<table>
<thead>
<tr>
<th>Title</th>
<th>The Palawan Island Palaeohistoric Research Project: Report on the 2012 Season</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors(s)</td>
<td>Paz, Victor; Lewis, Helen; Ronquillo, Wilfredo; Foster, Gerald; et al.</td>
</tr>
<tr>
<td>Publication date</td>
<td>2012-09</td>
</tr>
<tr>
<td>Publisher</td>
<td>Archaeological Studies Program, University of the Philippines and National Museum of the Philippines</td>
</tr>
<tr>
<td>Item record/more information</td>
<td>http://hdl.handle.net/10197/7220</td>
</tr>
</tbody>
</table>
THE PALAWAN ISLAND PALAEOHISTORIC RESEARCH PROJECT

REPORT ON THE 2012 SEASON

Victor Paz, Helen Lewis, Wilfredo Ronquillo, Emi Robles, Jane Carlos, Myra Lara, Omar Choa, Archie Tiauzon, Shawn O’Donell, Vito Hernandez, Deo Querdo, Jun Cayron, Gez Foster, Giulia Marciani, Wilhelm Solheim II

with contributions from Noel Emano, Bea Fereras, Janine Ochoa

2012
A project supported by

Philodrill Corp.

PCSD

(Rogues of organisations)
Acknowledgment

Our team acknowledges the support and assistance from the Chancellor of UP in Diliman, Dr. Cesar Saloma; Director Jeremy Barns of the National Museum of the Philippines; the Palawan Council for Sustainable Development; Prof. Gerardo Agulto of the UP Foundation Inc.; Barangay Captain Isaac Lim of Barangay New Ibajay, Barangay Captain Carmelita Lim Acosta of Sibaltan, and Mayor Edna Gacot-Lim of El Nido, Palawan. The research team would like to thank the good people of Barangay New Ibajay for their hospitality and for continuing to welcome us in their community. The help of Roberto Toriente and the Cabral family for facilitating the Imorigue survey is much appreciated. Our thanks are especially due to the family of Mrs. Herminia Libudan, the Dela Cruz family, and the Reyes family.

Thank you also to Arvin Acosta of the El Nido Tourism Office and Bong Acosta of the El Nido Planning and Development Office. We are also thankful for Mrs. Gloria Fernandez’s continuing support – a pioneer in the appreciation of El Nido’s rich archaeological resource. Our continuing gratitude goes to Cely and Danny Dangan, as well as their family and their staff at Laly and Abet. They have not wavered in their support since the beginning of our El Nido work.

The research team would also like to acknowledge its mother-unit, the UP-Archaeological Studies Program, especially the administrative and support staff; Aida Tiama, Digna Jacar, Tess Lubang, Arcadio Pagulayan and Ramil Mainot. The help of Danny Galang, and the support of Dr. Beth Baluda is well recognized for this season. We continue to warmly acknowledge the consistent support of Mr. Anthony Ferrer, who has opened many opportunities for the project to expand in the last five years.

We also like to express our most heartfelt gratitude to the institutions and companies that have supported the project this season, namely the Coral Bay and Rio Tuba Nickel Mining Companies,
Philodrill Corporation, Petro Energy Resources Corporation, Cybersoft integrated Geoinformatics, Leslie's corporation, Philex Mining Corporation, University College Dublin and the Wilhelm G. Solheim II Foundation for Philippine Archaeology, Inc.

Lastly, we continue to acknowledge the crucial support in previous seasons of the British Academy, The the Oxford University Dating Research Laboratory for Archaeology and the History of Art, The University College Dublin Seed Funding, The the Irish Research Council for the Humanities and Social Sciences, Southeast Asian Airlines, the Luce Foundation, and the University of Washington. In 2012 certain contributors had significant funding from the University of Cambridge, the Fulbright Foundation, and the UP-ASP European Union Erasmus Mundus fund.

CONTENTS
Acknowledgment Err! Bookmark not defined.
List of Figures 5
List of Plates 5
2. Introduction 7
3. Objectives 8
4. Palaeohistoric work in northern Palawan 12
4.1 Current production of knowledge coming from the project 17
5. Methods 21
5.1 Excavation Err! Bookmark not defined.
5.2 Survey Err! Bookmark not defined.
5.3 High resolution recovery of finds Err! Bookmark not defined.
5.4 Public archaeology/ Heritage initiatives Err! Bookmark not defined.
6. Results 23
6.1 Pasimbahan-Magsanib (IV-2007-Q1) 24
6.2 Ille Site (IV-1998-P) 31
 East Chamber Trench Excavation 32
 East-West Connection Trench (N2-3 W6-11) (Myra) 37
 West Mouth Western Connection (WMWC) 42
6.3 DELA CRUZ – ANASTACIO SITE 48
 survey of other archaeologically significant areas in the Ille karst Tower 116
LIST OF FIGURES

Figure 1. General location map of project area
Figure 2. Map of the El Nido Landscape and the Dewil valley
Figure 3. Aerial view of New Ibajay indicating the location of archaeological sites studied
Figure 4. The Pasimbahan-Magsanib site plan indicating locations of excavation trenches
Figure 5. Northern quadrants of Trenches A and B
Figure 6. East and West sections of Pasimbahan-Magsanib Trench A & B
Figure 7. North and South sections of Pasimbahan-Magsanib Trench A & B
Figure 8. Ille site (IV-1998-P) plan
Figure 9. Lithic core from c.2161 (IV-1998-P-48284)
Figure 10. Flake from c.2161 (IV-1998-P-48278)
Figure 11. Ille site East Chamber Trench stratigraphic profile
Figure 12. East West Connection Trench Stratigraphic Profiles
Figure 13. Collated plan views of features found at EWCT since the 2011 excavation season
Figure 14. Ille site West Mouth West Extension Stratigraphic Profile
Figure 15. Plan of Dela Cruz-Anastasio site
Figure 16. Dela Cruz-Anastasio Site Trench 1 Profile
Figure 17. Dela Cruz-Anastasio Site Trench 2 Profile
Figure 18. Dela Cruz-Anastasio Site Trench 3 Profile
Figure 19. Dela Cruz-Anastasio Site Trench 4 Profile
Figure 20. Plan of Florante Reyes Site
Figure 21. Florante Reyes Site Stratigraphic Profiles
Figure 22. Walking survey of the Tigas and Diribungan karst area
Figure 23. A number of GF/DR sites as represented by the dates of the survey
Figure 24. Location map of ancient river terraces in the Dewil valley
Figure 25. Location map showing places where landscape sampling was done
Figure 26. Kagbanaba core stratigraphy

List of Tables
Table 1. List of added context descriptions for Pasimbahan-Magsanib Site
Table 2. List of relevant context numbers from East Chamber Trench
Table 3. Context descriptions generally categorized as white/ashy deposit (black font) or reddish/orangey sediment (red font)
Table 4. Context descriptions from Dela Cruz-Anastacio Site
Table 5. Context descriptions from Florante Reyes Site
Table 6. Accession numbers, sub-units of origin and height from the base of the exposed section for each of the 8 sub-samples
Table 7. Accession numbers, contexts / depths and descriptions of Pasimbahan samples

LIST OF PLATES
Plate 1. Project setting in the Dewil valley
Plate 2. Images showing methods
Plate 3. Pasimbahan-Magsanib images
Plate 4. Images of Dela Cruz-Anastacio and Florante Reyes Sites
Plate 5. Ille Images
Plate 6. Plan and profile of Ille platform and cave network
Plate 7. West Mouth West Extension Trench Images
Plate 8. Example of shell artefacts, including *Tridacna* spp.
Plate 9. Example of shell artefacts including *Melo* spp.
Plate 10. Examples of beads found this season
Plate 11. Examples of lithic flakes recovered this year
Plate 12. Examples of polished stone/lithic artefacts from this season
Plate 13. Samples of pottery sherds
Plate 14. Pottery sherds
Plate 15. Samples of pottery sherds
Plate 16. Pottery sherd and examples of metal artefacts
Plate 17. Landscape study images
Plate 18. Latest installed exhibit at Pasimbahan-Magsanib site
Plate 19. Public Archaeology and Heritage work

Appendices
2. INTRODUCTION

The Palawan Island Palaeohistoric Research Project (PIPRP) was initiated in 2003. In its first two years the project concentrated work in the southern and central parts of the main island; namely the Rio Tuba-Bataraza area, and around the Quezon district (Paz 2003a,b). The work done in the first years focused on archaeological assessments in search for sites that may contribute to our knowledge of the deep history of Palawan. The early years also concentrated on palaeoenvironmental sampling in-line with our general objective of gathering proxy evidence towards a better understanding of people-landscape relationships through time (see Paz et al. 2003; Lewis 2003; Lewis et al. 2007; Wurster et al. 2010).

For the most part since 2004 the PIPRP has concentrated its efforts at the northern end of the main island. In particular, research and heritage initiatives were mainly done within the municipality of El Nido. At the same time, the nature of the work shifted towards larger-scale
excavations anchored primarily in the Dewil Valley. Apart from excavations at the two main Dewil sites - Ille and Pasimbahan-Magsanib - more archaeological sites were discovered and studied within valley and in other parts of the municipality, such as in Sibaltan, and within the town proper of El Nido.

Our field season for this year started in late March and ended in early May. Within the pages of this report consist of narratives of work and results chiefly throughout 2012. With post-excavation work continuing throughout the years, a few of the results of such work are reflected as supplements, included as appendices to this report.

The legal authorization to excavate archaeological sites was granted to Dr. Victor Paz by the National Museum of the Philippines through Director Jeremy Barns; this is in behalf of the other project proponents, namely Dr. Helen Lewis and Prof. Wilfredo Ronquillo (see Appendix A). The field season team was, as always, composed of a mix of nationals who are specialists or graduate students.

A standing clearance for the project from the Palawan Council for the Sustainable Development is still in effect, and the close coordination with the Office of the Mayor of El Nido, especially under the current leadership of Mayor Edna Gacot-Lim, continues. The support and cooperation of the Barangay administration under the leadership of Barangay Captain Isaac Lim of New Ibajay, and Barangay Captain Carmelita Lim Acosta of Sibaltan, was also assured.

3. Objectives

The objectives set for the year were the following:

1. Continue the Ille site excavation with the objective of expanding the excavation of the 9000 year old cremation cemetery in front of the cave mouths;

2. Continue the palaeoenvironmental investigation of the valley with the added objective of developing insights that may contribute to the formulation of future disaster management programs applicable to the needs of local government.

3. Continue the excavation at the Pasimbahan-Magsanib site in the Dewil valley and attempt to reach pre-10,000 years ago archaeological deposits.
4. Initiate a livelihood program directed to New Ibajay residence towards the improvement of their consciousness regarding the management of their cultural and natural heritage resources.

5. Install an updated exhibit at Pasimbahan-Magsanib and, in Puerto Princesa, and repair/upgrade exhibits installed by the project at El Nido town, Sibaltan, and New Ibajay.

6. Continue to give basic community talks and collaborative initiatives with local government units towards the enhancement of heritage consciousness amongst the people of Palawan and its ever present tourist population.

7. Continue material analysis and encourage specialists to write technical reports for the project.

As in previous seasons, there was no illusion that these objectives could be comprehensively addressed at the end of the year. It was however the research team’s goal to move significantly towards this direction, knowing full well that a research project of this magnitude needs many years to complete.
Figure 1. General location map of project area.
Figure 2.
Map of the El Nido Landscape and the Dewil valley area showing location of known archaeological sites.
4. PALAOHISTORIC WORK IN NORTHERN PALAWAN

The Dewil Valley is located in the northern portion of the main island of Palawan, the main island in Palawan province. The valley is nine kilometers northwest of the town of El Nido and lies between 11°00’ to 11°15’ North and 119°29’ East. This town governs Barangay New Ibajay - the settlement located inside the Dewil Valley. New Ibajay is approximately 235 km north of the capital of Palawan province, Puerto Princesa. It takes about 45 minutes by land, at current road conditions, to reach New Ibajay from El Nido. The Dewil Valley is approximately seven kilometers long and four kilometers wide. From New Ibajay, Sibaltan Bay is approximately 4 km away to the east. The main Dewil River sits south of Ille and runs eastward towards Sibaltan Bay. During the rainy season, as observed in at least five seasons, the water ways come to life and the watertable become very high (near surface in the floodplain), while in the dry season the watertable is normally quite low (sometimes very low - >5m). We have observed the this pattern same phenomenon in all the dry ponds and streams across the valley.

The Barangay of New Ibajay is located 11°11’46” North and 119°30’19” East. It has a population mainly composed settlers and their descendants, who that came to the island island in the late 20th century. Most of the families within the barangay originally came from the province of...
Aklan in northern Panay Island. The Dewil area and most of the communities within the Municipality of El Nido, however, are dominantly populated by people belonging to the Cuyonin ethnolinguistic group. It is a constant challenge to communicate our basic research results and our heritage initiative goals in such a way that it is inclusive of all ethnolinguistic groupings found in the study area.

The focal area of the project to date is the landscape around the Ille site. The Ille karst tower is a short walk northwards from the main road of New Ibajay. It is approximately 75 metres high from the base. A cave network hollows the tower with three main mouths located at its base. The main entrance to the cave is composed of two mouths leading to a single chamber. There is a large platform in front of the two adjoining cave mouths with an overhang that extends to about ten metres. A narrow, thickly vegetated band of land surrounds the karst tower, which creates a shaded and cool environment around the platform of the cave. The other karst tower formations in the Dewil Valley are also within islands of thick vegetation, which in turn are surrounded by rain-fed rice fields and vegetable gardens tended by people living in New Ibajay.

