eq.(5), and replacing CR by SR (as CR directly proportional to SR) we can determine the approximate energy saving of CS and DCS based compression as follows:

$$E_{CS\text{saving}} \approx \left(\frac{n_s - M}{n_s}\right)(E_{samp} + E_{sw} + E_{comm}) - E_{coding}(M)$$

(20)

$$E_{DCS\text{saving}} \approx \left(\frac{n_s - M}{n_s}\right)(E_{samp} + E_{sw} + E_{comm}) - nE_{coding}(M)$$

(21)

Distortion: By nature CS and DCS are lossy compression techniques, hence they support certain amount of distortions in reconstruction. Robustness of the CS/DCS measurements to quantization and noise [Cand‘es et al. 2006; Haupt and Nowak 2006] helps in keeping the distortion bounded to real world settings. At ACM Journal Name, Vol. V, No. N, Month 20YY.
a higher overall cost DRPs can provide better distortion or approximation error compare to SRPs. In SRPs, distortion is directly proportional to the sparsity, hence the distortion in decoder depends only on the number of coefficients collected, and not on which sensors are queried. Therefore, distributed DRPs enable efficient and robust approximation with refinable distortion [Wang et al. 2007]. Moreover, DCS is automatically robust to packet loss in WSNs; any loss of measurements leads to a graceful degradation in the approximation error or distortion, hence the reconstruction quality.

Latency: In CS/DCS decoding is computationally more (time) complex \(O(n_s^3) \) (for critical sapling for spatial case \(n_s \approx n \)) than encoding \(O(\log n) \) (SRP) or \(O(n) \) (DRP). Hence decoding latency is higher than encoding latency. On the other hand, as decoding is done at the sink, which is computationally more powerful than the source nodes, reduces decoding as well as overall latency.

4.4 Evaluation

The objective of the evaluation is to study the performances of each compression technique using synthetic as well as real datasets in terms of energy saving and latency.

WSN Scenario: For the evaluation we consider a clustered WSN topology where \(n \) sensors (\(n_{ch} \) clusterheads and \(n_{sn} \) sensor nodes) nodes are deployed randomly over a planar region \(A \). Both sensors and clusterheads have sensing capabilities and their sensing range is \(r_s \), and a sensor can communicate with a clusterhead if it is within the communication range \(r_t \) of the clusterhead. For simplicity, we are considering \(r_t = r_s \), which might be little different in real life [Bai et al. 2010] but its impact on our evaluation will be little. Let the average number of sensors connected to a single clusterhead or node degree be \(d \). As there are \(n_{ch} \) clusterheads and \(n_{sn} \) sensor nodes scattered over region \(A \), \(d \) can be found using equation 22 as follows [Sevgi and Kocyigit 2008]:

\[
d = \frac{n_{sn}}{n_{ch}} (1 - \exp^{-\frac{n_{ch} \pi r_t^2}{A}}) \quad (22)
\]

Nodes within each cluster are spatially correlated and each cluster performs its compression separately and independently of all other clusters except for aggregation. We assume every cluster has the same rate. For separate and independent compression within each cluster and centralized collision free scheduling cluster level performance is sufficient to provide relative performance measurements for the various compressions schemes (except aggregation). For aggregation, cluster level dependency requires all clusters to be considered for calculating latency.

Metrics: Energy efficiency and latency are the two main performance parameters for compression algorithms in WSNs. To evaluate energy savings (energy efficiency) we exploit \(CR / SR \) as well as \(CC \). In calculating \(E_{coding} \) we disregard the decoding cost as the high end sink has sufficient resources.

Parameters used for Evaluation: A list of parameters used and their corresponding values is given in the Table III. Sensor node’s (TelosB) [Polastre et al. 2005] ADC (Analogue to Digital Convertor) output is 12bits. To accommodate this sample size, and for simplicity we bound the data payload \(k \) to 16bits.
Table III. Parameters used for Evaluation

