A MIXTURE OF EXPERTS MODEL FOR RANK DATA
WITH APPLICATIONS IN ELECTION STUDIES

BY ISOBEL CLAIRE GORMLEY AND THOMAS BRENDA MURPHY

University College Dublin, Ireland.

A voting bloc is defined to be a group of voters who have similar voting preferences. The cleavage of the Irish electorate into voting blocs is of interest. Irish elections employ a ‘single transferable vote’ electoral system; under this system voters rank some or all of the electoral candidates in order of preference. These rank votes provide a rich source of preference information from which inferences about the composition of the electorate may be drawn. Additionally, the influence of social factors or covariates on the electorate composition is of interest.

A mixture of experts model is a mixture model in which the model parameters are functions of covariates. A mixture of experts model for rank data is developed to provide a model-based method to cluster Irish voters into voting blocs, to examine the influence of social factors on this clustering and to examine the characteristic preferences of the voting blocs. The Benter model for rank data is employed as the family of component densities within the mixture of experts model; generalized linear model theory is employed to model the influence of covariates on the mixing proportions. Model fitting is achieved via a hybrid EM/MM algorithm. An example of the methodology is illustrated by examining an Irish presidential electorate.

1. Introduction. The President of Ireland is elected every seven years by the Irish electorate through a preferential voting system known as the single transferable vote (STV). Under this system voters rank some or all of the presidential candidates in order of preference. An intricate vote counting process involving the elimination of candidates and the transfer of votes results in the election of one candidate as President.

A voting bloc is defined to be a group of voters who have similar voting preferences. The cleavage of any electorate into voting blocs is of interest to political scientists, politicians and voters. The cleavage of the Irish electorate is of particular interest given the detailed, multi-preference votes expressed under the STV voting system. All the information expressed in the ranked preferences of the votes must be exploited in order to determine the true

Keywords and phrases: Rank data, Mixture models, Generalized linear models, EM algorithm, MM algorithm
composition of the electorate. Further, the influence of social factors on the voting bloc membership of a voter is also of interest.

This article aims to establish the presence of voting blocs within the 1997 Irish presidential electorate, and to determine the characteristic voting preferences of these blocs. Additionally, the influence of social factors on the voting bloc memberships of voters is explored. The ranked nature of the voting data is modeled using the Benter model for rank data [1] and a mixture model of these distributions provides a model-based approach to clustering voters into voting blocs. Voting bloc membership probabilities are treated as multinomial logistic functions of the social factors (or covariates) associated with a voter. Such a mixture model in which the membership probabilities are functions of covariates is a mixture of experts model [20]. Thus a mixture of experts model for rank data is developed.

Section 2 details the setting of the 1997 Irish presidential election and provides an example of the mechanics of the STV vote counting process. A mixture of experts model for rank data is formulated in Section 3 and unique model fitting aspects are discussed in Section 4. Model fitting is achieved via a hybrid version of the popular EM algorithm [8] known as the EM/MM algorithm. The mixture of experts model for rank data is fitted to the 1997 presidential electorate and the resulting model parameter estimates are discussed in Section 5. The article concludes with a discussion of the developed methodology.

2. Irish Presidential Elections. Irish presidential elections employ the Single Transferable Vote (STV) system. Under this system voters rank some or all of the electoral candidates in order of preference. The votes are totalled through a series of counts, where candidates are eliminated and their votes are transferred between candidates. An in depth description of the electoral system, including the method of counting votes is given in [40] and good introductions to the Irish political system are given in [7] and [39]. Further, an illustrative example of the manner in which votes are counted and transferred follows in Section 2.2.

2.1. The 1997 Presidential Election. The current President of Ireland, Mary McAleese, is in her second term of office. Originally elected in 1997, she was automatically re-elected in 2004 as the only validly-nominated candidate.

In the 1997 presidential election there were five candidates: Mary Banotti, Mary McAleese, Derek Nally, Adi Roche, and Rosemary Scallon. As detailed in Table 2, some candidates were endorsed by political parties and others were independent candidates. Mary McAleese had a high public pro-
file and received the backing of Fianna Fáil who were the main political party in the coalition government at the time. Mary Banotti was another high profile candidate who was endorsed by the main government opposition party, Fine Gael. Adi Roche was supported by the Labour party who were also a government opposition party. The remaining two candidates ran on independent tickets. In terms of campaign themes, Mary Banotti, Derek Nally and Adi Roche were considered to be liberal candidates whereas Mary McAleese and Rosemary Scallon were deemed more conservative candidates. A detailed description of the entire presidential election campaign, including the nomination and selection of candidates, is given in [29].

An opinion poll conducted by Irish Marketing Surveys one month prior to the election is analyzed in this article. Interviews were conducted on 1100 respondents, drawn from 100 sampling areas. Interviews took place at randomly located homes with respondents selected according to a socioeconomic quota. A range of sociological questions was asked of each respondent as was their voting preference, if any, for each of the candidates. These preferences were utilized as a statement of the intended voting preferences of each respondent. Of the respondents interviewed 17 indicated that they did not intend to vote — these respondents were excluded from the analysis. Table 1 details the set of sociological covariates recorded in the poll.

Table 1

The set of covariates recorded in the presidential election opinion poll and the associated levels (in the case of categorical variables). An explanation of the socioeconomic group codes are provided in Appendix B.

<table>
<thead>
<tr>
<th>Age</th>
<th>Area</th>
<th>Gender</th>
<th>Government Satisfaction</th>
<th>Marital Status</th>
<th>Socioeconomic Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>City</td>
<td>Housewife</td>
<td>Satisfied</td>
<td>Married</td>
<td>AB</td>
<td></td>
</tr>
<tr>
<td>Town</td>
<td>Non-housewife</td>
<td>Dissatisfied</td>
<td>Single</td>
<td>C1</td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td>Male</td>
<td>No opinion</td>
<td>Widowed</td>
<td>C2</td>
<td></td>
</tr>
</tbody>
</table>

2.2. The Vote Counting Process. A brief overview of the vote counting process is given here. For illustrative purposes, the transfer of votes in the 1997 Irish presidential election is shown in Table 2.

Under the STV electoral system a ‘quota’ of votes is calculated which is dependent on the number of seats available and the number of valid votes
cast. Specifically the quota is computed as
\[
\frac{\text{total valid votes cast}}{\text{number of seats to be filled} + 1} + 1.
\]

Thus for the 1997 presidential election, where 1,269,836 valid votes were cast and a single presidential seat was to be filled, the quota was calculated to be 634,919. Once any candidate at any counting stage obtained or exceeded 634,919 votes this candidate was deemed elected as President of Ireland.