While the history of archaeological work in northern Palawan started back in the 1920s, there has never been a sustained research effort matching the current project. In the 1920s, the archaeologist Carl Guthe (1927, 1929, 1935, and 1938) led a Pan-Philippine material culture collecting expedition for the Univeristy of Michigan. Guthe specifically explored northern Palawan as part of his objective to collect as much ethnographic and archaeological materials from the Philippines. In the processes he recorded archaeological sites in Bacuit Bay and around the vicinity of present-day El Nido town (see also Solheim 2002). Guthe’s work, however, never went beyond recording and reporting what he surveyed and collected. At best, he test-excavated a few sites within the islands in Bacuit Bay. There was no attempt to earnestly do a synthesis of the data he collected from the large collection of material culture he gathered and brought back to the United States. Specifically, the Palawan data was not utilized to better understand the nature of the transformation of human culture through time, nor attempted to articulate his views on the processes involved in the formation of the old culture(s) that left the archaeological assemblages. Guthe’s level of work is not surprising if we situate it within the work of Otley Beyer, the senior archaeologist in the Philippines even at that time. Beyer knew much about the archaeology of Palawan through a network of informants and not by actual fieldwork. A significant amount of what he reported on Palawan archaeology, incidently, came from the work of Guthe (see Beyer 1947). Unfortunately, the information coming out of Palawan was secondary in Beyer’s attempts to synthesize Philippine early history and culture (see Beyer 1921,1948; Beyer & De Veyra 1948).

The nature of research further improved by the 1960s. Central to the unprecedented knowledge production coming from Palawan at that time was the work of the National Museum of the Philippine under the leadership of Robert Fox. By the later 1950s, Fox (1970)
used Guthe’s work in northern Palawan as his lead in pursuing research in the island group. In the process, his team recorded new sites from the area, adding to the long list of sites that Guthe had already reported. A good number of these sites were also from the islands within Bacuit Bay. Of the sites Fox surveyed within the islands of the bay, a few were excavated, including the well-known site of Letaleta Cave. This site is located on Lagen Island and is currently integrated in the Lagen resort complex on the island. It was confidently established through systematic excavations revealed a of the burial/votive site associated with the "Metal Age", or about 2000 to about 1500 years old. The excavations also recovered a well-recognized jar with its rim fashioned to look like a yawning/shouting person, which is now permanently displayed in the National Museum of the Filipino People.

During Fox’s stay in El Nido, Mrs. Gloria Fernandez and her family assisted in the project. The keen interest of Mrs. Fernandez in archaeology was such an asset to the point that she was deputized by the National Museum to continue the exploration of the area for new archaeological sites. Way Long after active research ended in northern Palawan, Mrs. Fernandez noted and reported to the National Museum new archaeological sites from El Nido, some of which she herself personally located by Mrs. Fernandez, and some which were brought to her attention by people who did-carried out or witnessed pot-hunting/looting activities. Gloria Fernandez is likely the source for the short reference of Fox’s reference to when he mentioned that there were “reliable reports of caves containing cultural materials in the Diwil (sic) and Taytay areas...” (Fox 1970: 179). The information shared by Mrs. Fernandez played a significant role in the 1998 El Nido archaeological survey by the National Museum, which was a precursor of the current project. Although we later recorded an eyewitness account that Fox personally saw the Makangit karst within Dewil valley, this was not known during the 1998 survey, when Mrs. Fernandez encouraged the team to look at previously known sites in the Dewil Valley. This survey made at the valley consequently led to the discovery of the Ille site. At that time, Ille was an unrecorded site near known site-locations within the valley, such as “Star” and "Makangit" [see Jago-on 1998; Paz 1998].

In the 1960s to the 1980s, after the initial interest in sites such as Letaleta waned, northern Palawan drifted to the sideline of archaeological research priorities. This was the case because there were very few full-time field archaeologists in the Philippines, and the interest in the island’s archaeology was focused on central Palawan, where this interest in the archaeology of central Palawan was brought about by the recovery of fossilized human remains dating to around 50,000 years ago from Tabon Cave located at on Lipuun Point, in Quezon, These fossils showed earliest-early accepted evidence of modern human existence in the Philippine islands (Fox 1970; Dizon 2003). By the 1970s, with the limited numbers of capable archaeologists in the Philippines, northern Palawan could not compete in national archaeological priority was focused on with the work pursued in the Cagayan valley in northern...
Luzon. The Cagayan valley was a priority, consistent with the research direction at the time to look for direct evidence for the existence of pre-modern humans in the Philippines (see Fox & Peralta 1974).

The interest in antiquity, however, continued in an unfortunate way in northern Palawan even with the absence of directed archaeological research. Large scale pot hunting activity was present going on throughout the 1970s and 1980-90s, including coupled with “treasure hunting” in search of the fictional “Yamashita treasure”. In the coastal barangay of Sibaltan, El Nido, the scale of looting was very so large, and the finds of hoards of porcelain and trade goods were so spectacular, that the National Museum responded by sending a team from the Cultural Properties Division to supervise excavation and collection of tradeware ceramics in 1976 and returned for one more season in 1977. The National Museum team, however, focused on collecting ceramic samples and did not have the man-power or resources to expand their objectives (see Fox 1970). Sibaltan was revisited during the 1998 survey (see Paz 1998), and the high potential of the area for further research reiterated in subsequent preceding reports (e.g. Paz et al. 2008, 2009). The area was finally integrated into the PIPRP project with full-blown excavations at the Sibaltan elementary school and the Acosta Property site in 2010. There was evidence of historic human burials not associated with tradeware ceramic excavated from both sites; there was also evidence for the existence of older archaeology than these burials in the Sibaltan elementary school site in the form of postholes (Paz et al. 2010).

In the midst of extensive looting during the decades from the 1970s to the 1990s there were a few systematic archaeological surveys done in northern Palawan. An initial survey was initiated by the National Museum in 1990 on the vast landscape of El Nido and Taytay (Aguilera 1990). It took few years after before a sustained archaeological interest returned to northern Palawan in the late 1990s through the initiatives of NGOs like the Philippine Rural Reconstruction Movement (PRRM), and the Southeast Asian Institute of Culture and Environment, Inc. (SEAICE). These initiatives were closely coordinated with by the National Museum of the Philippines and Ten Knots – a private company that manages the first class tourist resorts in El Nido. The survey done in 1998 resulted not only in improving the data on previously reported sites (see Paz 1998; Jago-on 1998), as mentioned earlier, it also resulted in the rediscovery of the high research potential of the Dewil valley. Within the same year of the survey the Ille site was mapped (Mijares et al. 1998) and a test excavation initiated. The Ille karst tower captured the imagination of senior archaeologist Wilhelm Solheim, who was part of the 1998 survey team. Solheim led the early seasons at Ille with the help of a veteran team of Museum-based archaeologists.
Excavation at the Ille site started in 1998 with a 1.87m x 1m (site grid location N3W12) test pit at the front of the West mouth; time, manpower constraints, the presence of human burials and large buried boulders limited the depth of this excavation to less than a metre (Hara & Cayron 2001). More extensive excavations were conducted in 1999 (Solheim 1999; de la Torre 1999; Bautista 1999) with four excavation areas opened; following the 1m x1m grid previously established across the platform. The excavation concentrated on grid squares N3W12, N4W12, N3W13, N2W12, and N2W12. Several human burials were excavated as well as a shell midden. The nature of the archaeology effectively slowed down the work, preventing the excavation from reaching deeper and older cultural deposits.

In 2000, the excavation continued at the Ille site with the previous West mouth trench reopened (Jago-on 2000; SEAICE 2000a, 2000b). The excavation did not manage to go much deeper than the previous season mainly due to boulders that occupied most of the space of the trench area. In 2002 equal emphasis was given to excavating both West and East mouth fronts of the cave’s platform (Szabó et al. 2004; Swete Kelly & Szabó 2002, Kress 2002). The season ended with substantial progress in the understanding of the archaeology of Ille. The season also provided better evidence for a shell midden layer in both the West and East mouth excavation areas; more burials and artefacts were uncovered, similar to the results of the previous seasons. More importantly, a series of cohesive radiocarbon dates came out from the stratigraphic sequences at the East mouth excavation area. The dates led to a clear understanding of the time depth of the cultural deposits from the excavated shell midden layer to around the depth of 125cm from the surface. There was a consensus in the understanding of the archaeology that there was a strong case for cultural remains below the earliest radiometric dated layer of c. 10,000 bp from the 2002 season (see Szabó et al. 2004).

Also in 2002, all previous excavations were further synthesized in a status report written by Prof. Wilhem Solheim II (2004) for the Solheim Foundation. In this report, insights on the possible fate of Burials No. 1 to 4 at the West mouth were expanded. It was postulated at this time that we may be looking at the remains of massacred individuals hurriedly buried. The Solheim report also reiterated a call for the Philippine archaeology community to commit to a long-term research initiative at Ille.

The PIPRP heeded the call of Prof. Solheim by refocusing its fieldwork from the southern part of the main island of Palawan to the north. There was also a sense of urgency when reports reached the archaeology community of sustained looting of archaeological sites taking place in the Dewil valley after the end of each excavation season from 2000 to 2003.

At this latest season of the PIPRP it is appropriate to mention that so far, based on a robust series of iradical dates representing the stratified archaeology at Ille site and Pasimbahan-Magsanib, we know that human cultures were flourishing in the El Nido area as far back as at
least 14,000 years ago (see Lewis et al. 2006). The knowledge coming out of northern Palawan on the complexities of cultures that flourished in the past continues to push the borders of what is knowable from basic research.

4.1 CURRENT PRODUCTION OF KNOWLEDGE COMING FROM THE PROJECT

The curated and the analyzed facets of the archaeological assemblages coming from the project continue to be open for more in-depth studies. The access given by the project proponents to researchers has so far led to the completion of top quality analysis, publications, and presentations, which were disseminated beyond the series of reports that come out annually from the PIPRP (see reference list).

On several occasions, a field season experience was summarized and published in the UP-ASP publication Test Pit. In such publications, a short description of what was excavated for a field season, and a few highlights in terms of finds and events were shared. This was done for the 2006 season (Eusebio et al. 2006), the 2007 season (Canilao 2007), the 2009 season (Wright 2009), and the 2010 field season (Ostericher 2010).

Landscape and environmental studies were done initially addressing the challenge of mapping the general geographic study area. Pawlik (2004) narrated the challenge of initially mapping the Ille site, which resulted in the creation of the first detailed digital map of the cave and rockshelter. Since 2007, Emil Robles, as a key member of the PIPRO, continues to update and improved the mapping of the two major sites in the valley, i.e., the Ille and Pasimbahan-Magsanib sites, together with the larger landscape of northern Palawan. Landscape-scale studies also come from the materials on the sites themselves. Animal and plant remains recovered inform us of human activity in a multitude of ways. The various shell remains excavated from Ille were interpreted to species level through a preliminary study, and a discussion initiated on the nature of human subsistence strategies in the past (Faylona 2003, 2006). More basic taxonomic work needs to continue on the numerous shell remains from the sites excavated; the progress of these studies is always included in the reports when updated. When it comes to mammalian remains, the publications that have come out have changed the way we see the Philippine islands in the deep past. For instance, the recovery of tiger bones from Ille (Piper et al. 2008) expanded the known range of this large carnivore and clarified our view of the role of changes in the ancient landscape such as the impact of sea level rise in the terminal Pleistocene on animal habitat, both through the loss of landmass and changes in the nature of the ecosystem, which eventually led to local extinction events. An article by Ochoa (2005) analyzing the juvenile dog remains found at the West mouth trench at Ille, situated this find within the larger discourse on the domestication of the dog in Asia. The Ille faunal
assemblage was the focus of Ochoa’s (2009) Master’s thesis, wherein she explained the changing animal resource availability in the valley through arguments related to animal exploitation patterns. These investigations are complemented by work on plant remains, such as Carlos (2010), where the initial synthesis of data from Ille gave insights on ancient subsistence patterns. The archaeobotanical information coming from the project has also been integrated into a larger regional study, which saw the fusion of knowledge from the Niah site in Sarawak, and Ille in Palawan, used to infer the nature of the transition to farming in ancient island Southeast Asia (Barker et al. 2011).

Results of isotope dating initiatives are always first reported in the annual volumes of the project. There have been two instances where the isotope dates produced by the project were published for a wider academic audience. In the first instance, as a short report for the Ille mineralized human bones that dated to c.3 to 6 thousand years (Paz 2006). The more significant publication of isotope dates came from Ille with extensive discussions on their implications; briefly, that the valley has clear time depth evidence for human occupation to around 14 thousand years ago (see Szabo et al. 2004; Lewis et al. 2006, 2008).

The human remains coming from the excavation of Ille site have been the subject of a few publications and studies, including an analysis of human teeth from the burials excavated in the first two seasons (see Medrana 2002), which gave us insights into the age-range and health condition of some of the individuals that were buried within the Ille platform. This line of inquiry continues with several graduate students taking up the challenge of looking at the mostly poorly preserved human remains. A master’s thesis was written on the first cremation burial excavated from Ille (Lara 2009), leading to a clear understanding of how the individual was processed for interment. Lara’s work also cautioned on the haste that scholars sometimes conclude, based purely on bone morphological grounds, for the presence of cannibalistic behavior.