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node Type</td>
<td>TelosB(8MHz)</td>
<td>Network Size (n)</td>
<td>10-1000</td>
</tr>
<tr>
<td>Deployment Area(A)</td>
<td>500 * 500m2</td>
<td>Communication Range(r_{t})</td>
<td>50-75m</td>
</tr>
<tr>
<td>Node degree(d)</td>
<td>Equation 22</td>
<td>Hop-counts(H)</td>
<td>$H \approx \frac{\ln(n)}{\ln(d)}$</td>
</tr>
<tr>
<td>ADC-output</td>
<td>12bits</td>
<td>Data payload(k)</td>
<td>2-256 bytes</td>
</tr>
<tr>
<td>Header length(H_l)</td>
<td>7bytes</td>
<td>Extra bits(E_b)</td>
<td>8bits</td>
</tr>
<tr>
<td>Entropy($H(Y_i)$)</td>
<td>15bits</td>
<td>Codeword(n_c)</td>
<td>15bits</td>
</tr>
<tr>
<td>Dataword(k_{disc})</td>
<td>11bits</td>
<td>Syndrome($n_c - k_{disc}$)</td>
<td>4bits</td>
</tr>
<tr>
<td>Coefficients(n_d)</td>
<td>$d - 1$</td>
<td>Updated sample(n_{sv})</td>
<td>1</td>
</tr>
<tr>
<td>Coefficients(b_d)</td>
<td>8bits</td>
<td>Updated sample (b_{sv})</td>
<td>16bits</td>
</tr>
<tr>
<td>Sparcity (K)</td>
<td>n/d</td>
<td>Required Measurements(M)</td>
<td>3K</td>
</tr>
<tr>
<td>Sensor Type</td>
<td>SHT11</td>
<td>Data Type</td>
<td>Temperature(°C)</td>
</tr>
<tr>
<td>Sampling Energy(E_{samp})</td>
<td>300µJ</td>
<td>Switching Energy(E_{sw})</td>
<td>20.012J</td>
</tr>
<tr>
<td>Standard deviation(σ)</td>
<td>±.5</td>
<td>Distortion (D_s)</td>
<td>.0001-.045</td>
</tr>
<tr>
<td>Error threshold(θ_{err})</td>
<td>±.5</td>
<td>Tx data rate(R)</td>
<td>250kbps</td>
</tr>
</tbody>
</table>

for simplicity in DSC we consider the codeword (n_c) length is 15bits and the data payload k_{disc} length is 11bits, and this 11bits is sufficient to represent temperature like sensor readings with high accuracy. Similarly for representing the coefficients or differences in DWT coding, we consider that 8bits is sufficient. In calculating the sampling and switching energy along with [Polastre et al. 2005] we have exploited the information in [Sensirion 2010] and [Jurdak et al. 2010] respectively.

Methodology: Firstly, for every value of n we calculate d (cluster members in a cluster) using equation 22 and use it calculating CR / SR for each technique. Then we find the E_{coding} and E_{comm} using information from the Table III in the their respective equations. Finally, using these along with CR / SR and information from the Table III in each technique’s E_{saving} equation we calculate the respective saving. In calculating latencies, first we find $H \approx \frac{\ln(n)}{\ln(d)}$ and then using unit distance for each hop we find the communication delay for each category. Finally, adding it with corresponding encoding delay we get the final latency.

Figure 6, 7, and 8 present the results for the energy savings, learning cost, and latencies for each category of compression algorithm. Figure 6 shows results for the two different values (50m and 75m) of r_{t}. Ideally TelosB mote can communicate upto 100m but in noisy and obstructed environments it can be quite low. So, we produced the results based on the range from 50-75m. The savings are presented in terms of percentage of the communication cost of non-compressed mode with respect to n the number of nodes in the network. As the energy savings within a bounded distortion D_s, greatly depend on the respective CR and/or SR so their trends in the graph almost follow the nature of corresponding CR / SR as computational cost is negligible compared to communication [Raghunathan et al. 2002]. As shown in figure 6, at lower values of n most of the schemes especially aggregation, DSC_lossless, DCS, and transform based coding suffer greatly and DCS suffers the most. For instance, for DCS till $n=50$, there is no saving rather a bit of loss occurs (we rounded the loss to zero savings). This is because lower value of n means lower node density and very low or no spatial correlation and no sparsity (for DCS) to be exploited in the schemes, hence no scope of compression and energy savings. This
clearly shows that these schemes are not scalable in sparsely dense WSNs especially DCS, transform-based coding and DSC\textsubscript{lossless}. As n increases, it increases node density and the spatial correlation amongst the nearby nodes. This ultimately increases the corresponding CR and the energy savings. But slowly and after $n = 600$ these become steady as d and H, the two key parameters of CR are almost steady (hence keep the size of cluster almost fixed but increases the number of clusters) and H is kept constant to 4 in the network under consideration. As our CR is related to a cluster or node, hence fixed size clusters after $n = 600$ are producing steady results. Higher node density or cluster size can cause interference amongst the nodes and offsets the benefit of compressions. So a trade-off between these can be useful. On the other hand for DSC and PC there is no direct relations between n and CR (as shown in equations 10, 11, 13, and 13) except for indirect relations in calculating E_{comm} through H. Especially, in case of PC as it exploits temporal correlation within intra-node signals, there is no direct link to node density and spatial correlation. This is why, energy savings for PC is invariant to n and for DSC increase slowly as n increases. As shown in figures 6 (i) and (ii), impact of communication range r_t in energy savings is not clearly visible except for aggregation. This is because for the aggregation scheme node degree or child nodes are important whereas in other schemes spatially correlated nodes are important. For a fixed area, increased r_t may include more node into the cluster but not necessarily they will be correlated.