Table 2

The transfer of votes in the 1997 presidential election. The quota required to be elected President of Ireland was 634,919. Mary McAleese (denoted in bold font) was elected.

<table>
<thead>
<tr>
<th>Candidate</th>
<th>Endorsing Party</th>
<th>Count 1</th>
<th>Count 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary Banotti</td>
<td>Fine Gael</td>
<td>+125,514</td>
<td>372,002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>497,516</td>
<td></td>
</tr>
<tr>
<td>Mary McAleese</td>
<td>Fianna Fáil</td>
<td>+131,835</td>
<td>574,424</td>
</tr>
<tr>
<td></td>
<td></td>
<td>706,259</td>
<td></td>
</tr>
<tr>
<td>Derek Nally</td>
<td>Independent</td>
<td>-59,529</td>
<td>59,529</td>
</tr>
<tr>
<td>Adi Roche</td>
<td>Labour</td>
<td>-88,423</td>
<td>88,423</td>
</tr>
<tr>
<td>Rosemary Scallon</td>
<td>Independent</td>
<td>-175,458</td>
<td>175,458</td>
</tr>
<tr>
<td></td>
<td></td>
<td>66,061</td>
<td></td>
</tr>
<tr>
<td>Non-transferable votes</td>
<td></td>
<td>+66,061</td>
<td>66,061</td>
</tr>
<tr>
<td>Total valid votes</td>
<td></td>
<td>1,269,836</td>
<td>1,269,836</td>
</tr>
</tbody>
</table>

As detailed in Table 2, in the first stage of the counting process the number of first preference votes obtained by each candidate is totalled. No candidate received enough first preference votes to exceed the quota. Mary McAleese received the largest number of first preference votes with 45% of the vote share. Candidates Nally, Roche and Scallon were eliminated from the election race after the first count as the sum of their votes was less than the votes of the next lowest candidate (Mary Banotti).

At the second stage of counting Nally, Roche and Scallon’s 323,410 first preference votes were transferred to the candidates given the next valid preference on those ballot papers. Of votes to be transferred 66,061 were non-transferable i.e. only a single preference was expressed on these ballots or lower preferences on the ballots were for eliminated candidates. Mary McAleese received 131,835 of the transferred votes and was therefore elected at the second counting stage as she exceeded the quota with 706,259 votes.
3. A Mixture of Experts Model for Rank Data. The mixture of experts (MoE) model [20, 21] combines the ideas of mixture models [33] and generalized linear models [9, 30]. A mixture model is used to model the heterogeneous nature of a population; generalized linear model theory provides the statistical structure within the mixture.

MoE models model the relationship between a set of response and covariate variables where it is assumed that the conditional distribution of the response given the covariates is a finite mixture distribution. The conditional probability of voter i's ballot x_i given their associated covariates w_i is

$$P(x_i | w_i) = \sum_{k=1}^{K} \pi_{ik} P(x_i | \theta_k)$$

where K denotes the number of components (or expert networks) in the mixture, the gating network coefficient $\pi_{ik} = \pi_k(w_i)$ is the probability of voter i being a complete member of expert network k and θ_k represents the parameters of the probability model of the k^{th} expert network. In the current context, an expert network corresponds to a voting bloc in the electorate. A more general mixture of experts model would allow the expert network probabilities to depend on the covariates w_i, however such a model would be difficult to interpret in terms of voting blocs.

The gating network coefficients are weighting probabilities constrained such that they are non-negative and sum to one for each voter. The probability of voter i’s ballot according to the expert networks in the mixture model are blended by the gating network coefficients to produce an overall probability. Thus the probability of voter i’s ballot is a convex combination of the output probabilities from the expert networks. Figure 1 provides a graphical illustration of the structure of a single layer MoE model — a hierarchical MoE model consists of multiple layers of expert networks and gating networks.

Traditional MoE models such as those fitted in [20, 21, 36] employ probability densities for the expert networks which are members of the exponential family i.e. the traditional MoE model has the form of a mixture of generalized linear models. In the context of STV voting data however the expert network probability densities must appropriately model the ranked nature of the data. Thus the Benter model for rank data [1] is employed; full details are provided in Section 3.1.

As illustrated in Figure 1 the gating network coefficients are assumed to be functions of the voter covariates. The intuition here is that the covariates of a voter determine their voting bloc membership and, in turn, their char-
acteristic voting preferences. Specifically, the gating network coefficients are assumed to be multinomial logistic functions of the voter covariates; details are provided in Section 3.2.

The tree-like structure of MoE models naturally induces comparisons to other tree-based classification methods such as Classification and Regression Trees (CART) [4] or Multivariate Adaptive Regression Splines (MARS) [13]. Both CART and MARS are non-parametric techniques which provide a hard partition of the data space — using these tools each voter would be classified as belonging to one and only one voting bloc. In contrast, the statistical models underlying the expert network probability densities mean MoE models are parametric in nature. Additionally, the MoE model provides a probabilistic ‘soft’ partition of the space in that data points may belong to multiple expert networks i.e. under the MoE model each voter has an associated probability of belonging to each voting bloc. Further comparison of these methods is provided in [36] and [3].

Fig 1. Graphical illustration of the structure of a single layer mixture of experts model with two expert networks. The probabilities of voter i’s ballot according to the expert networks $P(x_i|\theta_1)$ and $P(x_i|\theta_2)$ are blended by the gating network coefficients π_{i1} and π_{i2} to produce an overall probability of voter i’s ballot. The gating network coefficients are assumed to be a function of voter i’s covariates w_i.
3.1. Benter’s Model for Rank Data. In previous versions of the MoE model [20, 21, 36] it is assumed that each component of the mixture model (i.e. each expert network) produces its output as a generalized linear function of input predictor variables. Within the context of STV voting data each expert network must appropriately model the ranked nature of the data. Thus it is assumed that each expert network is a Benter model distribution for rank data [1]. Each expert network is characterized by a differently parameterized Benter model where the parametrization is constant with respect to the voter covariates. It would be possible to allow covariates to contribute to the expert networks (see [21] and [36]) but this is not examined here due to the fact that interpreting the expert networks in terms of voting blocs would be difficult.