When it comes to animal and plant remains recovered from the archaeological site, they inform us of the human activity in multitude ways. From the project several studies have been published. The various shell remains excavated from Ille were reported in an initial study that managed to determine most of these shells to species level and initiate a discussion on the nature of human community subsistence strategies in the past (Faylona 2003, 2006). It is accepted, however, by all researchers that more basic taxonomic work needs to continue on the numerous shell remains from the sites excavated; the progress of which are always included in the reports when updated. When it comes to mammalian remains, the publications that came out have changed the way we see the Philippine islands in the deep past. The recovery of tiger bones from Ille (Piper et al. 2008) expanded the known range of this large carnivore and clarified our view of how the changes in the ancient landscape may have taken place; the role of sea level rise in the terminal Pleistocene had a substantial effect on animal habitat, not only...
through the loss of landmass but also through the change in the nature of the ecosystem, which
eventually led to local extinction events. There is also an article by Ochoa (2005) analyzing the
juvenile dog remains found at the West mouth trench at Ille. She situated this find within the
larger discourse on the domestication of the dog found in the literature. The Ille faunal
assembly was the focus of Ochoa’s (2009) Masteral thesis wherein she explained the changing
animal resource availability in the valley through arguments related to animal exploitation
patterns.

The work coming out of plant remains analysis have seen publication through papers written by
Carlos (2010) in where she presented the initial synthesis of data from Ille; inferring on ancient
subsistence patterns. The archaeobotanical information coming from the project was also
integrated in a larger regional study, which saw the fusion of knowledge from Niah site,
Sarawak, and Ille, which was then used to infer on the nature of the transition to farming of
ancient cultures in Island Southeast Asia (Barker et al. 2011).

Concerning the work done on artefacts and artefact assemblages recovered by the project, there
are several we can mention. Stone and bone tool analysis was central in the study of the
Makangit cave site (see e.g. Teodosio in Paz & Ronquillo 2004; L. Teodosio (2005)). Further
pursued her insights on bone tool technology by reviewing and comparing what was recovered
in Makangit with those studied in Island Southeast Asia. A limestone hand-axe recovered from
the Ille rockshelter was contextualized in at least two publications, drawing from the analysis
done by Pawlik (see Paz et al. 2010), which revisits the long standing discourse on the
technological analysis of stone tools in Southeast Asia (Pawlik 2010; Dizon and Pawlik 2010).

There were two polished stone adzes analyzed by Pawlik (2007) from the stand point of use-
wear analysis in where he documented the high-level of edge-sharpening skill that the makers
of the tools had, and an initial study on use wear by Barton (2006; see Lewis et al 2008)
suggested Ille was a site of only limited stone-tool production, and that many flaked tools found
from Palaeolithic levels were used for processing of plant materials.

Our assemblage of shell artefacts have also been presented in publications and more in-depth
studies. The early assemblage of shell artefacts from Ille was included in the dissertation
research of Dr. Katherine Szabó at the Australian National University (Szabó 2004). Inspired by
Szabó’s work, Basilia (2012) conducted experimental studies on the production of
microperforated shell beads for her masteral thesis, which led to new insights on production
and utilization of shells in the region. The only T-shape-profile shell bracelet found so far in the
Philippine islands was contextualized by Vitales (2006) by comparing it with the reviewed
literature coming from Mainland Southeast Asia where this type of artefact is more common. A
cluster of perforated shells from burial context 727 from Ille was argued by Paz and Vitales
(2009) as most likely the remains of a meaningful adornment, perhaps slung over the
shoulder of the person buried. Vitales’s (2009) interest in the cosmology and shell artefacts
from Ille brought him to study the context of a specific shell artefact-type - *Melo* spp. Shells, which he argues, through his approach he demonstrates the significant of this particular shell in the cosmology of the early inhabitants of Palawan Island.

The work done on pottery assemblages coming out of the project was equally represented in the literature. Specific ceramic finds were reported in publication, such as the first whole jarlet recovered from Ille. This jar came from the West Mouth Trench and was at the bottom of the recorded deep filled in large crevice within the rock-shelter (Eusebio 2006), which explains its recovery, along with other pottery, at the depths beyond the known pottery-laden layers of the site. A study of a large portion of the collection of ceramic finds from the valley is also on-going, with Balbaligo’s (2010) work that studied and described describing in details quantities, fabric type and forms of pottery collected from the 2004 to 2008 Dewil valley seasons. She also discusses the manufacture and decoration styles of this enigmatic assemblage.

More specific to this assemblage was the article by Carlos (2006) reporting reports on known earthenware sherds from Ille that have clear signs of rice imprints or inclusions. The discovery of a terracotta turtle figurine from Pacaldero cave site in the Sinilakan karst allowed for reflection on the significance of turtles in the cosmology of the early inhabitants of the valley (Cayron 2004). Later investigations done at Pacaldero cave, however, led to the discovery of other parts of this figurine, which led to the discovered as the vessel representation representing to that of a bird (Paz et al. 2010). In all seasons of excavation since 1999, metal artefacts were recovered directly associated with burials or found within archaeologically rich sediment layers. Most of these artefacts were organized and initially analyzed by Carlos (2009) in her Test Pit publication.

Ongoing analyses that remain to be published include a study of landscape and site use/change through the technique of soil micromorphology. Hernandez (2010) reported on the basic characteristics of sediment monoliths from Ille, but the larger study by Lewis and Hernandez is in preparation.

There are a few reflective writings inspired by the project. Medrana (2005) did an initial study of the modern weekly butchery practice of pigs in New Ibajay. The idea was to look for ethnoarchaeological insights on the processing of the butchered pig that may be of used when looking at patterns observed in the archaeological pig and shell remains. At a larger scale, Kress (2006) looked at the work done by Robert Fox on the Negritos in the Philippines and situates the potential of the current excavation work at Ille to elucidate the modern human origins in the Philippine archipelago. The PhD dissertation of Cayron (2011) at the National University of Singapore used the PIPRP data to discussed long-term and long-range trade and exchange patterns in the Island Southeast Asia (Cayron 2011). More recently, Paz (2012)
proposed a way to access past cosmologies through material culture and landscape context; he heavily relied on the assemblage of material and knowledge coming out of the PIPRP.

Several members of the project have given many talks in the Philippines and abroad in formal conferences, seminars, and public lectures. An example of these presentations reported in-print (see Rragragio 2010) is the regional pattern of finding Canarium nut remains in various archaeological sites, which Carlos argues may be of significance beyond subsistence. Another example is the argument of Paz that the possible boat-shape markers found in both Ille and Pasimbahan-Magsanib can be contextualized to have significance for the understanding of past cosmologies based on a regional pattern. In just one more of many examples, Hernandez queried the relevance of the Philippine Neolithic by questioning the actual nature of the ‘Neolithic’ remains at Ille.

The study of the Dewil valley has also benefited from parallel research by colleagues working on related concerns. A good example comes from Quaternary geologists, mostly based at the National Institute of Geological Sciences at the UP (see Maeda et al. 2003). The combined analysis of data collected from the study of uplifted tidal notches, sediment cores and coral reef terraces may allow for an understanding of sea levels and possible climatic conditions at the time the Ille tower was utilized as a burial and habitation site. Another example is the research done by Reotita et al. (2008) from the UP Marine Science Institute working on the palaeoenvironmental reconstruction of the Dewil valley. There is also a pioneering study on the use of guano deposits as proxy evidence for local and regional vegetation change. This work provided isotope dates from guano deposits coming from the Malangit tower, which showed it remains to have much potential for the use of guano as dating material in other archaeological sites in the region (Bird et al. 2007). The same work was further pursued by Wurster et al. (2010) in arguing for a regional palaeoecological interpretation. As At the time of writing there are many more collaborative research projects focused on Palawan, in which the results of which will surely be published and shared in the coming years.

1. **METHODS**

Several methods were utilized to address the research objectives of this project. These methods have been consistently applied since the beginning of the project.

5.1 EXCAVATION

The method of excavation is still primarily employed for this research. In this field season, excavation work was done at the Ille site - both at the platform/rockshelter and inside the cave of Ille. The work resumed at the West Mouth Trench, and at the East Mouth area (East Chamber,
East Chamber Long Trench and East-West Connection). At Pasimbahan-Magsanib, excavation concentrated at Trenches A and B. There were two other sites excavated within the village proper of New Ibajay: the Dela Cruz-Anastacio Site, and the Florante Reyes site, or Reyes 2 site.

A few days before actual excavation started, backfill was removed until the thick plastic lining from the previous season was exposed. At the end of each season, all excavated areas were again lined with tarp and plastic sacks before being back-filled. The practice is for the protection of both the site’s archaeology and the local people and animals. Backfill sediments had to be collected from other nearby areas. This practice started in 2007 when it first became apparent that there was not enough sediment to fill the trenches to their original levels due to the extraction and dispersal of original sediments in process of fine-resolution methods applied by the project, e.g., flotation and wet sieving, as well as the removal of archaeological remains for post-excavation study.

The excavation attempted to removed deposited sediments from the youngest to the oldest deposition, guided by the approach of single context excavation and recording system. This method is adopted by many communities of archaeologists locally and internationally (see Harris 1989; MOLAS 1994). In this approach, all sediment types, lens-type features, structures, clusters of artefacts, and dug-up features were given individual context numbers, which were then organized in a matrix that illustrates the formation sequence of these deposits/features. A spit excavation approach was utilized to systematically remove thick layers of sediments encountered on a site - usually done at increments of 10 to 20 cm per spit.

The spatial relationships of the sediment deposits and archaeological features across an excavation trench, and between excavation trenches within the archaeological site, were plotted, recorded in excavation forms, and in plan and profile measured drawings. Recovered artefacts were bagged and recorded according to square, quadrant (as possible), layer context, depth (on a case-to-case basis; exact values were used if these were recorded, ranges were used otherwise), and type. Disarticulated animal and human bone artefacts were generally recovered with quadrant data. Burials were recovered, wrapped in newspaper, and stored in separate boxes per burial. Loose fragments per burial were placed in their own plastic zip bag before being stored with the rest of the burial in its box. Small finds artefacts, like beads and formal tools, were recovered with three-dimensional location data if found in situ.

Each layer or feature was recorded in the trench context notebook and on a Context Recording Form, except for burials, which were generally recorded on Burial Forms instead. Vertical profiles of previously unexcavated areas were drawn on new sheets of blue permatace paper, while those of previously excavated areas were appended on to the corresponding existing drawings. Layers, features, and special artefacts recovered in situ were digitally imaged/photographed. All Context Recording Forms and Burial Forms were also digitally
recorded (scanned). Most of the activities during the excavation season were documented in digital imaging.

5.2 SURVEY

The method of surveying the landscape was done with the help of informant work. From the areas pointed out by an informant, an ocular inspection was carried out on the known area and its surroundings. There was extensive field walking and landscape feature recording done this year (see section 6.5). With the help of a geomorphologists, a conscious attempt was made to plot the history of the Dewil river through the recognition of the various remains of river terracing in the landscape. Systematic sampling of sediments was done on these terraces, through recording of exposed sections and of augered sediments (see section 6.5 & appendix).

5.3 HIGH RESOLUTION RECOVERY OF FINDS

It has always been the aim of the excavations at Dewil have always to practise practised high resolution recovery of all possible evidence of past human activity, especially human-plant and human-animal interactions. We have a long-standing goal to understand both ecological and cultural patterns within our research landscape. Many of the sediments coming from the deeper layers of the excavations were subjected to flotation; especially those from known surfaces and features, such as, shell middens layers and hearths. The heavy fraction that remained after the wet sieving were was sun-dried, and sorted for biological remains and artefacts, while at the field base. The light fraction samples from the flotation were brought back to the ASP laboratory for further sorting and analysis. Special interest was also given to the types of shell remains recovered from the site. All sediments above the shell midden layers not associated with hearths and pits were dry sieved. The sediments from the shell middens were completely floated and wet sieved. All contexts from the shell middens down to the lowest levels that were not hearths, pits or combustion features underwent wet sieving. Samples for phytolith analysis were also taken at Ille and Pasimbahan-Magsanib, and targeted samples for soil micromorphological study were taken from Ille trenches. These studies are still ongoing. Outside the known archaeological sites, coring-augering was conducted in identified areas with good potential to inform on palaeoenvironment. This was done in conjunction with this year’s landscape surveys (see results on palaeoenvironment and landscape survey).

5.4 PUBLIC ARCHAEOLOGY/ HERITAGE INITIATIVES

There has always been an effort towards disseminating knowledge generated from the surveys and excavations done within the framework of the PIPRP. In the early years, the research teams conducted dialogues and meetings with the Barangay Council, mostly to explain the nature of the project’s archaeological work, its methods, and general objectives. Every now and then these
dialogues are still held, although now mostly in an informal manner. In 2007, an exhibit on the scientific findings of the excavation in Ille was established within the Ille Siteunit, consisting of a single back-to-back wooden panel and a framed time-line representation on tarpaulin. This exhibit was updated last year, and tailored versions of the format replicated at El Nido town, Sibaltan barangay hall, and at this year at Pasimbahan-Magsanib site. Our exhibits contain images, texts/data, and casts / replicas of major artefacts found from various sites in Palawan.