As shown in figure 6 aggregation and DSC_{lossy} outperform the others. In aggregation each cluster head forwards only one packet instead of d full packets (non-compressed) or $d - 1$ packets with reduced payloads (e.g. DWT, DSC, PC, etc.), and employs a simple encoding scheme. This why it has higher CR and greater energy savings. However aggregation is unable to provide individual sensor readings. In this analysis we have excluded the cost of determining optimal aggregation tree (e.g. Minimum Steiner Tree is an NP-Complete problem [Akkaya et al. 2008]) assuming that the WSN is static. In dynamic WSN it could offset the benefits of aggregation. On the other hand, DSC_{lossy} gains this savings at the cost of distortion, increased D increases CR drastically as the bit contents of the signal are reduced drastically based on equation(14). Hence the energy saving. For instance, if D_s increases from .025 to .25, energy saving increases from 95.38% to 98.68%. PC (both lossless and lossy), DCS, and DWT based compression suffers compare to the others. Increased th_{err} allows PC(lossless) to encode correlated signals with less bits increasing the CR and energy savings. In the lossy case as th_{err} increases, more samples are discarded which increases CR more and yielding greater energy savings. For example, in lossy PC th_{err} increases from .25 to .5, as a result energy savings moves from 16.7% to 31.4%. Higher values of th_{err} allow greater energy savings but at the cost of increased distortion. The prohibitive learning cost of PC/DSC (figure 7), which linearly increases with n as well as exponentially with the order $m = max(p, q)$ of prediction model could limit the use of PC and DSC in WSNs especially in dynamic networks where frequent learning or updates might be needed. In DWT, CR depends on H which increases slowly with n. Moreover, computationally DWT is more expensive as it includes transform, quantization as well as DSC. Threshold based DWT, can improve this saving by discarding the
transform coefficients which are lower than the threshold. In SRP based DCS (spatial), if the cluster size $d < 4$ (WSNs with $n < 50$) M becomes close to d then there are some energy losses (upto 20%, not shown in the graph) instead of savings. This is due to local communication cost. On the other hand as soon as $d > 4$ (WSNs with $n > 50$) the cost of local communications is compensated by savings due to

ACM Journal Name, Vol. V, No. N, Month 20YY.
less measurements M. If we consider spatio-temporal DCS then better savings are possible due to temporal decorrelations. It can produce savings even when $d < 4$ (WSNs with $n < 50$) but this is at the cost additional latency. Unlike DSC and PC, transform based and CS/DCS compression do not require learning or global correlation knowledge except for the purpose of local communication (included in the calculations). Hence these schemes do not suffer in dynamic WSNs. Nevertheless very high decoding complexity $O(n^3)$ of CS/DCS is a hindrance to use of CS/DCS in large scale WSNs. Even though use of special hardware support such as DSP (Digital Signal Processor) [Instruments 1994] can mitigate this somewhat.