The Benter model for rank data has two parameters — a support parameter and a dampening parameter.

i) Support parameter Within expert network \(k \), the support parameter vector is denoted \(p_k = (p_{k1}, \ldots, p_{kN}) \) where \(\sum_{j=1}^{N} p_{kj} = 1 \) and \(N \) denotes the number of candidates available for selection. The support parameter \(p_{kj} \) may be interpreted as the probability of candidate \(j \) being given a first preference by a complete member of voting bloc \(k \).

ii) Dampening parameter The global dampening parameter vector is denoted by \(\alpha = (\alpha_1, \ldots, \alpha_N) \) where \(\alpha_t \in [0, 1] \) for \(t = 1, \ldots, N \). To avoid over-parametrization of the model the constraints \(\alpha_1 = 1 \) and \(\alpha_N = 0 \) are imposed. The dampening parameters model the way in which some preferences may be chosen less carefully than other preferences within a ballot.

Let \(c(i, t) \) denote the candidate ranked in \(t^{th} \) position by voter \(i \) and \(n_i \) be the total number of preferences expressed by voter \(i \). Given the Benter model parameters, the probability of voter \(i \)'s ballot (conditional on voter \(i \) being a complete member of voting bloc \(k \)) is:

\[
P(x_i|\theta_k) = P(x_i|p_k, \alpha) = p_{k1}^{\alpha_1} \cdot \frac{p_{k2}^{\alpha_2}}{\sum_{s=2}^{N} p_{ks}^{\alpha_s}} \cdots \frac{p_{kn_i}^{\alpha_{ni}}}{\sum_{s=n_i}^{N} p_{ks}^{\alpha_s}}
\]

(3.1)

Thus the Benter model states that the probability of a rank ballot is the product of the probabilities of each chosen candidate being ranked first...
where, at each preference level, the probabilities are appropriately normalized to account for the fact that the cardinality of the choice set has been reduced. Moreover, at preference level \(t \) the care with which a preference is made is modeled by ‘dampening’ each probability by \(\alpha_t \).

Under the Benter model the log odds of selecting candidate \(a \) over candidate \(b \) at preference level \(t \) is \(\alpha_t \log(p_{ka}/p_{kb}) \). Thus the \(t^{th} \) level dampening parameter \(\alpha_t \) can be interpreted as how the log odds of selecting candidate \(a \) over candidate \(b \) is affected by the selection being made at preference level \(t \).

The Benter model has been successfully employed to model rank data (see [16, 17]) but alternative rank data models are also available; the Plackett-Luce model for rank data [37] is a special case of the Benter model in which the dampening parameter vector is constrained such that \(\alpha = 1 \). Under the Plackett-Luce model it is assumed that a voter makes their choice at each preference level with equal certainty. Mixtures of Plackett-Luce models have been fitted to rank data in [15]. The Benter and Plackett-Luce models are both multistage ranking models [28]; in [11] this large class of models are defined as those which decompose the ranking process into a series of independent stages. Such models have an ‘item-effect’ approach [11] in that the probability of the preference of one item over another is the element of interest. Another set of rank data models are ‘distance’ based such as those based on Mallow’s model [27]; in such models the probability of observing a ranking \(x \) decreases as the distance between \(x \) and the modal ranking \(y \) increases. Other distance based approaches are detailed in [14] and [10]. Cluster analysis via mixtures of distance based models is applied in [35] and [6]. Given the type of choice process undertaken by a voter when generating an STV ballot paper, the Benter model for rank data was deemed the most applicable in this context.

3.2. Gating network coefficients and generalized linear models. The gating network coefficients in the MoE model can be viewed as the success probabilities from a generalized linear model. In particular, the success probability of belonging to each of \(K \) expert networks is a multinomial logistic function of the covariates (see Figure 1). Voter \(i \)'s gating network coefficients \(\pi_i = (\pi_{i1}, \pi_{i2}, \ldots, \pi_{iK}) \) are modeled by a logistic function of their \(L \) covariates \(w_i = (w_{i1}, w_{i2}, \ldots, w_{iL}) \) i.e.

\[
\log \left(\frac{\pi_{ik}}{\pi_{i1}} \right) = \beta_{k0} + \beta_{k1} w_{i1} + \beta_{k2} w_{i2} + \cdots + \beta_{kL} w_{iL}
\]

(3.2)
where expert network 1 is used as the baseline expert network and β_{k0} is an intercept term. Similar methodology was employed in [21] and [36] when modeling the gating network coefficients.

4. Fitting the MoE model via the EM/MM algorithm. To determine the composition and voting characteristics of the Irish electorate estimates of the Benter model parameters and of the gating network coefficients are required. Model fitting of the MoE model is achieved in [20] and [21] via the Expectation-Maximization (EM) algorithm. Estimation of the MoE model within the Bayesian framework is detailed in [36] in which Markov chain Monte Carlo methods [41] are used. An alternative approach to estimation of the MoE parameters within the Bayesian framework through the use variational methods is detailed in [2].

In this article parameter estimation is achieved through a hybrid algorithm known as the ‘EM/MM’ algorithm. As the name implies the EM/MM algorithm combines the well known EM algorithm [8] with ideas from the MM algorithm [25].

4.1. The EM algorithm for the MoE model. The EM algorithm is most commonly known as a technique to produce maximum likelihood estimates (MLEs) of model parameters in settings where the data under study is incomplete or when optimization of the likelihood would be simplified if an additional set of variables were known. The iterative EM algorithm consists of an expectation (E) step followed by a maximization (M) step. Generally, during the E step the expected value of the log likelihood of the complete data (i.e. the observed and unobserved data) is computed. In the M step the expected log likelihood is maximized with respect to the model parameters. In practice, the imputation of latent variables often makes maximization of the expected log likelihood feasible. The parameter estimates produced in the M step are then used in a new E step and the cycle continues until convergence. The parameter estimates produced on convergence are estimates which achieve at least a local maximum of the likelihood function of the data.

It is difficult to directly obtain MLEs from the likelihood of the MoE model for M rank observations:

$$L(\beta, p, \alpha|x, w) = \prod_{i=1}^{M} \sum_{k=1}^{K} \pi_{ik}(w_i)P(z_i|p_k, \alpha).$$

To alleviate this problem the data is augmented by imputing latent variables. For each voter $i = 1, \ldots, M$ the latent variable $z_i = (z_{i1}, \ldots, z_{iK})$ is imputed
where z_{ik} takes the value 1 if voter i is a complete member of expert network k and the value 0 otherwise. This provides the complete data likelihood

$$
L_C(\beta, \mathbf{p}, \alpha | \mathbf{x}, \mathbf{w}) = \prod_{i=1}^{M} \prod_{k=1}^{K} \{ \pi_{ik}(w_i) P(x_i | p_k, \alpha) \}^{z_{ik}}
$$

the expectation of (the log of) which is obtained in the E step of the EM algorithm. Details are provided in Appendix C but in brief the E step consists of replacing the missing data z with their expected values \hat{z}. In the M step the complete data log likelihood, computed with the estimates \hat{z}, is maximized to provide estimates of the Benter parameters \hat{p} and $\hat{\alpha}$ and the gating network parameters $\hat{\beta}$.