In 2012 the project hosted and linked up with a Fulbright scholar from the United States, with the aim of developing a community museum at Sibaltan village, where an initiative in 2010 produced a local exhibit of archaeology in the village school. We have also been involved in ongoing tourism initiatives with the El Nido Tourism board, including establishing local guide training and certifying for tours of the Ille and Pasimbahan sites, and we have had discussions regarding establishing a museum outpost at Ille. Over the last few years we have been involved in documenting the theft of human remains from the Imorigue site in the Dewil estuary, working with local and National Museum authorities to help publicise heritage destruction issues in the El Nido area.

The materials from all the Dewil valley excavation seasons are mainly stored in Villadolid Hall, within the facilities of the Archaeological Studies Program in Diliman. These facilities serve as an extension of the National Museum storage system – the institution that manages the archaeological heritage within the Philippines.

6. RESULTS

This chapter presents the work done during the year. Sub-sections are dedicated to the work done on the archaeological sites of Pasimbahan-Makanget, Ille, Dela Cruz-Anastacio, and Florante Reyes (Reyes 2). It also contains the results of archaeological and landscape surveys done during the field season, and the heritage work done in Palawan for the year.

6.1 PASIMBAHAN-MAGSANIB (IV-2007-Q1)

The Pasimbahan-Magsanib site, located at N11 012°881’. E 1190 29°59’, is within the Western section part of the large Istar karst formation, and is within sitio Magsanib of Barangay New Ibajay. The objective for this season was to continue to expose the last archaeologically-rich surface [c.414], which we postulated was the last cultural layer before the a massive rockfall deposit. The trenches A & B were therefore the focus of all work. These two trenches have been consistently investigated since 2007 - the first season on this site.
A and B together are irregularly shaped; with dimensions of 442 cm (N) x 384 cm (S) x 365 cm (E) x 279 cm (W). The irregular shape of the trench was due to the limits provided by the rockshelter wall and the width of the sediment deposits at its location on the western end of the shelter. Consistent with the original objectives set for these trenches, we were still trying to reach the oldest archaeological deposits on site and at the same time compare the archaeological assemblage of the site with the other sites in the valley. After taking out the backfill from the trenches and exposing the last surface excavated last year (predominantly c.414), the walls of the consolidated trenches were trowel-cleaned. A Local Datum Point was established for depth measurements at mid-point of the east wall at Trench B; it had a value of 300 cm from the site datum point.

As observed since 2010, the surface of the rockshelter at the time c.414 was deposited was uneven – due to the highly irregular contours of the rock fall layer very closely underneath. The sediment accumulation after the rock fall deposit slopes steeply northwards, towards the rockshelter’s

Figure 4. The Pasimbahan-Magsanib site plan indicating locations of excavation trenches
Aside from this, the gaps between the larger protruding rocks created crevices that filled-in at later dates, creating a complicated sediment deposition history where younger deposits are roughly found at the same depth as much older deposits, e.g., the aceramic, lithic-rich, c. 414.

In the process of removing c.414 and modified features of the context, such as, c.428 – sediment modified by heat under c.427 - a few more features were exposed on its surface. There were more cumbustion features exposed similar to travertine or guano. At the northern quadrants a feature of two concentrations of cemented ash [c.444] was exposed. Around c.444 was a thin spread of a mid-reddish brown clayey silt feature [c.446] was found; this was compact, with a few chert flakes and obsidian debitage, and numerous burnt sediment fragments. Context 446 may have been the extent of the combustion feature associated with the remnants of its ash deposit seen in c.444. Most of c.446 was taken out and the sediments were sieved and collected in sacks for flotation. With the ash concentration feature c.444, samples for phytolith and pollen analysis were taken, and half of the sediments were recovered and bagged for additional study. Underneath c.444 and c.446 was sediment similar to c.414 except modified by the firing activity connected with c.444 and c.446. Cutting through c.428, and covered by c.427 was a posthole [cut = c.448; fill=447] diagonally oriented northward, or towards the rockshelter’s wall.

At the West and Southwest corner of Trench B, after the removal of what remained of sediment deposit c.57, more of the large rock fall [c.435] stones were exposed. A loose mid-yellowish brown clayey silt deposit [c.445] was excavated inside gaps between boulders, under the a thick reworked clayey deposit of [c.57]. Within c.445 a Melo spp. preform artefact was recovered within a scattering of fragmented shells. This deposit may be part of the earliest of the shell shell-dominated rich layers in Trench A & B.
The excavation ended with parts of c.441 still remaining at the northeastern quadrant, c.451 exposed, and half of c.444 still in situ. At the southern quadrants, we left stratigraphically younger deposits c.439 and c.440 exposed before backfilling. In a simultaneous activity on the excavation floor, in terms of sediment deposition, the orientation of the sediments and rockfall are all sloping northwards. Additionally, further investigation revealed that context 421 is much older. The surface dips northward towards the rockshelter wall.
Figure 4. Vertical profiles of East and West walls of Trench A & B, Pasimbahan - Magsanib Site in 2011.
Figure 6. East and West sections of Pasimbahan-Magsanib Trench A & B
Figure 5. Vertical profiles of North and South walls of Trench A & B, Pasimbahan-Magsanib Site in 2011

Figure 7. North and South sections of Pasimbahn-Magsanib Trench A & B
Table 1. List of added context descriptions for Pasimbahan-Magsanib Site

<table>
<thead>
<tr>
<th>CONTEXT NUMBER</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>428</td>
<td>Mid yellowish brown compact clayey; directly under 427, starting around 390 cm</td>
</tr>
<tr>
<td>443</td>
<td>Feature, dark brownish grey course-grain silty clay; near north wall; a shallow depression next to c.444 concentration; in-filled by fine sediments (small natural depression)</td>
</tr>
<tr>
<td>444</td>
<td>A combustion feature similar to c.427 hearth feature</td>
</tr>
<tr>
<td>445</td>
<td>Loose mid yellowish brown clayey silt; deposit inside gaps next to c.423 deposit. Associated with a Melo spp. preform artefact; This deposit may be part of the earliest of the shell dominated layers in Trench AB (e.g., c.339 or the lower shell midden)</td>
</tr>
<tr>
<td>446</td>
<td>Mid reddish brown clayey silt; compact, with few lithics numerous burnt sediment fragments, many stone inclusions</td>
</tr>
<tr>
<td>447</td>
<td>Dark yellowish brown clayey silt compact fill for c.448; most likely a posthole</td>
</tr>
<tr>
<td>448</td>
<td>Cut of 447 starting from the surface of c.428; round feature diagonally oriented towards the north; the diameter is approx. 23 cm; feature postdates the scatter of ash [c.446]</td>
</tr>
<tr>
<td>449</td>
<td>Combustion feature along the east wall, mid yellowish brown compact clayey silt</td>
</tr>
<tr>
<td>451</td>
<td>Sediment under c.444 and c.446; prob. modified c.434 due to combustion</td>
</tr>
</tbody>
</table>

6.2 Ille Site (IV-1998-P)

The excavation at Ille started on March 31 and ended on May 1. The East Chamber was excavated along with the East West Connection Trench (EWCT). Last excavated in 2008, the West Mouth was re-opened this year.

EAST CHAMBER TRENCH EXCAVATION
The trench was reopened with the main objective of correlating the stratigraphic history inside the cave with what we know from the rockshelter; particularly to see how deep deposits c.866, c.806 and c.1306 fit with the stratigraphic sequence of the site. These contexts are dated to around the occupation floors around Terminal Pleistocene (c. 12-10,000 ya), associated with archaeological assemblages...
The excavators assigned several numbers based on the presence and the absence of geochemically altered deposits, heavily coated, characterised by probable manganese precipitation, and showing variations in texture, grain size and cobble, pebbles and gravel inclusions. In this season, what was newly exposed were c.2160 and c.2161 represent newly-exposed deposits. Both had faunal remains, and very low representation of few lithic artefacts. They highly resembled the anthropic signatures found in c.1306 and c.866 (see previous reports; Lewis et al. 2008), and may indeed be contemporaneous. The succeeding other assigned context numbers constitute features of intrusive root actions and the natural depositions of sediments, mainly through fluvial actions.

<table>
<thead>
<tr>
<th>CONTEXT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2154</td>
<td>in W3N13; hard sediment, coarse clay, large gravel inclusion & pebbles</td>
</tr>
<tr>
<td>2160</td>
<td>in W3N15; fine graned sediment, soft, mid brownish, silty clay, well sorting, occasional inclusions;</td>
</tr>
<tr>
<td>2161</td>
<td>between 2160 and 2154; dark brown, loose silty clay with moderate gravel inclusions; slightly larger gravels towards base of layer; depth: 129-133cm</td>
</tr>
<tr>
<td>2162</td>
<td>feature possibly root action found in layer 2158in N13-14 W1; light brown in color and fine clay silt</td>
</tr>
<tr>
<td>2163</td>
<td>.... blackish (entry cannot be read!) = 2162?</td>
</tr>
<tr>
<td>2164</td>
<td>coarse gravel deposit intensively coated with manganese and iron oxide</td>
</tr>
<tr>
<td>2165</td>
<td>light brown silty loose deposit; absence of manganese yet oxidized</td>
</tr>
<tr>
<td>2166</td>
<td>coarse gravel oxidized mixed with clay deposit; in N13-14-15 W2</td>
</tr>
<tr>
<td>2167</td>
<td>under 2166; layer: light reddish bown silty clay, loose and oxidized, gravel inclusion; depth of 170cm</td>
</tr>
<tr>
<td>2168</td>
<td>in N14-15 W2; below 2167; silty clay light reddish brown; relatively few pebbles and cobbles</td>
</tr>
<tr>
<td>2169</td>
<td>localized deposition of clay located at W3N14; also observed at the horizontal excavation at this unit; adjacent layer or contemporary of its deposition is the c. 2167</td>
</tr>
<tr>
<td>2170</td>
<td>gravelly deposit below c. 2169; well-sorted sediment; localized deposition at W3N14 observed at the profile; this context is also co-eval with 2167</td>
</tr>
<tr>
<td>2171</td>
<td>localized deposit of gravelly to pebbly composition found at the W2N14 profile</td>
</tr>
<tr>
<td>2172</td>
<td>localized deposit of clayey silt at W2N14; below 2171</td>
</tr>
</tbody>
</table>

Table 2. List of relevant context numbers from East Chamber Trench
TECHNOLOGICAL DESCRIPTIONS OF THE LITHIC ARTEFACTS

There were two flakes and a core [c.2161] recovered from likely terminal Pleistocene layers (137-154 cm below surface). Though the sample is extremely poor, they can still inform us about the tool maker’s preference and selectivity of raw materials exploited. We can also learn about the fracture mechanics and the technical capabilities in the sequence of stone reduction of the tool makers.

A core is a lithic artefact that provides invaluable information the technical capabilities of the toolmaker (dexterity and technical method). Therefore, descriptive analyses of dimension, survival of the cortex, flaking patterns, faces of exploitation, number of core rotation and directionality of flaking must be established.

The core was unearthed at the depth of 153 cm below surface. Its maximum dimensions are 27x23x19 mm. The core shows complete removal of the cortex, the multiple faces of exploitation, and reached to complete exhaustion, suggesting the core undoubtedly achieved a long phase of reduction sequence applying hard hammering as the percussive technique. The morphology of the core is pyramidal. The flaking direction was carried out in a unidirectional way which the major removals highly dependent to one major striking platform, and -This means that the knapper well-maintained the convexity well. Observations made on the core show the core was rotated in an opposite direction that, created a bidirectional flaking pattern on the second face. The flaking negatives on the core document small-based flake blanks and the presence of bladelets (20x3 mm) that were extracted successfully. The small size of the core when it was discarded is remarkable. The core shows the outstanding skill of the knapper in core manipulation, who was able to detach numerous usable flakes until the core reached to complete exhaustion with excellent hand-eye coordination during the flaking process supports this assertion.

The first flake was found slightly above the core, at a depth of 137 cm below surface. Similarly, the raw material is also chert (of a light gray colour, with containing homogenous characteristics). This also falls into the size grade of small-based, being 20x30x5 mm. The total removal of the cortex suggests that the artefact belong to a latter phase of the reduction sequence. Observations made on the striking platform shows that the flake was
detached using a hard-hammer percussion technique, creating a very thick platform (8x13mm) and a very pronounced bulb. The flake was extracted by directing forcible blows that fractured the remaining parts of the core’s platform. The waves of fracture propagated at the laterals from the proximal towards the distal, causing the cutting edges at the sides to become very steep. Similarly, the type of plain striking platform that is plain implies that no traces of core preparation or predetermined character imposed during the reduction. Although, the distal region is low-angled, which may have traces of usages, however, due to the extensive concretion on the whole dorsal face, it hindered the analysis. Furthermore, there were no traces of retouched引进 on this flake blank.

The second flake was found just a centimetre below the core, 154cm below the surface. The morphology of the flake blank is elongated, with the dimension of 37x23x13mm. It was also detached with a similar percussive technique as to the previous one, and so as the striking platform that is plain. The thickness of the striking platform, which is accounting to 100mm, suggests that the flake was extracted slightly away from the edges of the striking surface. The flaking pattern at the dorsal face shows bidirectional negatives of removals, and documenting several core rotations in the opposite direction before the flake was detached. A high intensity of flaking is reflected on the dorsal face, where having no traces of cortex survived. All sides display the intention of prolonging the use of this flake blank, with the presence of unifacial retouches. In fact, on one the left side the modification or resharpening was very invasive. The dimensions of the tiny removals (13x12mm) extend to the mid-line of the flake. Aside from the retouched areas, micro-fractures are present with steep morphology. On the distal edge, modification was very low (2x2mm). In contrast, the lateral right micro-fractures are extensively distributed all over the edge. There was slight evidence of retouched retouching, with two removals carried out, perhaps to rejuvenate the sharpness of the edge.