Figure 8 shows the latencies (excluding decoding and retransmissions) for different compression approaches with respect n in millisecond(ns) scales. As lossless and lossy versions of PC and DSC display almost similar latencies, we present them as generic cases. As shown in figure 8, latency increases slowly with n (till 500) as H and d increases slowly with n. Increased H and d requires more communications and processing, hence the latency sharply increases after $n = 500$. As shown figure 8, the trend is that as the node density increases, latencies also increase and become almost steady after $n = 600$. This is because d and H, the two key parameters of CR are almost steady (hence keep the cluster size almost fixed but increases the number of clusters) and H is kept constant to 4 in the network. Hence fixed size clusters after $n = 600$ are producing steady results. We have disregarded the decoding delays for all the schemes. However in large scale WSNs this could be very significant for CS/DCS due to the high decoding time complexity. Also in DSC, the impact is larger for longer codeword n_c as it follows $O(n_c^2 k)$.

As shown in figure 8, latency-wise all the compression techniques except DSC show almost similar performances. This is because the communication latency the main contributor of overall latency is almost similar for all techniques. The variations shown in the figure is mainly due to their computational time complexities. In case of aggregation it as at each hop every aggregation point or cluster head must wait for its child node. In transform coding and DCS higher latencies are due to their higher computational complexities and local communications. Even though PC shows better performance compared to aggregation, transform coding, and DCS but suffers in compared to DSC as it has higher computational complexity. In DSC the main contribution is reduction of bit content and simple encoding.

Numerical Analysis: In this section we apply the compression schemes to three real life sensor datasets and do their numerical analysis. Dataset one is generated from our own lab WSNs deployment, second, and third are respectively from Intel Lab Data [Int 2004] and Sensorscope PDG deployment [Sen 2008]. To include the diversity of the datasets we have included datasets on indoor (first two) and outside environment monitoring (third one). Figures 9, 10, and 11 present the network scenarios and snapshots of these datasets. The WSNs for dataset one consisted of 20 source nodes (TelosB) and one sink. For simplicity, a constant hop distance of 3m was used. The environmental temperature was sampled by every node every 5 minutes. The deployment operated for a month. The total number of samples gathered was 8,640 per node and 172,800 for the whole network. In dataset two data collected from 54 sensors deployed in the Intel Berkeley Research lab between February 28th and April 5th, 2004 [Int 2004]. Mica2Dot [mic 2004] sensors with
weather boards collected time stamped topology information, along with humidity, temperature, light and voltage values once every 31 seconds. In the span of 38 days, around 2.3 million readings were collected from these sensors. In dataset three, environmental data were collected from Patrouille des Glaciers (PDG), Switzerland between 16-20 April, 2008. Shockfish TinyNode [tin 2008] based 10 weather stations have collected weather related data (e.g. ambient temperature, wind-speed, etc.) in every 2mins and each node has collected on average 3000 samples within the 5 days period. As shown in the figures 9, 10, and 11, sensor readings in dataset one and two (excluding few outliers) are very strongly spatially and temporally correlated but not in dataset three. This is well expected as indoor environments are generally controlled and show stationary statistics but outdoor environments like PDG, Switzerland are not. This is why dataset one and two are suitable for all compression schemes discussed earlier but dataset three is not suitable for most of them as lack of correlation makes compression expensive otherwise high distortion in the reconstruction. Moreover, details of the dataset is missing in the link [Sen 2008]. So, we are considering the first two sets for the analysis. But dataset three provides us a clear hint that sensor readings collected in dynamic environments may not be always compressible with bounded distortion.

For the learning phase of DSC and PC, we exploit 2 days/week (1 in weekdays and 1 in weekends) data, which means for the dataset one we need 8 days readings (40,320 samples) and for dataset two we need 12 days readings (726315 samples approximately). Analysis of the datasets show the overall network wide spatial correlation coefficient of 0.915 and a data sparsity $K/n \approx 0.065$ (based on SRP) for dataset one and 0.95(approximately) and 0.033 for dataset two.

The performance which can be obtained by applying the algorithms discussed in sections (3.2-3.6) was predicted by means of the equations described in sections (4.3-4.7). The performance matrices were calculated based on node characterization information contained in [Polastre et al. 2005; Morton and Venkat 2006; mic 2004; Sensirion 2010; mic 2004]. The information used is listed in Table IV. The results approximated for each algorithm category are given in Table V.
Fig. 10. Dataset Two: (i) Network used in dataset Two. (ii) Snapshot of correlation amongst node node-8 and node-9.

Fig. 11. Dataset Three: (i) Scenario used in dataset Three. (ii) Snapshot of correlation amongst node node-9 and node-18.