The EM algorithm for fitting the MoE model for rank data is straightforward in principle, but the M step is difficult in practice. This is largely due to the complex form of the Benter model density (3.1) and the large parameter set. A modified version of the EM algorithm, the Expectation and Conditional Maximization (ECM) algorithm [34] is therefore employed. In the ECM algorithm, the M step consists of a series of conditional maximization steps. Again, in the context of the MoE model for rank data, these maximizations are not straightforward and thus the conditional M step is implemented using the MM algorithm.

4.2. The MM algorithm. The MM algorithm is a summary term for optimization algorithms which operate by transferring optimization from the objective function of interest to a more tractable surrogate function. Good summaries of the methodology are provided in [25], [18] and [19]. The initials MM depend on the type of optimization required. In a maximization problem MM stands for minorize and maximize; in a minimization problem, majorize and minimize. A minorizing (or majorizing) surrogate function is constructed by exploiting mathematical properties of the objective function or of terms within it. The MM philosophy is that iteratively optimizing a suitable surrogate function drives the objective function uphill or downhill as required. Iteratively maximizing a minorizing surrogate function produces a sequence of parameter estimates which converges to at least a local maximum of the objective function. A graphical illustration of the mechanics of the MM algorithm is given in Figure 2. Details of the stability of MM algorithms and their relation to the EM algorithm (the EM algorithm is in fact an MM algorithm) are detailed in [25] and [18].
A graphical illustration of one iterative step in a maximization MM algorithm. A minorizing surrogate function $g(\theta | \theta^n)$ (in red) is first fitted to the objective function $f(\theta)$ (in black) at the parameter value θ^n. Maximizing this minorizing surrogate function provides a new parameter estimate θ^{n+1}. A new minorizing surrogate function is fitted (in blue) to the objective function at θ^{n+1}. The process continues, driving the objective function uphill, until the parameter estimates converge indicating that at least a local maximum of the objective function has been reached.
In the context of fitting MoE models for rank data, the optimization problems in the conditional M step of the EM algorithm are overcome by embedding several iterations of the MM algorithm in place of the conditional M step. Details of the construction of the necessary surrogate functions are provided in Appendix C.

5. The MoE model for rank data and the Irish Electorate. The MoE model for rank data was fitted to the set of voters polled in the Irish Marketing Surveys opinion poll detailed in Section 2.1. For reasons of numerical stability and ease of interpretation, covariates were initially standardized such that $0 \leq w_{il} \leq 1$ where w_{il} denotes the value of the lth covariate for voter i. A single layer MoE model rather than a hierarchical model was assumed to be sufficient in this context due to the small number of candidates in the presidential race.

Within a single layer MoE model the number K of expert networks (or voting blocs) present in the electorate needs to be estimated. In [21] K is chosen to be the value which minimizes a test set error rate; the variational Bayes approach taken in [2] provides a framework in which both the number of expert networks in and the topology of the MoE model may be estimated. The Bayesian Information Criterion (BIC) [38] is utilized here to select the optimal number of experts. The BIC is an information criterion motivated by the aim of minimizing the Kullback-Leibler information of the true model from the fitted model. The usual justification for the BIC is that, for regular problems, it is an approximation of the Bayes factor for comparing models under certain prior assumptions [22]. The BIC is defined as:

$$\text{BIC} = 2(\text{maximized likelihood}) - (\text{number of parameters}) \log(M)$$

where M is the total number of data points. The BIC trades off model fit (assessed by the first term in (5.1)) against model complexity (assessed by the second term in (5.1)). Although mixture models do not satisfy the conditions necessary for the Bayes factor approximation to hold, there is much in the literature to support its use in this context (see for example [26], [24], [23] and [12]).

As with any iterative procedure, starting values may be influential on the output of the algorithm. Starting values for the Benter support parameters, dampening parameters and missing membership labels were obtained by initially running the EM/MM algorithm for 500 iterations for a straight forward mixture of Benter models (i.e. the gating network coefficients are not treated as functions of the voter covariates). Good starting values for the gating network parameters were then obtained by running 1000 of the
logistic regression style M steps (see C.5) of the EM/MM algorithm. The full EM/MM algorithm to provide MLEs of the model parameters was then iterated until convergence as deemed by Aitken’s acceleration criterion [5]. Subsequent to convergence approximate standard errors of the MLEs were calculated as detailed in [32] and [33].

The MoE model was fitted over the range $K = 1, 2, \ldots, 5$ expert networks using a backward elimination style method to choose the informative covariates. Interaction terms were avoided. A model with all six covariates was initially fitted, then models with only five of the covariates. From this set of models the ‘best’ model as deemed by the BIC was selected and models with only four of the selected covariates were then fitted. This selection of the best subset of covariates and then backward elimination was continued until only one covariate was left in the model. The BIC values for all the fitted models were then compared. Table 3 details the five best fitting models as deemed by their BIC values. The covariates within each selected model are also detailed.

<table>
<thead>
<tr>
<th>BIC</th>
<th>K</th>
<th>Covariates</th>
</tr>
</thead>
<tbody>
<tr>
<td>-8490.43</td>
<td>4</td>
<td>Age</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Government satisfaction</td>
</tr>
<tr>
<td>-8498.59</td>
<td>3</td>
<td>Age</td>
</tr>
<tr>
<td>-8507.33</td>
<td>3</td>
<td>Age</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Government satisfaction</td>
</tr>
<tr>
<td>-8511.37</td>
<td>3</td>
<td>Government satisfaction</td>
</tr>
<tr>
<td>-8512.62</td>
<td>5</td>
<td>Age</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Government satisfaction</td>
</tr>
</tbody>
</table>

Each of the five best fitting models considered age and/or government satisfaction as important covariates. The optimal model with $K = 4$ expert networks where age and government satisfaction are the influential covariates is discussed below.

5.1. Benter support parameter estimates. Figure 3 is a mosaic plot illustrating the Benter support parameter estimates within each of the four voting blocs in the optimal model. The voting blocs are each represented by a column and their associated marginal membership probabilities are reported.