The A second flake was found just a centimetre below the core, 154cm below the surface. The morphology of the flake blank is elongated, with the dimension of 37x23x13mm. It was also detached with a similar percussive technique as to the previous one, and so as the striking platform that is plain. The thickness of the striking platform, which is accounting to 100mm, suggests that the flake was extracted slightly away from the edges of the striking surface. The flaking pattern at the dorsal face shows bidirectional negatives of removals, and documenting several core rotations in the opposite direction before the flake was detached. A high intensity of flaking is reflected on the dorsal face, where having no traces of cortex survived. All sides display the intention of prolonging the use of this flake blank, with the presence of unifacial retouches. In fact, on one the left side the modification or resharpening was very invasive. The dimensions of the tiny removals (13x12mm) extend to the mid-line of the flake. Aside from the retouched areas, micro-fractures are present with steep morphology. On the distal edge, modification was very low (2x2mm). In contrast, the lateral right micro-fractures are extensively distributed all over the edge. There was slight evidence of retouched retouching, with two removals carried out, perhaps to rejuvenate the sharpness of the edge.
Figure 10. Flake from c.2161 (IV-1998-P-48278)
Figure 11. Ille site East Chamber Trench stratigraphic profile
Figure 12.
East West Connection Trench
Stratigraphic Profiles
East-West Connection Trench (N2/3 W6-11 N2/3)

The East West Connecting Trench (EWCT), first opened in 2009, was excavated in two sections: the W6-7 N2/3 W6/7 (eastern) section and the W8-11 N2/3 W8-11 (western) section. During the last season, the eastern portion had already reached at 173 cm DP while excavation ended at the western section at 92 cm DP.

N2/3 W6/7 W6-7 N2-3

Removal of contexts already exposed during the 2011 season was carried out, verifying what was already suspected during the previous season. Alternating whitish-white and reddish brown matrices characterize the sloping deposit that dominates the trench. Matrices that appeared different on excavation (and thus were given different context numbers) have been clarified to be justas components of a single deposit. On the south wall of the trench, the now appear as discrete, sometimes patchy, units that converge towards the eastern downslope. The following are tentative associations of different context numbers ascribed to the same deposit. Underneath all of these deposits are large rocks that have started to appear at underlie the southwestern section, or the highest level of the trench.

The A cremation burial [c.2274] exposed in 2011 at the southeast corner of the trench, was completely recovered during this season. A cut made through the adjacent context c.2268 was observed, verifying previous observations that the cremation burials were being inserted into pits made from through c.769.

A possible pit or posthole [c.2232] was noted on the north wall of N3 W7 N3. It appears to have been dug into layer c.2277, terminated at deposit c.2261, and sealed by c.2223. It measures about 16 cm in diameter and 12-13 cm in depth. During the 2011 season, another similarly-sized feature (also interpreted as a posthole, c.2234/2233) was observed on plan view at the eastern side of N3 W7 N3, or about 120 cm to the east of c.2232. This posthole had already been recorded in 2005, on the profile drawing of the west wall of N3 W5 N3, as cutting through c.336 and sealed by the shell-rich layer c.332/c.1265. The shell midden c.332 is, however, stratigraphically higher than c.2223, although c.2223 is also a shell-rich deposit. If it could be shown later that this small shell deposit c.2223 is connected to the shell midden c.332, then both pits may be contemporaneous.

N2/3 W8-12 N2/3

Although the western section N2/3 W8-11 N2/3 is larger than the N2/3 W6/7 N2/3 section, it is dominated by a large rock in its western half, thus reducing the window for archaeological data in this area. Layer/context 2297 (could be equivalent to 2230), a layer of pinkish silt under context 2203/2244/2229, is found to extended throughout the whole trench. Immediately
lying below this is the top of the shell midden (c. 332?), for which the designation context 2217 has been retained since it appears to connect to the deposit of the same number visible on the west wall of the N2/3 W6/7 trench. The configuration of the top of the shell midden is also sloping from the western and southern

Table 3. Context descriptions generally categorized as white/ashy deposit (black font) or reddish/orangey sediment (red font)

<table>
<thead>
<tr>
<th>Context</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2268</td>
<td>Light orange sediment with orange nodules; silty but more compact and lighter color than c.336; encountered while removing c.769; equivalent to c.784</td>
</tr>
<tr>
<td>2275</td>
<td>Underneath c.2268; orangey brown layer with orange nodules could be the same unit as c.2268 only that c.2268 is lighter (probably due to mixing with ash deposit?); found deposited in between c.2270</td>
</tr>
<tr>
<td>2270</td>
<td>White calcareous layer that comes out in large fragments under and within c.2268; initially found at the southwesternmost section of trench but might extend eastward as a less cemented unit;</td>
</tr>
<tr>
<td>2271</td>
<td>Ashy-coloured deposit under c.2268</td>
</tr>
<tr>
<td>2277</td>
<td>Light orangey brown sediment between c.2271 and c.2235 at W6/7 N2 initially encountered around c.2237; equivalent to c.2279</td>
</tr>
<tr>
<td>2279</td>
<td>Loose silty light reddish orange sediment; Found throughout northern grids; under c.2235</td>
</tr>
<tr>
<td>2285</td>
<td>Small unit to the north of c.2237 on top of c.2283; very similar in composition and compactness to c.2279; When c.2285 and c.2283 were removed, a rock was under it</td>
</tr>
<tr>
<td>2405</td>
<td>Orangey layer, silty sediment difficult to excavate below c.2270</td>
</tr>
<tr>
<td>2281</td>
<td>Ashy deposit, less cemented than c.769 and c.2280 but occurs in chunks but gets powdery when scraped</td>
</tr>
<tr>
<td>2280</td>
<td>Calcereous layer (matrix in between is c.2279); beneath c.2281</td>
</tr>
<tr>
<td>2292</td>
<td>Compact calcereous area at the western wall of W6/7 N2/3 under c.2280</td>
</tr>
<tr>
<td>2406</td>
<td>Ashy deposit below c.2405</td>
</tr>
<tr>
<td>2290</td>
<td>Reddish sediment under c.2281 at the SE quadrant of EWCT; equivalent to c.2294</td>
</tr>
<tr>
<td>2293</td>
<td>Light orangey brown silty sediment that scrapes off in crumbs under c.2280 in (mostly) W7 N2</td>
</tr>
<tr>
<td>2294</td>
<td>Medium reddish orange silty sediment to the east of c.2293, concentrated towards the southern quadrants of the square; under c.2280; has swath of limestone patches running through it</td>
</tr>
<tr>
<td>2261</td>
<td>Ashy layer recovered from the northern squares of EWCT; could be c.769 but with darker coloured sediment (probably intermixing with c.2235 below?)</td>
</tr>
<tr>
<td>2284</td>
<td>Loosen ashy silty deposit towards the lower portion of the limestone slope, merging towards the lowest levels of the square; first identified under c.2281</td>
</tr>
<tr>
<td>2257</td>
<td>White rocks or nodules of limestone encountered while taking out c.2237</td>
</tr>
<tr>
<td>2260</td>
<td>White stones/nodules of limestone first encountered at N3W6 northwest of c.2234 but seem to extend to c.2257; underneath c.2235</td>
</tr>
</tbody>
</table>
ends down to the northeastern corner. A flexed burial (context 2400), the first to be found at Ille Site, was encountered at N2W8N3 at a level stratigraphically lower than the south-oriented burials.

Context 2400

Burial c.2400 was encountered at a depth between 55 and 80 cm DP contained within layer c.2229. Many of the elements, especially the limbs bones, were found fragmented, although they appear to be in anatomical position, indicating that it is a primary burial. The head area points to the northwest and the body seems to be lying on its left side facing the northeast. The legs are tightly flexed at the knees and no cranial remains were found. We suspect that the head was probably still embedded inside the northern baulk. No clear indication of a cut was observed, either on plan or section views. Two stones were found to the southeast of the body which may or may not could be associated to the. In a previous excavation season, a larger stone was found, but at a higher level, to the south of c.2400, which could also be related to this burial, although the number of random small rockfalls throughout the site precludes this being clearly associated.

The presence of stones at the edge of the body in c.2400 calls to mind a feature excavated last year just to the west of this burial, at N2-W9/10 N3, called c.2287. It is also was characterized by stones arranged in a semi-circular manner, within which and within it human cranial remains and a large piece of earthenware pottery were found. This suggests that the feature could be a burial similar to c.2400. If this is correct, further excavation of the area may yield another body that could be in a flexed position. The excavation during the last season has however terminated at about 100 cm LDP without encountering any such burial. No additional human remains were found with this feature, although it is still possible that the rest of the feature is still embedded inside extends into the northern baulk. A south-oriented burial [c.2255] lies above c.2287 indicating that this feature with stones is older than the south-oriented extended burials. This strengthens the earlier hypothesis that burial c.2253 is younger than c.2400. Since this is the case, it is more probable that it was burial c.2247, not context 2240, which disturbed c.2253. Equal so, c.2247 was cut through by c.2249.

Comment [A3]: All total conjecture! If this then maybe that (or maybe not), if that then this – if in the unknown still buried archaeology that exists then this...etc etc - this conjecture weakens not strengthens your hypothesis; I'd kill all of this; no need to flog a non-existant (totally undemonstrated) horse in this report. The pic below is fine, but it doesn't really help the discussion here much, which is why I think you should just kill this part which sounds like speculation – why do the sponsors need to hear that?
Figure 13. Collated plan views of features found at EWCT since the 2011 excavation season. All depth values are from the local DP (which is 30 cm above the DP). Note that contexts 2287 and 2400 overlap with the south-oriented burials which are found on higher levels. The stones near context 2400 were recorded at different times and only superimposed here.

WEST MOUTH WEST EXTENSION (WMWE)

The West Mouth West Extension Trench is bounded by the north site grid lines N4 and N6, and the west site grid lines W16 and W19, giving its four corners the coordinates N4W16, N4W19, N6W16, and N6W19. It consists of an original trench, composed of squares N4W16 and N5W16, and an extension trench, composed of squares N4W17 to N5W18. It is located to the west of the East-West Extension Trench, to the immediate west of the West Mouth Trench (defined in this report as the total extent of the west mouth area excavations up to 2008), and to the south of the cave’s west mouth. The original trench measured 2 m x 1 m, while the extension trench measured 2m x 2m, bringing the total trench size to 2 m x 3 m.

A few objectives were set to justify the re-excavation of the west mouth. With known dates for two burials with stone markers – older than 4200 years – it became important to establish beyond doubt the hypotheses that the markers were shaped to look like boats. We wanted more confirming examples, which we may find if we excavate more. More technically, we also wanted to further clarify stratigraphic details linking the western excavation trenches.
with those from the east, and to understand better the taphonomic process connected to the formation of the shell layers.

Backfill from the last excavation (in 2008) was first removed. Profiles were cleaned with the exception of two: the east profile, which represented backfill material and was thus not relevant to the current excavation, and the northwest profile, which would be later removed. Labels were applied to the layers visible on the southwest profile following the 2008 site report (Paz, et al. 2008) with a 1:25 cm scale to guide excavation. The north profile was also labelled, which proved a more difficult task owing to the ambiguous delimitations between layers. The trench vicinity was cleaned, and pegs were set in place at the corners and provisionally strung for the initial phase of the excavation, while a surrounding bamboo fence was constructed for safety reasons. A local datum point was established to the immediate south of the southeast corner of N14W17 N14 and set at 60 cm above the site datum point. The original trench was set as a 2 m x 1 m spanning the squares N14W16 N14 and N15W16 N15. Excavation commenced with the removal of the surface [c.705] following previous records.

Context 705 consisted of light greyish brown silty sand with differential lateral compaction. Material content included charcoal, shells, botanical remains, zoological animal bones, lithics, and tradeware, with varying degrees of frequency. On this layer began a phenomenon which presented methodological difficulties specific to the West Mouth area this season, namely, wetness due to the presence of a drip line above the west wall of the West Mouth Extension Trench, at approximately 50 cm south of the northwest corner. It became evident during the course of excavation that due to the trickling of this drip line it was harder to discern changes in the sediments both visually and physically. As a provisional solution, a bamboo gutter was constructed to carry water away and dry the excavation area.

In terms of excavation progress, a small concentration of decayed limestone in N4W16 N4 was noted early in the layer. A localised change in sediment colour (to light orange) in the north part of N5W16 N5 was also observed, the interpretation of which remains uncertain. Finally, the complete west wall profile seemed to indicate a cut under N4W16 N4, where the sediment was also lighter-coloured versus that under N2 to N3 and N5, suggesting the presence of a pit, possibly a burial.