Table IV. Numerical Analysis: information used

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Parameters</th>
<th>Value</th>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>n</td>
<td>20</td>
<td>nls</td>
<td>40,320</td>
</tr>
<tr>
<td>One</td>
<td>Maximum d</td>
<td>2</td>
<td>Maximum H</td>
<td>5</td>
</tr>
<tr>
<td>One</td>
<td>One clk cycle cost</td>
<td>675nJ</td>
<td>Transmit-cost(1bit)</td>
<td>260nJ</td>
</tr>
<tr>
<td>One</td>
<td>Receive-cost(1bit)</td>
<td>270nJ</td>
<td>N_{op}-16bit Math</td>
<td>219</td>
</tr>
<tr>
<td>One</td>
<td>N_{op}-16bit Matrix</td>
<td>945</td>
<td>N_{op}-Floating Point</td>
<td>786</td>
</tr>
<tr>
<td>Two</td>
<td>n</td>
<td>54</td>
<td>nls</td>
<td>726315</td>
</tr>
<tr>
<td>Two</td>
<td>Maximum d</td>
<td>4</td>
<td>Maximum H</td>
<td>6</td>
</tr>
<tr>
<td>Two</td>
<td>One clk cycle cost</td>
<td>3nJ</td>
<td>Transmit-cost(1bit)</td>
<td>2100nJ</td>
</tr>
<tr>
<td>Two</td>
<td>Receive-cost(1bit)</td>
<td>781nJ</td>
<td>N_{op}-16bit Math</td>
<td>266</td>
</tr>
<tr>
<td>Two</td>
<td>N_{op}-16bit Matrix</td>
<td>1488</td>
<td>N_{op}-Floating Point</td>
<td>1654</td>
</tr>
</tbody>
</table>

In these (static) deployments, all compression schemes achieve handsome energy savings over uncompressed operations. As shown in Table V, these approximated results very much follows the results of figures 6 and 8 except for DCS. Unlike figure 6, here DCS shows energy savings as we considered spatio-temporal correlation rather than only spatial. Aggregation and DSC_{lossy} show the most energy savings. Due to the inclusion of learning cost, the energy saving (both the lossy and lossless) of DSC and PC suffers somewhat compared to figure 6. On top of learning cost, the smaller cluster size ($d + 1$, lower decorrelation scope) reduces energy savings.
especially for DSC_{lossless} and PC_{lossless}. As expected, due to the waiting time in each aggregation hop, it shows highest latency, and rest show increased latency compared to figure 8. This is due to the increased hop counts (H) and hop distance (3m instead of 1m). Dataset two performs better than data set one in CR, hence in E_{saving} for aggregation, transform coding, DCS and DSC_{lossless} but suffers in latency as it exploits a radio with lower data rate and MCU which requires more number of clock cycles (approximated) and has more hop counts (H) compared to set one. Improvement in energy saving comes due to little higher correlation and node degree d. On the other hand both are showing same results in energy saving for PC and DSC_{lossy} as we have considered the same sensor with same th_{err} and D_s.

Based on sections 3 and 4, we present a summary of the above compression techniques (except text-based because of its limited use in WSNs) in Table VI. We consider characteristics such as compression and correlation type, complexity (computational), reliability, robustness, scalability, QoS, and security in summarizing them. In case of complexity, robustness and scalability we scale as low, medium and high. As each of the techniques has number of variants, scale of complexity, robustness and scalability can vary as well. It is clear from the table that most of these compression techniques suffer in scalability and robustness. Moreover, few of them address QoS, security and reliability.

5. OPEN RESEARCH ISSUES AND FUTURE DIRECTIONS

Although the compression techniques presented addresses many issues in WSNs compression, there are still some open research challenges. In particular, research is needed in the area of integrating of QoS, reliability and security with compression. In addition, most previous work views compression from the signal processing perspective only. Hence, the research on data compression from the networking protocol perspective in WSNs is missing. Therefore we also briefly consider this viewpoint, examining cross-layer opportunities in particular.