Voting bloc 1 appears to favor the conservative candidates of McAleese
and Scallon. The opinion poll was conducted at an early stage of the electoral campaign and Scallon had not yet established herself as a main presidential contender. Thus the 31% support for Scallon in this voting bloc is the largest support she obtains. Voting bloc 2 also reveals characteristics of the early stages of the presidential campaign. Adi Roche has large support in this voting bloc — at the start of the campaign Roche was a very popular candidate but her support quickly dropped when she became embroiled in difficulties and her campaign went into decline. Voting bloc 3, the largest voting bloc in terms of marginal membership probabilities, has a large support parameter for Mary McAleese. McAleese, who was subsequently elected, was backed by the current governmental political party, Fianna Fáil, and thus she had

![Graphical representation of the maximum likelihood estimates of the Benter support parameters for the Irish Marketing Surveys opinion poll. Each column of the mosaic represents an expert network or voting bloc — the segments within the columns represent the magnitudes of the support parameters for the candidates within each voting bloc. The maximum likelihood estimates of the support parameters are detailed within each segment; standard errors are provided in parentheses. The width of each column represents the marginal probability π_i of belonging to each voting bloc i.](image)

Fig 3. A graphical representation of the maximum likelihood estimates of the Benter support parameters for the Irish Marketing Surveys opinion poll. Each column of the mosaic represents an expert network or voting bloc — the segments within the columns represent the magnitudes of the support parameters for the candidates within each voting bloc. The maximum likelihood estimates of the support parameters are detailed within each segment; standard errors are provided in parentheses. The width of each column represents the marginal probability π_i of belonging to each voting bloc i.

<table>
<thead>
<tr>
<th>Candidate</th>
<th>Voting bloc 1</th>
<th>Voting bloc 2</th>
<th>Voting bloc 3</th>
<th>Voting bloc 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banotti</td>
<td>0.11 (0.01)</td>
<td>0.13 (0.01)</td>
<td>0.17 (<0.01)</td>
<td>0.52 (<0.01)</td>
</tr>
<tr>
<td>McAleese</td>
<td>0.28 (0.03)</td>
<td>0.13 (0.01)</td>
<td>0.72 (0.03)</td>
<td>0.14 (0.01)</td>
</tr>
<tr>
<td>Nally</td>
<td>0.15 (0.04)</td>
<td>0.7 (0.01)</td>
<td>0.04 (<0.01)</td>
<td>0.14 (0.01)</td>
</tr>
<tr>
<td>Roche</td>
<td>0.31 (0.06)</td>
<td>0.06 (<0.01)</td>
<td>0.06 (<0.01)</td>
<td>0.15 (0.01)</td>
</tr>
<tr>
<td>Scallon</td>
<td>0.31 (0.06)</td>
<td>0.06 (<0.01)</td>
<td>0.06 (<0.01)</td>
<td>0.05 (<0.01)</td>
</tr>
</tbody>
</table>
a high public profile. There is also some level of support for the other high profile candidate, Mary Banotti. Voting bloc 4 is a pro-Banotti voting bloc with more uniform levels of support for the other candidates. Of note are the low levels of support for Nally in any of the voting blocs — Nally joined the electoral campaign later than the other candidates on September 29th and so had little time to win votes prior to this October 2nd poll.

5.2. *Benter dampening parameter estimates.* Under the optimal model the Benter dampening parameter estimates are

\[\hat{\alpha} = (1.00, 0.99(0.10), 0.97(0.12), 0.99(0.15), 1.00) \]

(standard errors are given in parentheses). The estimates suggest that the certainty with which voters rank their preferences remains constant with respect to choice level. The proximity of the dampening parameter estimates to 1 along with their relatively large standard errors suggest a Plackett-Luce model (Section 3.1) would be adequate for modeling this poll data.

The Benter dampening parameters appear to depend somewhat on the cardinality of the choice set; in this case where the choice set is small \(\alpha \approx 1 \). In [17] the Benter model is employed when modeling a larger choice set and \(\alpha \) is shown to differ from 1. Intuitively, the certainty associated with the ranking of objects from a small choice set would be greater than that associated with the ranking of objects from a large choice set.

5.3. *Gating network parameter estimates.* Under the MoE model for rank data, the gating network coefficients are functions of voter covariates. According to the BIC (see Table 3), the ‘age’ and ‘government satisfaction’ covariates influence the voting bloc membership probabilities of a voter. Table 4 details the associated gating network parameter estimates, their odds ratios and the relevant 95% confidence intervals for the odds ratios. The gating network parameters associated with the ‘conservative’ voting bloc (i.e. voting bloc 1) are used as the reference parameters i.e. \(\beta_1 = (\beta_{10}, \ldots, \beta_{1L}) = (0, \ldots, 0) \).

Within the smallest voting bloc (the pro-Roche bloc), for every one unit increase in age the odds for being best described by voting bloc 2 are 100 times less than the odds for being described by the conservative voting bloc 1. This would appear to be an intuitive characteristic of the Irish electorate — the more elderly generations in Ireland would, in general, be considered more conservatively minded. Note also the relatively small associated odds ratio confidence interval. The 95% confidence intervals for the government satisfaction covariate odds ratios both enclose 1 implying it is likely that
Table 4
Gating network parameter estimates \(\hat{\beta}_k \), the associated odds ratios and the 95% odds ratio confidence intervals under the MoE model fitted to the Irish Marketing Surveys opinion poll data. The covariates selected as informative are age and government satisfaction. ‘Do not know/no opinion’ was used as the reference level within the categorical government satisfaction covariate.

<table>
<thead>
<tr>
<th>Voting bloc</th>
<th>Log odds ((\hat{\beta}_2))</th>
<th>Odds ratio ([\exp(\hat{\beta}_2)])</th>
<th>95% CI (Odds ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.92</td>
<td>2.52</td>
<td>[0.78, 8.16]</td>
</tr>
<tr>
<td></td>
<td>-5.16</td>
<td>0.01</td>
<td>[0.00, 0.05]</td>
</tr>
<tr>
<td></td>
<td>0.13</td>
<td>1.14</td>
<td>[0.42, 3.11]</td>
</tr>
<tr>
<td></td>
<td>1.03</td>
<td>2.80</td>
<td>[0.77, 10.15]</td>
</tr>
<tr>
<td>3</td>
<td>-0.46</td>
<td>0.63</td>
<td>[0.16, 2.49]</td>
</tr>
<tr>
<td></td>
<td>-0.05</td>
<td>0.95</td>
<td>[0.32, 2.81]</td>
</tr>
<tr>
<td></td>
<td>1.14</td>
<td>3.12</td>
<td>[0.94, 10.31]</td>
</tr>
<tr>
<td></td>
<td>1.33</td>
<td>3.81</td>
<td>[0.90, 16.13]</td>
</tr>
<tr>
<td>4</td>
<td>0.54</td>
<td>1.71</td>
<td>[0.52, 5.58]</td>
</tr>
<tr>
<td></td>
<td>0.44</td>
<td>1.56</td>
<td>[0.35, 6.91]</td>
</tr>
<tr>
<td></td>
<td>-1.05</td>
<td>0.35</td>
<td>[0.12, 0.98]</td>
</tr>
<tr>
<td></td>
<td>1.25</td>
<td>3.50</td>
<td>[1.07, 11.43]</td>
</tr>
</tbody>
</table>

the political views of voters in this bloc have little influence. Thus younger voters appear to be best described by voting bloc 2 and are more in favor of the liberal Adi Roche.