Directly underneath c.705 was a layer of mid-greyish brown silty sand [c.1835/ c.1838] that was less compact than c.705, but which was nevertheless characterised by more or less the same inclusions. It started appearing as concentrations of shell, first in the northern part of the trench before the southern part, suggesting that it was sloping upward to the north. The shells became fragmented towards the wet area under the drip line, with the texture of the layer there being increasingly clayey. A large root was also found cutting the layer.
Context 1835/c.1838 yielded a rich assortment of archaeological materials. Several nodules of hematite were uncovered in the southwest quadrant of N4W16N4, while a human femur fragment, a rib fragment, a phalange, and teeth were exposed at the southeast quadrant. In the southwest quadrant of N5W16N5, human extremity bones surfaced, as well as a small yellow Chinese glass bead. There was also a large pinkish carnelian bead that was perforated and chipped, the biggest stone bead found at the Ille site since excavation first begun. A different type of bead, made of Conus sp. shell, was recovered from sieving. A large shell fragment, possibly from Tridacna sp., was also found at 21 cm below LDP, hypothesised to be related to ornamentation. Finally, the layer was discovered to be rich in pottery, including celadon sherd, as well as decorated earthenware sherd with either circular motifs, triangular motifs, or cord markings, found in the northwest quadrant of N5W16N5.

In the course of excavating c.1835/c.1838, the first of several pits in the trench was exposed. A pit [cut = c.2301] was recorded at 32-34 cm below the local datum point (LDP), and the pit extended to a depth of 51.5 cm below LDP. Its fill [c.2302] consisted of loose dark greyish brown silty sand. Within the fill there were numerous shells, some animal remains, bones, lithics, earthenware/tradeware sherds. It was noted that the southern part of c.2302 was darker, almost black.
Another pit [c.2302] was exposed between the southeast and the southwest quadrants of N4W16. A larger pit [c.2303] had a broad surface area covering nearly half of N4W16. Pit c.2303 cut through a layer of reddish-brown sediment [c.1856] below C1835. Its northern part was found to be at 32 cm LDP, its southern part at 36 cm below LDP, and its southwestern part at 37 cm below LDP. From the exposed north and west walls of the section under excavation, it was visible that that pit extended quite deep vertically, so a 5-cm spit excavation strategy was adopted to extract the fill [c.2304]. The fill c.2304 was composed of mid-greyish brown silty sand and was more compact than c.2302, but still generally loose, especially along the eastern and southern edges. It was found to contain some charcoal fragments along with numerous shells. Initial attempts to excavate the loose sediment were not very successful. The wet area due to the drip line blurred the cut boundaries. Additionally, there were alternating compact and loose areas within the fill. Finally, additional care was necessary because a burial [c.1842] was expected, as indicated by foot bones protruding through the north and west wall profiles. At a depth of 41 cm LDP was another pit was found [c.2306] with a fill [c.2307] of loose mid reddish brown sediment with fine shell inclusions measuring 10 cm in diameter. A shallower pit [c.2308] was exposed in the northwest corner of the southwest quadrant of N4W16; its loose fill [c.2309] extended only to 2 cm in depth.
The grid square N4W16N4 had more archaeology. In the southwest quadrant, at 26 cm DP, a 15 cm limestone block-cobble was uncovered adjacent to the west wall, and another one 19 cm long at 24 cm DP. They were noted in case they belong to burial markers. In the western quadrants of WMWE more limestone fragments were found, but the level was still too shallow to consider them as close to in situ stones for a burial maker. Below the human extremity bones from the layers above this area, at a depth of 17 cm DP, a horizontal long bone measuring 13.4 cm long was found adjacent to the west wall in the southwest corner (at 9 cm from the west wall and 80 cm from the north wall). At 11 cm DP, the sediment started becoming darker in colour.

Also at N4W16N4, at the same level as the recorded stones, adjacent to the centre of the north wall, a shell pile [c.2305] with a 20 cm diameter was uncovered. This shell pile was notable for consisting of a different form of bivalve than the usual Batissa sp. that dominates shell-rich layers on site. The mid-greyish brown silty sand matrix was seemingly cemented, binding the shells together. In terms of artefacts, the layer yielded a metal bangle fragment, and at 16 cm DP an amphibolite adze at 12.5 cm from the west wall and 56 cm from the south wall, right next to c.2306.

The excavation of c.1835/c.1838 at N5W16N5 revealed some interesting shell findings. Batissa sp. shells were found oriented vertically, suggesting they were filling a depression, a pit, or on a steep slope. There were also neatly-stacked shells, more reminiscent of human activity by analogy to the modern practice of stacking shells for disposal after consumption. Finally, gastropod shells with stripe-patterns started emerging.

At the northwest quadrant of the trench, at 3 cm DP, a human mandible was uncovered, and at 0 cm DP, a hammerstone. As excavation progressed, the north wall revealed a certain downward slope from west to east marked by colour difference. This was postulated to be drip water running down an already-existing mound, such as a shell pile, considering that under normal circumstances water would just either puddle or run flat in finding its level. Based on data from past excavation seasons, a big pile of shells in the northwest quadrant, marking the top of a new shell midden layer sloping downward from west to east and from north to south, was expected. This new shell midden layer, labelled c.912 in previous reports, was then also recognised to be another factor behind the trench’s general north-south downward slope. The excavation strategy was thus switched from spit to context in order to trace its surface. In contrast with c.1835/c.1838, higher densities of whole shell halves lying flat, not vertical, were exposed. As excavation continued, the quadrant was observed to turn very loose and silty with yellow speckles, yielding some decorated earthenware.

In the northeast quadrant, a burial [c.2327] was uncovered at 7 cm DP; the only visible bones were a radius and an ulna, but the positioning and articulation were used as bases to pronounce the feature as a burial. The burial cut [c.2328] was well-delimited by the less dense shell
inclusions in the fill [c.2329] - loose, dark brownish brown sediment with a and little tradeware - versus the surrounding matrix [c.B912].

In 2008 half of burial [c.1842] was excavated because it was at the very edge of the west wall of the West Mouth trench. The opening of WMWE gave the opportunity to excavate what remains of this burial in situ. A pit was recognize above c.1842 complete with the cut [c.2303] and the fill [c.2304]. However, it was recognized that the cut c.2303 was not that for burial c.1842. In the process of excavating c.2304, which commenced at 5 cm DP, and includes the area 53 cm from the west wall and 80 cm from the north wall, as well as the quadrant west of it, various materials surfaced. Scattered human long bones, and bones from small animals, earthenware and decorated tradeware sherds, and possible lithic cores were some of the artefacts recovered. This part of the square was also extremely rich in fragmented shells, mainly Batissa sp., but also some snails.

At 12 cm DP, c.1842 was finally reached. It consisted of a fully-extended adult individual in supine position, oriented to the north. Only the left side of the lower body, including the pelvis but excluding the foot, remained of the burial, as the other parts were already excavated in 2008. The skeletal elements were articulated, but the pelvis and joints (hip joint at 15 cm DP) were highly fragmented, arguably due to the moist matrix, and roots that had woven their way in between the tibia and the fibula. A pathology was noted on the tibia. Shell fragments were also found west of the pelvis. The assumed burial pit measured 82 cm x 142 cm x 77 cm.

In the process of exposing c.1842, a fully-extended juvenile burial [c.2324] consisting of a cranium (at 10.5 cm DP), ribs, and vertebrae (at 16 cm DP), articulated and in original depositional context appeared due west of c.1842. The individual was oriented towards the north while lying on its right side, its cranium facing east. The ribs were also very fragile, disintegrating even with the very gentle brushing motion. The grave cut was not found, so the burial pit dimensions were not measured. Unfortunately, due to insufficient time this field season, it was not possible to collect this burial. It was covered and protected for retrieval next field season.

A third additional burial [c.2325] was found while in the process of cleaning c.2324. Burial c.2325 was a fully-extended infant burial in supine position, oriented to the north. It consisted of articulated but highly-fragmented ribs and limbs, probably due to moisture, and was situated right between c.1842 and c.2324. The leg bone lay at an elevation of 18 to 20.5 cm DP. A remarkable feature of this burial was the presence of a lithic artefact atop the abdominal area, andesitic in material and scraper-like in form. The grave cut was not found, so the burial pit dimensions were not measured. It was noted, however, that this burial seemed to cut lie underneath c.1842. This burial was also not collected due to insufficient time. It was covered and protected for retrieval.
next field season.

6.3 DELA CRUZ – ANASTACIO SITE (IV-2011-J4)

The search for a habitation/settlement site that will complement the later archaeology of Ille Site and neighboring cave sites has been the main reason to investigate sites within the Bgy. New Ibajay proper. The initiative has been going on since the 2006 season, and currently, no archaeological evidence yet has been found that can be directly linked to the dominantly burial/ritual sites dating to the late prehistoric and historic periods within the Dewil Valley.

This year the search for the elusive settlement/habitation site continued. Two sites were investigated: Dela Cruz – Anastacio (DLCA) Site and the Florante Reyes Site.

The Dela Cruz – Anastacio Site (DLCA Site) is located in the barrio proper of Barangay New Ibajay (formerly Dewil), El Nido, Northern Palawan; within the coordinates - N 11.18950 / E 119.50712. It is on the slope of a hill, and on top of this hill which is the Adventist Church where many pottery sherds were reportedly recovered during its construction. Privately owned by Marlon Anastacio and his mother-in-law, (Mrs. Dela Cruz), the site was reported by the former in 2011, who worked with the team during that year. During partial flattening of the property for house construction in 2008, ground stone adzes were recovered, along with ceramic sherds. Mr. Anastacio showed two large big ground stone adzes still in his possession, while the others further three adzes are with his in-laws.

Four trenches were opened in this site - Trench 1, Trench 2, Trench 3 and Trench 4, to investigate the possible presence of a settlement site. The Datum Point was placed on wooden post in the middle of the designated area for investigation with a value of 17 meters above sea level (masl). All trenches had a local datum point value of +80 cm from DP. Trench 1 originally measured 2 x 2m but was extended twice, making it a 4 x 2m trench. Excavation started by (5cm) spits in the beginning when the natural layers were not yet known. Five major contexts or layers were exposed in this trench (see profiles). Context 1 and 2 comprise the surface layer and the thin layer beneath. Context 4 is the reddish brown silty clay layer below c.2 while under this is c.3, which is a layer of oxidized, weathered rocks first occurring on the northwest corner of the trench (S4E1). The next layer is c.14 - blackish blue in color and less compact than the upper layer (c.3). Context 17 is the deepest layer excavated at about 2m DP; this layer is clayey with a distinct concentration of black weathered rocks.

Some features observed in squares S4E5, S4, S4E2, S4 and, S5E1, S5 were first thought of as postholes, but later these turned out to be termite holes. Modern garbage pits were also observed in the NW and SE corner of the trench, both cutting from the surface layer. A
concentration of rocks [c.9] in the middle of the trench was also exposed which was initially hypothesized to be a burial marker due to its shape. However, no evidence was found to prove this, and neither was it a combustion feature.

A small stone adze was recovered in the south-easternmost grid (SS2SS) at 32 cm LDP. A cranium fragment of undetermined animal species was also found in the east end of the trench (36 cm LDP). The trench was then extended eastward to check the presence of more cultural materials. No other materials were found in this east extension. Another extension was made towards the west to maximize the horizontal exploration of the site mostly for evidence of postholes. However, no such features were found.

Trench 1 reached a depth of 166 cm LDP in the northeastern-most square (S4E3). This square was then augered an additional 35 cm (total depth of 201 cm LDP) through gravelly, silty and clayey sediments, until rocks were encountered. All the layers seem to be the same as c.15:

- 0 - 15 cm – gravelly, silty, clayey; loose sediment; red, greenish sediment
- 15 – 20 cm - more silty
- 20 – 30 cm – silty; same color; with bits of clay
- 30 – 35 cm – rocks; auger stopped

The northwestern-most W1S4 square and another square (E2S5) in the same trench were excavated up to 204 cm, through clayey sediments with no cultural materials.

Transect augering was performed to determine other suitable areas for opening more trenches. Two 1 x 2 m trenches (Trench 2 & Trench 4) to the northwest of Trench 1 were opened. Contrary to the auger done, Trench 2 was not easy to excavate because of its compact, gravelly surface [c.21]. The layer beneath this [c.22] was likewise compact, composed of the same oxidized gravels of c.3 in Trench 1. A single blue-green Indopacific bead was recovered in c.22 at about 10 cm LDP. The compact sediment of c.22 made excavation hard. No other artefacts were found in this trench, wherein all the sediments were dry sieved, like in all the other trenches.
Trench 4, also measuring 1 x 2m, was opened north of Trench 2. This trench also had the same compact sediment as Trench 2. Excavation up to around 27cm DP revealed two layers [c.61 & c.62] which did not yield any cultural material. This trench is more of an exploratory trench for the northernmost area of the site.