Improved compression: Data sampling, and switching of states especially in radio are regular phenomenon in WSN implementations. These are not inexpensive operations. For instance, a sampling operation costs (in TelosB) at least 0.3mJ for temperature (equal to the transmission cost of 1153bits) [Polastre et al. 2005; Sensirion 2010], and 0.36mJ for soil moisture (equal to the transmission cost of 1385bits) [Device 2010]. Unfortunately existing compression approaches (except CS/DCS) do not consider these two issues, hence their cost. Works on CS/DCS [Baron et al. 2009; Vuran et al. 2004; Duarte et al. 2005] already show
Table VI. Summary of the Key Compression Techniques in WSNs

<table>
<thead>
<tr>
<th>Char.</th>
<th>Aggregation</th>
<th>PC</th>
<th>DSC</th>
<th>Transform Coding</th>
<th>CS/DCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression</td>
<td>DC and CC</td>
<td>DC and CC</td>
<td>DC and CC</td>
<td>SC, DC and CC</td>
<td></td>
</tr>
<tr>
<td>Correlation</td>
<td>spatial (not always)</td>
<td>Temporal</td>
<td>Mainly Spatial</td>
<td>Spatio-temporal</td>
<td></td>
</tr>
<tr>
<td>Complexity</td>
<td>High (structural)</td>
<td>Medium (learning)</td>
<td>Medium (learning)</td>
<td>Medium</td>
<td>High (decoder)</td>
</tr>
<tr>
<td>QoS/QoI</td>
<td>Addressed</td>
<td>Not yet</td>
<td>Not yet</td>
<td>Not yet</td>
<td>Possible and addressed</td>
</tr>
<tr>
<td>Robustness</td>
<td>Low-high</td>
<td>High</td>
<td>Low-Medium</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Scalability</td>
<td>Low-high</td>
<td>Low-Medium</td>
<td>Low-Medium</td>
<td>Low</td>
<td>Medium</td>
</tr>
<tr>
<td>Security</td>
<td>Addressed</td>
<td>Not yet</td>
<td>Not yet</td>
<td>Not yet</td>
<td>Inherent</td>
</tr>
<tr>
<td>Applications</td>
<td>Limited to where aggregation functions applies</td>
<td>Suffers in dynamic applications</td>
<td>Suffers in dynamic applications</td>
<td>Good in dynamic and static environments</td>
<td>Good in dynamic and static environments</td>
</tr>
</tbody>
</table>

that sampling level compression is possible, but it is yet to be explicitly explored in WSNs. Typically in WSNs, a sensing operation wakes up the MCU and MCU wakes up the radio [Jurdak et al. 2010]. In PC, if the estimated values are within the error threshold, then there will be no real transmission. In this situation, switching the radio to the on state immediately after the MCU is a waste of energy. Reactive instead of proactive switching of the radio may reduce the number of switching operations and save their energy cost.

The majority of existing compression approaches consider reliable communications during their implementations but in reality WSNs communications are seldom reliable. Moreover, they neglect the energy-expense arising from computation of the models, evaluation of polynomials, comparisons and so on, which are usually floating point operations and are therefore relatively costly on tiny sensor hardware [Blaß et al. 2008]. So inclusion of unreliable communications and computational cost within compression approaches is necessary to make it more realistic.

Existing PC or DSC algorithms use either a centralized or distributed learning phase. In a network, centralized learning is good for nodes closer to sink and distributed approach is better for more distant nodes. Hybrid learning may be a good research direction for predictive coding and DSC. Even a combination of reactive and proactive learning could be useful. Due to decoding complexity, CS/DCS suffers in real-time applications for large scale WSNs. Investigating decoding complexity reduction especially for CS/DCS could be a future research direction.

QoS-awareness: Compression algorithms and frameworks should integrate QoS-awareness so that WSN applications can achieve their objectives. Few works on data aggregation have already taken care of this issue. To the author’s knowledge, no work explicitly considers QoS in PC, DSC, DCS, and Transform-based compression schemes or frameworks. Integration of QoS-awareness in compression schemes...
or framework could be a potential future direction.

Reliability: There is a clear dependency between reliability and compression which should be better understood and exploited. Given the limited number of publications on the topic [Iyer et al. 2008; Marco and Neuhoff 2004], there is clearly significant scope for future work in this area.

Scalability: Majority of the existing compression approaches (e.g. PC, DSC, Transform-coding, etc.) suffer in scalability requirements. For instance, DCS suffers in small scale WSN due to lack of sparsity and in large scale due to high decoding complexity. This issue needs further attention from the researchers.