In terms of the gating network parameters which refer to voting bloc 3 (the pro-McAleese bloc), the confidence interval for the age parameter odds ratio includes 1 suggesting age is not a driving covariate. The government satisfaction covariate appears to be more influential: the odds of a voter being best described by voting bloc 3 are around 3 times greater than the odds for voting bloc 1 given that the voter has some political opinion. Thus voters with an interest in politics appear to favor Mary McAleese.

The gating parameters for voting bloc 4 indicate that voters with a dislike for the current government favor Mary Banotti. The confidence interval for the age covariate again includes 1 suggesting it has little effect. The odds of a voter who indicated a dislike for the 1997 government (a coalition government of Fianna Fáil and the Progressive Democrats) being best described by voting bloc 4 were 3.50 times greater than being described by voting bloc 1. In contrast, the odds of a voter in favor of the current government being best described by voting bloc 4 are 0.35 times greater than the odds for voting bloc 1. These results make intuitive sense within the context of the 1997 presidential election. Mary Banotti was endorsed by Fine Gael, the main opposition party to Fianna Fáil. Thus voters best described by voting bloc 4 appear to be Fine Gael supporters. Those voters in favor of the 1997 coalition government were more likely to be described by voting bloc 1 which
had large levels of support for Fianna Fáil backed McAleese.

6. Discussion and further work. This article develops a mixture of experts model for rank data coupled with an efficient hybrid EM/MM algorithm for model fitting. The model is employed as a model-based clustering technique in which covariate information contributes to the clustering solution. The covariate information contributes to the clustering solution by modeling the component membership parameters of an observation as a generalized linear function of observation covariates. Within the context of rank data, each component in the population is characterized by an appropriate rank data model, the Benter model for rank data.

Model fitting via the EM algorithm is a natural approach to parameter estimation for MoE models. However due to the complex structure of the rank data models incorporated here, model fitting using the EM algorithm is unwieldy. In particular, maximization difficulties are overcome by the implementation of an optimization transfer algorithm called the MM algorithm. Due to their iterative nature and increasing likelihood properties, the EM and MM algorithms combine easily to provide a hybrid EM/MM algorithm.

In this article the MoE model for rank data is used to establish the presence of voting blocs in the Irish electorate. The Benter model for rank data models the rank nature of Irish votes; estimation of the parameters of this model allows the examination of the voting preferences which characterize the voting blocs. Further, the model provides insight into the voting bloc membership of individual voters (i.e. a clustering of voters) and highlights the influence of social factors on voting bloc membership. Selection of the optimal model involves both the selection of the number of voting blocs present and the selection of informative covariates. Model selection is achieved using the Bayesian Information Criterion.

When fitted to the 1997 Irish presidential electorate, the MoE model for rank data uncovered the presence of voting blocs characterized by intuitive voting preferences. Additionally the model highlighted the influence of the age of a voter and their satisfaction with the current government on voting bloc membership.

Although the MoE model for rank data proved an appropriate model for Irish voting data, there is still much scope for future research. As stated, a single layer MoE model rather than a hierarchical model was assumed to be sufficient in this context due to the small number of candidates in the presidential race. Irish general elections typically involve a large number of candidates and in such a context a single layer model is unlikely to be sufficient. Within the methodology developed in this article there is no natural
metric for selecting the complexity and structure (i.e. the topology) of a hierarchical MoE tree. The use of variational Bayesian methods to estimate a hierarchical MoE model [2] allows both the number of experts and the topology of the associated tree to be determined within a statistically sound framework. The extension to the estimation of a hierarchical MoE model for rank data is a future area of research.

If a multi-layer MoE model is appropriate, the underlying intuition is that the choice process of a voter is a nested process. For example, perhaps a conservatively minded voter chooses a set of conservative candidates first and then from that set chooses a particular candidate. Nested choice models [31, 42] could be used to model such a choice process. These models assume that choices are made in a hierarchical manner; the voters begin with coarse categories which are refined during the choice process. Nested choice models could be extended to nested ranking models using a multi-stage ranking model approach.

The scope of MoE models for rank data lies beyond modeling Irish election data. Many other nations employ preference based voting systems [17] and the model proposed here can be easily adapted to model such electorates. The methodology presented may also be utilized to model other preference data. Irish third level college application choices are analyzed in [15] using a mixture of Plackett-Luce models and establish the existence of homogeneous groups of applicants. The extension of this research to examine the influence of applicant covariates on third level course choices is a topic of social and educational interest. Additionally, the proposed methodology could be applied to the analysis of customer choice data in marketing applications, where customers express preferences for different products.

Acknowledgements. Isobel Claire Gormley was supported by a Government of Ireland Research Scholarship in Science, Engineering and Technology provided by the Irish Research Council for Science, Engineering and Technology, funded by the National Development Plan. Thomas Brendan Murphy was partially supported by Science Foundation of Ireland Research Frontiers Programme Grant (06/RFP/M040).

We would like to thank Prof. Adrian Raftery, the members of the Center for Statistics and the Social Sciences and the members of the Working Group on Model-based Clustering at the University of Washington for numerous suggestions that contributed enormously to this work.

References.

APPENDIX A: DATA SOURCES

The 1997 Irish presidential opinion poll data set was collected by Irish Marketing Surveys and is available through the Irish Elections Data Archive http://www.tcd.ie/Political_Science/elections/elections.html
which is maintained by Professor Michael Marsh in the Department of Political Science, Trinity College Dublin, Ireland.

APPENDIX B: SOCIOECONOMIC GROUP CODES.

Definitions of the socioeconomic group codes used in the opinion poll conducted by Irish Marketing Surveys are provided in Table 5. Further details may be obtained from Millward Brown/Irish Marketing Surveys Limited [www.millwardbrown.com].