Surface finds were collected in the site - an earthenware sherd with an ear lug and another small stone adze. Trench 3 (1 x 2m) was opened where the stone adze was found, which is to the west of Trench 1. Another polished stone adze was found in this trench during excavation, in c. 42 (= C. 3). There were no other cultural materials or features found in this trench, which was excavated up to a depth of 38cm LDP.
<table>
<thead>
<tr>
<th>Context</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRENCH 1</td>
<td>surface: silts with some gravel, scraped off to expose context 2</td>
</tr>
<tr>
<td>1</td>
<td>below surface: composed of silts, clays and weathered gravel; recent materials such as plastics and nails were recovered</td>
</tr>
<tr>
<td>2</td>
<td>concentration of oxidized, weathered rocks on the northwest corner of the trench (S4E1)</td>
</tr>
<tr>
<td>3</td>
<td>layer below c.2, w/ reddish brown silty clay; mixed w/ oxidized gravel in the NW & SE corners</td>
</tr>
<tr>
<td>4</td>
<td>cut of pit in NW corner of trench; cuts c. 1 & 2</td>
</tr>
<tr>
<td>5</td>
<td>fill of pit in NW corner of trench; w/ very small piece of celadon</td>
</tr>
<tr>
<td>6</td>
<td>cut of pit in SE corner of trench; cut in c.4</td>
</tr>
<tr>
<td>7</td>
<td>fill of pit</td>
</tr>
<tr>
<td>8</td>
<td>feature: moderately sorted cluster of fist-sized rocks (mostly oxidized); at center of trench; within the matrix of c. 3; --- correction: must be under c.3</td>
</tr>
<tr>
<td>9</td>
<td>feature: termite hole in S5E1 abt. 30 cm deep, cutting c.3; with few charcoal; 10 x 8 cm</td>
</tr>
<tr>
<td>10</td>
<td>feature: termite hole in S5E1 abt. 15cm deep; within c. 9</td>
</tr>
<tr>
<td>11</td>
<td>feature: cut of pit in eastern end of trench; at middle of S4 & S5E3</td>
</tr>
<tr>
<td>12</td>
<td>feature: fill of pit (see c. 12)</td>
</tr>
<tr>
<td>13</td>
<td>layer: blackish blue; less compact than upper/previous layer (c. 3); possible result of weathering; w/ clay sediment</td>
</tr>
<tr>
<td>14</td>
<td>greenish black: most likely result of weathering; less compact than c. 3; clayey</td>
</tr>
<tr>
<td>15</td>
<td>reddish greenish black (appearing in south wall)</td>
</tr>
<tr>
<td>16</td>
<td>distinct and concentration of black weathered rocks in south wall; clayey</td>
</tr>
<tr>
<td>17</td>
<td>under c. 9; same material as c. 3; number taken from stratigraphy</td>
</tr>
<tr>
<td>TRENCH 2</td>
<td>topsoil with silts and gravel</td>
</tr>
<tr>
<td>21</td>
<td>oxidized rocks; reddish brown; = c. 3 in Trench 1</td>
</tr>
<tr>
<td>22</td>
<td>feature: pit - brownish clay; no cultural materials</td>
</tr>
<tr>
<td>23</td>
<td>feature: termite holes</td>
</tr>
<tr>
<td>24</td>
<td>layer: weathered rocks (blackish); same as c. 14 in Trench 1</td>
</tr>
<tr>
<td>TRENCH 3</td>
<td>surface: silts with some gravel</td>
</tr>
<tr>
<td>41</td>
<td>oxidized rock in clay = c.3 in Trench 1 = c. 22 in Trench 2</td>
</tr>
<tr>
<td>42</td>
<td>blackish blue clay = c. 14 in Trench 1; weathered bedrock?</td>
</tr>
<tr>
<td>TRENCH 4</td>
<td>surface: light grey silts with gravels</td>
</tr>
<tr>
<td>61</td>
<td>oxidized rock in clay; 27cm BDP</td>
</tr>
</tbody>
</table>
Figure 16. Dela Cruz-Anastasio Site Trench 1 Profile

Legend
- surface; silts with gravel
- fill of pit
- reddish brown silty clay mixed with oxidized gravels
- concentration of oxidized and weathered rocks
- blackish blue clays; result of weathering
- concentration of black weathered rocks
- Unexcavated

Figure 17. Dela Cruz-Anastasio Site Trench 2 Profile

Legend
- Topsoil; silts and gravels
- pit
- termite hole
- oxidized rocks
- black weathered rocks
- Unexcavated
6.4 FLORANTE REYES SITE / REYES 2 SITE (IV-2012-X)

The search for a habitation/settlement site that will complement the archaeology of Ille Cave and neighboring karst area has been the main reason to investigate sites within the Bgy. New Ibajay proper. The initiative has been going on since the 2006 season, and currently, no archaeological evidence yet has been found that can be directly linked to the dominantly burial/ritual sites found within the Dewil Valley.

This year the search for the elusive settlement/habitation site continues. Two sites were investigated: Dela Cruz – Anastacio (DLCA) Site and the Florante Reyes Site.

The Florante Reyes site is located N 11.1874°, E 119.50712°. It was named after the patriarch of the Reyes family, Florante Reyes (Lolo Ante). It is situated on a hill overlooking the rice field owned by the same family. An old house stands on the property, and currently being used as a farm house. The area is surrounded by fruit bearing trees, while a portion is used for vegetable gardening and goat raising. It is accessible through the main road towards Bgys. Mabini and Sandoval.

There were two compelling reasons to excavate the area. First, was the story that a few years ago, Mr. Reyes accidentally unearthed a stack of tradeware ceramics and metal bangles in his backyard while digging a hole for the foundation of a small shelter. He cannot exactly remember...
how many pieces were retrieved but he described the ceramics as porcelain bowls and plates with bird designs. Most of the artifacts were sold to dealers from different towns.

The news of Lolo Antestible's discovery encouraged several local treasure hunters from the neighboring town of Taytay, Palawan to probe the area using a metal detector. They unsystematically dug the spot where the said artifacts were said to have been found. The digging reached to a depth of around 2 meters. Fortunately, the illegal activity did not yield anything, and their digging was soon abandoned.

The second reason for excavating the site was the initial finding of the geoarchaeological/geomorphological team that the Reyes property was probably part of an ancient river terrace, and could have an ideal site for habitation/settlement in the past. The excavation conducted had as an objective the testing of this hypothesis.
The datum point (DP) for the site was located on the old septic tank at the side of the old house at 9.6 from masl. There were two test pits opened during the excavation season.

Figure 21. Florante Reyes Site Stratigraphic Profiles

TEST PIT 1 (TP1)

Test Pit 1 was a 2m x 2m trench. Situated adjacent to the treasure hunter’s pit, and the spot where the artefacts were said to have been found. The team used a combination of shovel and trowel scrapping technique in the excavation. A crow bar was used when compact/hard layers were encountered.
From time to time, the excavation team compared the features of the site with the DLCA site on the neighboring hill. The work at DLCA started much earlier thus could give insights on the general geological and cultural stratigraphy of the area.

The cultural layer for TP1 was around 20 to 30 cm from the surface. We found that the site was similar to the DLCA site team’s observations that beyond 30 to 40 cm is already culturally sterile. Excavation here proceeded to similarly sterile layers to verify if the Reyes site has the same stratigraphy with the DLCA site, which it did. Another reason for excavating known geological layers was to give the geomorphology team the opportunity to study the specific geology of the area. Time constraints and limited manpower forced us to concentrate our effort on a 1m x 1m on the southeast corner of the trench. Excavation reached 1.70m DP before the geomorphology team joined-in to auger the trench up to a depth of 4.85 meters.

TEST PIT 2 (TP 2)

This trench was around 30 meters southwest of Test Pit 1, on a relatively flat surface covered with grass and secondary growth trees. The trench was opened to further probe the area for signs of ancient human activities. The team was also trying to test whether the few artifacts we found at TP 1 were eroded from the upper portion of the site where TP2 is situated. The same excavation procedure were employed for TP2 except that all depth measurements were taken from the surface. No archaeological remains were found.

Table 5. Context descriptions from Florante Reyes Site
<table>
<thead>
<tr>
<th>Context</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Surface, partially covered with grass, light brown/silty clay with 20th century materials</td>
</tr>
<tr>
<td>2</td>
<td>0 to 30 cm deep; cultural layer; compact light yellowish gray silty clay, compact, with rounded earthenware fragments, tradeware sherds</td>
</tr>
<tr>
<td>3</td>
<td>30 cm to 1.10 m; compact, mid-reddish orange highly weathered, highly oxidized gravel layer</td>
</tr>
<tr>
<td>4</td>
<td>0 to 90 cm; dark gray silty sand loose with plastic, roots and gravel; its a post hole/trash pit cutting context 2 and 3</td>
</tr>
<tr>
<td>5</td>
<td>1.10m to 1.70m; compact, highly weathered mixed light gray, reddish orange silty clay on the SE quadrant</td>
</tr>
<tr>
<td>11</td>
<td>Surface: dark brown pebble/silty clay surface with roots, rock fragments and 20th century materials</td>
</tr>
<tr>
<td>12</td>
<td>Surface to 5cm; compact yellowish gray silty clay; sterile</td>
</tr>
<tr>
<td>13</td>
<td>5 to 75cm, compact reddish orange oxidized gravel; sterile</td>
</tr>
</tbody>
</table>

Pasimbahan-Magsanib Site

2011 Field Season

Prepared by:
Ma. Kathryn Ann Manalo

The Pasimbahan-Magsanib site, located at N110°12’881’. E 119°0 29’59’ was first opened in 2007 and was assigned a National Museum Code IV-2007-Q1. It is located within the Magsanib district of Dewil, on the lower half of the southwest face of the large istar limestone karst. (Paz et al, 2010).

For the 2011 field season, only the combined trenches of A and B were reopened. It has a dimension of 442cm (N) x 384cm(S) x 279cm (E) x 279cm(W). As with the previous seasons, among the goal this year was to investigate whether there are older deposits
that might show evidences of human occupation or activity. The season started by exposing the last context (414) investigated by the 2010 season. This was initially interpreted as the oldest layer and as the activity floor of the prehistoric settlement of the area. (Paz et al, 2010)

As context 414 has a lot of stone inclusions, we removed it first and then sorted them out to check if there are potential stone tools and debitage. Within context 414 are several depressions that could have been animal burrows and were named as context 420. Midreddish sediment with orange-(oxidized) inclusions became apparent in the north eastern quadrant of the trench (c421) while darkreddish brown sediment with numerous shell inclusions were evident in the northwestern part of the trench (c422).

While removing 414, several features became apparent such as at least two major deposits of ash or travertine or guano? Context 427 has several chert flakes and an obsidian debitage. Meanwhile in the Southwest corner of trench B, context 57 continues to go down until hitting the rockfall, thereby causing the excavation in that area to stop at the moment.

As we continued working on the trench, it became apparent that there's a simultaneous activity on the excavation floor. In terms of sediment deposition, the orientation of the sediments and rockfall are all sloping northwards. Additionally, further investigation revealed that context 421 is much older.

Context List for Pasimbahan-Magsanib Site

<table>
<thead>
<tr>
<th>ELEVATION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>420</td>
<td>Depressions/Infill within 414</td>
</tr>
<tr>
<td>421</td>
<td>Mid Reddish Brown Compact Sediment, Silty Clay, Located Mainly at North Quadrant of the Trench</td>
</tr>
<tr>
<td>Context</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>422</td>
<td>Dark Reddish Brown Compact Sediment, Silty Clay, Numerous Shell Deposit and Animal Remains</td>
</tr>
<tr>
<td>423</td>
<td>Fill of a Small Pit located at the Northwest Area of Trench A. Three tradeware were found in this context.</td>
</tr>
<tr>
<td>424</td>
<td>Burrow beneath a Rockfall found at Southeast of Trench B</td>
</tr>
<tr>
<td>425</td>
<td>Dark Brownish Grey Compact Clayey Silt in the Middle of the North Quadrant of Trench B</td>
</tr>
<tr>
<td>426</td>
<td>Mid Reddish Brown Compact Sediment associated with 414 layer. In situ stone tools and debitage, and animal remains were found in this context.</td>
</tr>
<tr>
<td>427</td>
<td>Cemented Ash with Oxidized Nodules of Clayey Sediments with Few Fragmented Bones and Chert Flakes</td>
</tr>
<tr>
<td>428</td>
<td>Mid Yellowish Brown Compact Clayey Silt Directly under 427</td>
</tr>
<tr>
<td>429</td>
<td>Light Pinkish Brown Lens within the combustion feature; Between contexts 427 and 428</td>
</tr>
<tr>
<td>430</td>
<td>Loosely Cemented feature similar to 427, with several chert flakes.</td>
</tr>
<tr>
<td>431</td>
<td>Clayey Silt lens inside 430, concentration of oxidized nodules and a few animal and shell remains</td>
</tr>
<tr>
<td>432</td>
<td>Cemented lumps of ash material below 431.</td>
</tr>
<tr>
<td>433</td>
<td>Burrow/Pit next to a rockfall Southeast of Trench B; fill of the pit is mottling context 424</td>
</tr>
<tr>
<td>434</td>
<td>434–436, shell concentration southeast of trench B, sediment similar to 414</td>
</tr>
</tbody>
</table>
6.5 Archaeological and Landscape Surveys (HERNANDEZ, O’DONNEL)

IMORIGUE SURVEY

The team went back to Imorigue island during the season on April 22 for two reasons; we wanted to check on the condition of the Maulohin site – the site looted of all its human remains, as reported previously in 2010 and 2011 – and to check out reports of other sites that we have not surveyed in the past. Maulohin and the Istar rock-fall caves remain in the same condition after the looting; there were no signs of new destruction on these sites.

Badyang maliit (IV-2012-Y)

The first new site surveyed after inspecting the known sites within Imorigue Island was a small cave formed from the remnants of an ancient collapse of the island’s southeast face. The cave is known as Badyang maliit and was positive of archaeology with contained many earthenware
sherds – some clearly from large jars – still on the cave floor. A few decorated sherds were collected by the team.

Bebelayen cave (IV-2012-W)

This is a large cave complex high above the water-line. It is not easily accessible without the help of a network of rope ladders constructed for the team. The cave clearly has archaeology in it, most of which were left at with potsherds seen on the surface of the cave floor, including in side chambers. What could be observed from the short visit was a scattering of earthenware sherds on the floor on the surface, as is typical of – clearly the archaeological contents of a place that has already been seen disturbance, probably by both looters and ken out through the years by pot-hunters and well well-meaning individuals who wanted to save what remained of the archaeology. We can say this based on the There were relatively few scarcity of sherds and human bones at the surface, even though there were signs of large jars once present inside the cave complex.