Security: Security concern of WSN applications is missing in most of the above compression schemes except data aggregation. It is worth noting that the random projections used in CS and DCS inherently provide encryption functionality [Abdulghani and Rodriguez-Villegas 2010]. The randomized measurements themselves look a lot like noise which is meaningless to an observer who does not know the seed. This inherent encryption in CS and DCS schemes is a real bonus. However, further research is needed in this area.

Cross-layer Design: Generally, data compression is implemented as an application layer protocol. However, in some circumstances, application level implementation of compression is suboptimal. Some compression algorithms reduce the amount of data collected (e.g., CS). To take full advantage of this, nodes should stay off when sensing is not taking place. However, this has an impact on network connectivity since the radio will be off as well. Optimal operation requires cross-layer or multi-layer coordination between application layer compression and MAC layer scheduling. The dependency of compression on routing is obvious [Shen 2010; Scaglione and Servetto 2002]. Furthermore, incorporation of resource awareness in compression schemes, for example dependency on remaining energy, requires coordination between application layer compression and the physical layer.

Very little work has been done in cross layer based compression [Oldewurtel; et al. 2008; Wang et al. 2009]. Exploration of this aspect of compression in WSNs is necessary.

6. CONCLUSIONS AND FUTURE WORK

Development of effective compression algorithms is key to the improved utilization of the limited resources of WSNs (energy, bandwidth, computational power). A large number of proposals have addressed the problem. The proposals are diverse and involve various compression approaches. In this work, we have made an effort to put these works into perspective and to present a holistic view of the field. In doing this, we have provided a comprehensive overview of existing approaches, reviewed the current state-of-the-art and presented a logical classification. Works are categorized as involving either aggregation, text-based compression, Distributed Source Coding, transform-based compression, Compressive Sensing and Predictive Coding. The approach adopted within each category has a number of variants which are presented accordingly. We have analyzed these approaches on the basis of the key performance metrics, that is, compression ratio, computational complexity, energy efficiency, distortion, and latency. Analytical results show that lossy versions of these approaches provide better compression ratios. Hence achieves
higher energy savings than corresponding lossless versions, at the cost of distortion in the reconstructed signals.

Aggregation is the most commonly exploited and easily deployable compression technique. It has number of variants depending on network topology, such as tree based, chain-based, cluster-based. However, it has limited applications as it is unable to produce original sensor data at sink. Finding appropriate aggregation points is an optimization problem. In the case of unreliable communication, the aggregation point wait time could be prohibitive. Predictive Coding is very useful in reducing the amount of data communication but requires learning of data statistics, which can be very expensive in dynamic environments as the complexity of learning is bounded by $O(m^3n)$. Obtaining the correlation knowledge requirements of DSC can be as expensive as the learning in Predictive Coding. Lossy DSC can provide very high compression ratios, as well as high energy efficiency, but suffers in dynamic environments and networks. In terms of compression ratio and energy saving, transform-based compression, and CS show reasonable performance compared to their counterparts. As these methods do not require any learning of correlation statistics. Hence they are effective in dynamic environments and networks. Transform-based approaches are particularly very useful for multimedia communications (e.g., video, images, etc.) as specialized compression algorithms are available for this type of traffic. Many CS/DCS approaches operate on analogue signals. The computational complexity arising from use of floating point data as well as matrix calculations could be significant. Moreover, the decoding complexity of CS/DCS can lead to significant delay in large scale networks. Hence the approach may face scalability problems.

Although the presented approaches and frameworks address many issues associated with data compression in WSNs, some research questions remain relatively unexplored, such as support for and integration of QoS, scalability, reliability and security. There is significant scope for future work in one of these areas. Realizing the importance of QoS in WSNs, our future endeavors will focus on developing a compression framework, which integrates QoS-awareness for WSNs. Data compression in WSNs is a regular activity, integration of QoS awareness within it will ultimately contribute in developing a QoS-aware data gathering framework for WSNs. The diverse applications of WSNs demand support for a diverse set of QoS requirements. A single compression technique will not be optimal for all applications. Along with QoS awareness, a secondary objective will be to determine the best possible compression technique for a particular application taking into account the limited available resources. We also have the intention to explore the possibilities of cross-layer design of compression approaches in WSNs.

REFERENCES

ACM Journal Name, Vol. V, No. N, Month 20YY.

ACM Journal Name, Vol. V, No. N, Month 20YY.

ACM Journal Name, Vol. V, No. N, Month 20YY.