<table>
<thead>
<tr>
<th>Code</th>
<th>Socioeconomic definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>upper middle class & middle class</td>
</tr>
<tr>
<td>C1</td>
<td>lower middle class</td>
</tr>
<tr>
<td>C2</td>
<td>skilled working class</td>
</tr>
<tr>
<td>DE</td>
<td>other working class & lowest level of subsistence</td>
</tr>
<tr>
<td>F50+</td>
<td>large farmers</td>
</tr>
<tr>
<td>F50-</td>
<td>small farmers</td>
</tr>
</tbody>
</table>

APPENDIX C: THE EM/MM ALGORITHM FOR THE MIXTURE OF EXPERTS MODEL FOR RANK DATA.

When fitting a MoE model for rank data the EM/MM algorithm consists of the following steps:

0. Let $h = 0$ and choose initial parameter estimates for the Benter model parameters $p^{(0)}, \alpha^{(0)}$ and for the gating network parameters $\beta^{(0)}$.
1. **E step**: Compute the estimates

 $$\hat{z}_{ik} = \frac{\pi_{ik}^{(h)} \mathbb{P}\{x_i | p_k^{(h)}, \alpha^{(h)}\}}{\sum_{k'=1}^{K} \pi_{ik'}^{(h)} \mathbb{P}\{x_i | p_{k'}^{(h)}, \alpha^{(h)}\}}$$

 for $i = 1, \ldots, M$ and $k = 1, \ldots, K$. Note that by (3.2) the gating network coefficients are defined by

 $$\pi_{ik} = \frac{\exp(\beta_k^T w_i)}{\sum_{k'=1}^{K} \exp(\beta_{k'}^T w_i)}$$

 where w_i is the vector of covariates associated with voter i.
2. **M step:** Substituting the \hat{z}_{ik} values obtained in the E step into the complete data log likelihood forms the ‘Q function’

\[
Q = \sum_{i=1}^{M} \sum_{k=1}^{K} \hat{z}_{ik} \left[\beta_k^T \mathbf{w}_i - \log \left\{ \sum_{k'=1}^{K} \exp \left(\beta_{k'}^T \mathbf{w}_i \right) \right\} \right] \\
+ \sum_{t=1}^{n_t} \left\{ \alpha_t \log p_{kc(i,t)} - \log \sum_{s=t}^{N} p_{kc(i,s)}^{\alpha_t} \right\}
\]

which is maximized with respect to the model parameters during the M step. The dependence of the parameters in Q on estimates from the hth iteration of the algorithm is implicit; the notation is suppressed here for reasons of clarity. Due to maximization difficulties, steps from the MM algorithm are embedded in the M step to obtain MLEs of the parameters. Details of the MM algorithm steps are detailed in Appendix C.1. The new maximizing values are $p^{(h+1)}$, $\alpha^{(h+1)}$, and $\beta^{(h+1)}$.

3. If converged, then stop. Otherwise, increment h and return to Step 1.

C.1. The M step. The gating network parameters β and the Benter model parameters (p, α) influence the Q function (C.1) through distinct terms. Hence the M step reduces to separate maximization problems for each parameter set. Moreover an ECM algorithm is implemented where the M step consists of a series of conditional maximization steps. Here, the conditional maximizations are with respect to p_1, \ldots, p_K, $\alpha_2, \ldots, \alpha_{N-1}$ and β_2, \ldots, β_K.

The conditional maximizations are difficult in practice and are therefore implemented using the MM algorithm. This algorithm works by first constructing a surrogate function which minorizes the objective Q function and then maximizing the minorizing surrogate function. This process is iterated leading to a sequence of parameters estimates giving increasing values of the objective Q function.

To construct surrogate functions mathematical properties of the objective function, or of terms within it, are exploited. One such property is the supporting hyperplane property (SHP) of a convex function. If $f(\theta)$ is a convex function with differential $f'(\theta)$ then the SHP states that:

\[
f(\theta) \geq f(\theta^{(h)}) + f'(\theta^{(h)})(\theta - \theta^{(h)}).
\]

The SHP provides a linear minorizing function which is an ideal candidate for a surrogate function in an optimization transfer algorithm.

Sometimes it may be preferable to form a quadratic or higher order surrogate function. For example, if $f(\theta)$ is a concave function bounding it around
θ^{(h)} using a quadratic gives:

\[f(\theta) \geq f(\theta^{(h)}) + [f'(\theta^{(h)})]^T (\theta - \theta^{(h)}) + 1/2 (\theta - \theta^{(h)})^T B (\theta - \theta^{(h)}) \]

where B is a negative definite matrix such that \(H(\theta^{(h)}) > B \) and \(H(\theta^{(h)}) \) is the Hessian \(d^2 f/d(\theta^{(h)})^2 \).

Both these tools are used within the EM/MM algorithm for rank data as detailed below.

1. Maximization with respect to the Benter support parameters.

When conditionally maximizing with respect to \(p_{kj} \) the dampening parameters are treated as fixed constants, \(\alpha_t \), equal to the estimates from the previous iteration. Within the \(Q \) function (C.1) the term

\[-\log \sum_{s=t}^{N} \tilde{p}_{kc(i,s)} \]

is problematic in terms of optimization with respect to \(p_{kj} \). However, since the \(- \log(\theta)\) function is a strictly convex function, a linear minorizing surrogate function may be obtained via the SHP (C.2) i.e.

\[-\log(\theta) \geq -\log(\theta^{(h)}) + 1 - \frac{\theta}{\theta^{(h)}} \]

\[\Rightarrow -\log \sum_{s=t}^{N} \tilde{p}_{kc(i,s)} \geq -\log \sum_{s=t}^{N} \tilde{p}_{kc(i,s)} + 1 - \frac{\sum_{s=t}^{N} \tilde{p}_{kc(i,s)}}{\sum_{s=t}^{N} \tilde{p}_{kc(i,s)}} \]

where \(\tilde{p}_{kj} \) is a constant and in practice is the estimate of \(p_{kj} \) from the previous iteration. Substituting the non-constant terms into the objective function it follows that, up to a constant:

\[Q \geq \sum_{i=1}^{M} \sum_{k=1}^{K} \sum_{t=1}^{n_i} \tilde{z}_{ik} \left[\alpha_t \log p_{kc(i,t)} - \left(\frac{\sum_{s=t}^{N} \tilde{p}_{kc(i,s)}}{\sum_{s=t}^{N} \tilde{p}_{kc(i,s)}} \right) \right] \]

which still poses maximization problems. However implementing the SHP (C.2) of the convex function \(f(p) = -p^{\alpha_t} \):

\[-p^{\alpha_t} \geq -\tilde{p}^{\alpha_t} - \alpha_t \tilde{p}^{\alpha_t - 1} (p - \tilde{p}) \]

again provides the surrogate function:

\[Q \geq \sum_{i=1}^{M} \sum_{k=1}^{K} \sum_{t=1}^{n_i} \tilde{z}_{ik} \left[\alpha_t \log p_{kc(i,t)} - \left(\frac{\sum_{s=t}^{N} \tilde{p}_{kc(i,s)}}{\sum_{s=t}^{N} \tilde{p}_{kc(i,s)}} \right) \right]^{-1} \left(\sum_{s=t}^{N} \alpha_t \tilde{p}_{kc(i,s)} p_{kc(i,s)} \right) \]
up to a constant. Iterative maximization of the surrogate function produces a sequence of \(p_{kj} \) values which converge to a maximum of \(Q \). Straight forward maximization provides:

\[
\hat{p}_{kj} = \frac{\omega_{kj}}{\sum_{i=1}^{M} \sum_{t=1}^{n_i} \hat{z}_{ik} \left(\frac{N}{\sum_{s=t}^{N} \hat{p}_{kc(i,s)}^{\alpha_t}} \right) - \left(\frac{N+1}{\sum_{s=t}^{N+1} \hat{\alpha}_t \hat{p}_{kj}^{\hat{\alpha}_t - 1} \delta_{ijs}} \right)}
\]

where

\[
\omega_{kj} = \sum_{i=1}^{M} \sum_{t=1}^{n_i} \hat{z}_{ik} \hat{\alpha}_t \mathbf{1}_{\{j=c(i,s)\}}
\]

given that \(\mathbf{1}_{\{j=c(i,s)\}} \) is the usual indicator function and

\[
\delta_{ijs} = \begin{cases}
1 & \text{if } j = c(i,s) \text{ and } 1 \leq s \leq n_i \\
1 & \text{if } j \neq c(i,l) \text{ for } 1 \leq l \leq n_i \text{ and } s = N + 1 \\
0 & \text{otherwise.}
\end{cases}
\]

The methodology presented here is similar to that used when a mixture of Benter models is fitted via the EM/MM algorithm as detailed in [17].

2. Maximization with respect to the Benter dampening parameters. In this case the support parameters are treated as constant with \(\tilde{p}_{kj} \) denoting the estimate from the previous iteration. Returning to the original objective function (C.1), the problematic term \(-\log \sum_{s=t}^{M} \tilde{p}_{kc(i,s)}^{\alpha_t} \) is a convex function of \(\alpha_t \), and employing the SHP (C.2) again gives:

\[
Q \geq \sum_{i=1}^{M} \sum_{k=1}^{K} \sum_{t=1}^{n_i} \hat{z}_{ik} \left(\alpha_t \log \tilde{p}_{kc(i,t)} + \left(\frac{\sum_{s=t}^{N} \tilde{p}_{kc(i,s)}^{\alpha_t}}{\sum_{s=t}^{N} \tilde{p}_{kc(i,s)}^{\hat{\alpha}_t}} \right) \right).
\]

As before, this surrogate function still poses optimization problems. However, as \(f(\alpha) = -\tilde{p}^\alpha \) is a concave function, by (C.3):

\[
-\tilde{p}^\alpha \geq -\tilde{p}^{\hat{\alpha}} - (\log \tilde{p})\tilde{p}^{\hat{\alpha}}(\alpha - \hat{\alpha}) - 1/2(\alpha - \hat{\alpha})^2(\log \tilde{p})^2
\]
A MIXTURE OF EXPERTS MODEL FOR RANK DATA

25

since $H(\alpha) > B = -(\log \bar{p})^2$. This provides the surrogate function:

$$Q \geq \sum_{i=1}^{M} \sum_{k=1}^{K} \sum_{t=1}^{N} \hat{z}_{ik} \left[\alpha_t \log \bar{p}_{kc(i,t)} + \left(\sum_{s=t}^{N} \bar{p}_{kc(i,s)} \right)^{-1} \left\{ \sum_{s=t}^{N} \left(-\log(\bar{p}_{kc(i,s)}) \bar{p}_{kc(i,s)}(\alpha_t - \bar{\alpha}_t) \right) - \frac{1}{2}(\alpha_t - \bar{\alpha}_t)^2 \left(\log \bar{p}_{kc(i,s)} \right)^2 \right\} \right]$$

up to a constant which is a quadratic in α_t. Iterative maximization leads to a sequence of α_t estimates which converge to a local maximum of Q. Similar methodology is implemented in [17] and formulae for $\hat{\alpha}_t$ may be found therein.

3. Maximization with respect to the gating network parameters.

Maximization of (C.1) with respect to the gating network parameters β_{kl} for $k = 2, \ldots, K$ and $l = 0, \ldots, L$ is also not straight forward. The MM algorithm for logistic regression is detailed in [18] and similar methodology is implemented here to achieve MLEs of the gating network parameters.

The Q function, up to a constant, as a function of β is:

$$Q(\beta) = \sum_{i=1}^{M} \left[\sum_{k=1}^{K} \hat{z}_{ik} \left(\beta_{ki}^T \tilde{w}_i \right) - \log \left(\sum_{k'=1}^{K} \exp \left(\beta_{k'i}^T \tilde{w}_i \right) \right) \right]$$

since, by definition, $\sum_{k=1}^{K} z_{ik} = 1$. As (C.4) is a concave function, by C.3 the quadratic function of β_k:

$$Q(\beta_{k}^{(h)}) + Q'(\beta_{k}^{(h)})^T (\beta_{k} - \beta_{k}^{(h)}) + 1/2(\beta_{k} - \beta_{k}^{(h)})^T B (\beta_{k} - \beta_{k}^{(h)})$$

minorizes $Q(\beta_{k})$ at the point $\beta_{k}^{(h)}$ where the constant matrix B can be defined as $B = -1/4 \sum_{i=1}^{M} \tilde{w}_i \tilde{w}_i^T$ such that $H(\beta_{k}^{(h)}) > B$.

Maximizing this minorizing surrogate function gives the iterative update formula:

$$\beta_{k}^{(h+1)} = \beta_{k}^{(h)} - B^{-1} Q'(\beta_{k}^{(h)})$$

which only requires the inversion of B once during the iterative algorithm. The similarity with the well known Newton-Raphson update is
apparent — the MM algorithm update (C.5) trades the computational inefficiency of the Newton-Raphson update for an increased number of iterations.

By embedding these MM algorithm steps in the M step of the EM algorithm a sequence of parameter estimates is produced which converges to (local) MLEs of the Benter model parameters \((p, \alpha)\) and of the gating network parameters \(\beta\).