SURVEY OF THE ADVENTIST CHURCH PROPERTY

During the excavation of the Dela Cruz – Anastacio (DLCA) Site, the nearby Adventist Church was visited. The said church is located on top of a hill. The caretaker and an elder of the church were interviewed upon learning that artifacts were unearthed during the 1996 construction of the church building. Joven Sibua, the caretaker, relayed that when the site was being bulldozed in 1996, a lot of pottery sherds and a few whole, small jars were recovered exactly where the church was erected. The other locals who took part in the church construction are of the opinion that most, if not all, of the artefacts were destroyed or taken out of the site.

An elder member of the church, Mr. Gideon Cuerado, also related his explorations of Ille, Makangit and most of the adjacent places in Dewil during the early 1960s. He recalled that he saw a large jar on ‘top’ of Ille Cave sitting atop a large turtle-shaped rock. This was reportedly gone a few days after his discovery. He also admitted to having looted a burial in Makangit Cave in 1964 where he took a bangle from the wrist of a skeleton and a dagger.

While the flattening of the Adventist Church property may have destroyed some cultural materials, the site still presents a good prospect for future archaeological research. The site’s location is likewise significant because of its prominence and view over the river.
Figure 22. Walking survey of the Tigas and Diribungan karst area
TIGAS KARST SURVEY

Between the Sinalakan and Diribungan Karst is the smaller Tigas Karst. There have been anecdotal accounts coming from some local team members that they found pottery on the karst, and that there are also cave complexes. The team surveyed the karst to verify the report. We also took the opportunity to do a quick re-visit of Diribungan, again, to verify accounts from local team members that caves were found with archaeology.

There was no clear confirmation of the alleged archaeological sites within Tigas, though there were indeed extensive cave networks, but currently devoid of any platform. The caves form deep crevices, which the team was not prepared to explore without proper spelunking equipment. The karst formation remains a potential area for the presence of unreported archaeological sites.

At the Diribungan karst, we investigated small caves that were not connected to the larger known networks within the karst. They are occasionally used by bird’s nest guards, but did not have archaeological remains; with the exception of one small rock-fall cave that had a few earthenware sherds.

OPEN LANDSCAPE SURVEY

An extensive open landscape survey within the Dewil valley was initiated this year. This initiative follows through on the previous open landscape work of O’Donnell, Robles and Hernandez in 2011, where we identified (i.e. Hernandez and O’Donnell) and mapped (i.e. Robles) old river/lake channels, terraces and one area of terracing within the Dewil River Valley. That study built on Robles in 2010, coring for mangrove-type sediments; and Stevenson in 2006, also coring for mangrove-type sediments; and Bandong in 2006, on an ethnobotanical survey of the River Valley (see previous PIPRP reports). Their work (i.e. with the exception of Hernandez) had been dominated by palaeobotanical aims and questions. This year’s aims were focused more on understanding the development of the Dewil River Valley, especially with the initial work already begun by O’Donnell et al. in 2011. This is in line with the archaeology-specific aim of finding ways to predict the locations of open sites within this archaeologically significant landscape.
Primarily the aim of the exercise was to: (1) identify more terraces within the Dewil River Valley, (2) characterize these terraces, (3) locate them within a scaled-map of the valley, and (4) obtain datable materials from these terraces. Our methods included field walking, a key-sites approach where we identify representative characteristic sites, GPS location, field profiling of exposed and excavated sections, and interviews with locals.

Our survey resulted in two main datasets: Categorically, these are the landforms and exposed sections. These were derived from preliminary observations and work on at 19 sites, specifically identified by the team. These sites were labelled as Dewil River (DR) or Gez Foster (GF) sites (see Map). The Dela Cruz - Anastacio Site and Florante Reyes Site, both excavated in the same season, also provided information that helped in understanding the River Valley’s formation.

Among the 19 observed sites and 2 excavated sites, five of these were sampled further pollen and phytolith analysis: (1) Dewil River 1 site (DR1), also known as the Gez Foster 7 site (GF7),
The samples were contiguously taken. In total there are 68 samples from these the survey. The breakdown of samples are as follows: (a) 51 bulk samples from the DR1 site, (b) 10 samples from the DR2 site, (c) 5 samples from the DR 3 site, (d) 1 gravel sample from the Florante Reyes site, (e) 1 gravel sample from the Dela Cruz - Anastacio site. These were given the following accession codes; DR1: IV-1998-P-48,787 to 1998-P-48,838; DR2: IV-1998-48,839 to IV-1998-48,848; and DR3: IV-1998-48,849 to IV-1998-48,853.

The key sites approach also resulted in fairly detailed descriptions of all sampled sites. Furthermore a fairly detailed description of the top 5 metres of the Florante Reyes Site was produced through a cursory section profiling.

From these observed results, GF and VH have, the geomorphology team identified four river terraces. These are labelled; Terrace 1 (T1) (oldest) to Terrace 4 (T4) (These are from oldest to youngest terraces). These four terraces/terrace sequences are represented by 5 key sites. These sites are the DR1 site, DR2 site, DR3 site, the Kulanga River terrace and the Kagbanaba River terrace.
The four identified river terraces are differentiated according to height, sediments and soil-weathering profile. Characteristically these are as follows:

Terrace 4

- Generally 1.5 metres above modern channel bed
- Comprised of a mixture of channel gravels, sands and silts
- No soil profile formation
- Basically a thin organic horizon

Terrace 3
- Generally 3 to 4 metres above modern channel bed
- Comprised of clay, silts and organic matters
- Possible buried soil
- Modern soil is not very well-developed
- Modern soil is about 20 to 30 cm thick and mostly organic
- An upstream T3 sequence buried by colluvium

Terrace 2

- Generally 6 to 7 m above modern channel beds
- Comprised of sands and silts
- Upstream it is also covered by colluvium
- 2 m well-developed soil profile

Terrace 1

- Generally 9 m to 10 m above modern channel bed
- Heavily weathered, very well-developed soil profile

In summary, this survey is the most comprehensive landscape survey of the Dewil River valley to date. It aimed at systematically identifying open sites in this archaeologically-significant landscape. The composition of the team, primarily led by Foster, characterised the approach and aims (i.e. geomorphological and palaeoenvironmental). In total 21 sites were studied. 5 of these were sampled. Dating samples were also found within the sampled materials. Significantly, there are four terrace sites differentiated by (1) height, (2) sediments, and (3) soil profile.

It is hoped that the dating of the terraces will provide a time-depth that can be correlated to the archaeology known from the archaeological cave sites excavated within the Dewil River Valley. For now, the results and syntheses provide a good foundation for further study and development of a full-scale open landscape research project of the area.

Preliminary assessment of palaeoenvironmental sampling

After nearly fifteen years of ongoing excavations at Ille Cave, we still lack a detailed vegetation reconstruction at any spatial scale for the time period corresponding to past human habitation of the cave and the surrounding alluvial landscape. The Ille Cave excavation sequence suggests relatively continuous human occupation since the terminal Pleistocene extending throughout the Holocene (Lewis et al., 2008). Previous researchers’ attempts at gathering relevant
palaeoenvironmental data have been successful on a general level. Typical Pleistocene-Holocene transitional sequences are represented by the zooarchaeological (Piper et al., 2011) and archaeobotanical (Carlos, 2010) remains. These studies infer a trend in vegetation change from a more open savanna-like landscape in the area to that of a more closed forest environment across the Pleistocene-Holocene boundary centred around 12 ka BP. These data are corroborated by Bird et al.’s (2007) isotopic work on guano deposits in the adjacent Makangit karst complex. Bird et al. suggest a shift in the predominant photosynthetic pathway of surrounding vegetation from C4 during the LGM to C3 by the mid Holocene, which indicates an expected climatic movement from cooler and drier conditions to warmer and wetter. Additionally, Maeda et al. (2004) show that mid Holocene average sea levels along the coast of northern Palawan were up to 1.3 m higher than they are at present, the implications of which for past human activity in the Dewil Valley are manifest in the dense marine shell midden within the Ille Cave excavation sequence dated to around 5-7 ka BP. Despite this existing data, however, previous research has failed to establish neither a full suite of floral resources available to past inhabitants of Ille Cave nor a detailed human ecological dynamic through time. Janelle Stevenson’s unsuccessful attempt during the 2005 season to redress this deficiency with palynological investigation proved that locating organic-rich deposits in the broader Dewil Valley landscape of comparable time-depth to that of the Ille Cave sequence is a difficult task (Stevenson, 2006). As such, an aim of ongoing PhD research is to move beyond the orthodox palaeoecological approach by expanding the spatial scope of the search for suitable deposits to encompass adjacent sub-catchments, as well as considering acceptable a temporally-piecemeal record conflated from fragmentary deposits of varying ages. This part of the report summarises the associated field sampling and subsequent labwork which were completed in 2012, followed by a preliminary assessment of the palaeoenvironmental potential of the material gathered therein and a proposed programme of future work.
Summary of Samples

During April of 2012, O'Donnell collected two sediment cores were collected from sub-catchments adjacent to the Dewil Valley, as well as two sample columns from sedimentary sequences within the Valley itself. Figure 1 shows the locations of each of these sampling sites. The most promising material is a 2.5 m core from a peaty deposit surrounding a hot spring called Makinit. The Makinit site is located about 7 km northwest of Ille in the adjacent catchment to the Dewil Valley. This hot spring sits within an alluvial landscape dominated by rice paddies, but is immediately surrounded by a relict patch of mangrove vegetation. In terms of elevation and distance from the present coast, Makinit is comparable to Ille. The upper 225 cm of this the core are variably humified red-brown peats with occasional large woody inclusions throughout, and a sandy lens at about 12 cm depth. The basal 25 cm consist of alternating grey and brown-grey laminated clays with numerous charcoal bands.
The second core is a 1 m sequence consisting mostly of laminated minerogenic clays from a notional palaeolake feature near Kagbanaba. This site, called Baryaw-baryaw, is high up in the sub-catchment of the Dewil, to the south of Ille Cave. The core itself comes from the deposit beneath a roughly circular patch of rushes and ferns, once again within a landscape dominated by wet rice cultivation. In addition to these two cores, a series of eight samples was taken from a river terrace sequence on the upstream edge of New Ibajay, just downstream from Ille Cave. This terrace sequence is the type-site for Terrace 3, as defined during the survey work, and which was named by the team as DR1. The Pasimbahan-Magsanib excavation sequence was also sampled both by context and at regular depth intervals, providing a fourth set of samples for palaeoenvironmental analyses.

LABWORK UNDERTAKEN

The abovementioned material was collected by O’Donnell with the intent to analyse the plant microfossils (pollen and, time permitting, phytoliths) that they might contain. After sampling in the field, 50 cm core segments from the two cores (from Makinit and Baryaw-baryaw) were wrapped in foil and taped inside PVC piping for protection during transit from Palawan to Manila. Once in the UP-ASP labs, they were photographed, and the lithology and the stratigraphy were described for both cores via visual and tactile examination prior to sub-sampling. Both cores were sub-sampled at 10 cm depth intervals throughout their entireties. One centimetre thick slices were removed from the D-section cores at each sub-sampling point. Additionally, the basal clay unit of the Makinit core was sub-sampled to look for micro-stratigraphic changes. Plate 1 shows the basal 50 cm (depths 200-250 cm) of this core after sub-sampling. Two large woody fragments were removed from respective depths of 76-79 cm and 129-132 cm of the Makinit core for radiocarbon dating. This strategy yielded a total of 24 sub-samples for microfossil processing from the Makinit core and 10 sub-samples from the Baryaw-baryaw core.

In the Geography Department labs at the University of Cambridge, O’Donnell processed initial batches of samples for pollen analyses – each consisting of 8 sub-samples – from the two cores described above, as well as from the DR1 terrace sequence. Pollen processing followed the standard procedure devised by the Geography Department at Cambridge, which can be found here: [http://www.geog.cam.ac.uk/facilities/laboratories/techniques/pollen.html; access date?].

These initial batches were used to assess the pollen preservation throughout each of the sedimentary sequences sampled. As such, one 22 mm x 22 mm slide (400 fields of view at 400x magnification under refracted light microscopy) was scanned. O’Donnell counted the total pollen grains, exotic *Lycopodium* spores and ‘robust’ grains (heavily ornamented...
pollen grains, as well as fern spores with thick exines) were counted, and the counts were then used to estimate pollen concentrations, as well as to determine whether or not any differential preservation of more robust grains exists.

Preliminary Assessment

As described above, the processed batches — each consisting of 8 sub-samples — from the Makinit and Baryaw-baryaw cores, as well as from the 8 DR1 samples for pollen were scanned under refracted light microscopy to determine pollen concentrations and the state of pollen preservation throughout each of these sequences. Of these 24 initial samples, only 5 contain well-preserved pollen in countable concentrations. All 5 of these sub-samples come from the Makinit core. It was decided to focus future labwork on the Makinit sequence; O’Donnell began the process of counting, describing and photographing the grains contained in these initial Makinit assemblages; however, to date too few samples have been counted and only descriptive classifications assigned to the constituent grains; as such no results are for results to be presented here.

Future Steps

In relation to the Makinit sequence, O’Donnell will process the remaining 16 sub-samples will be processed for pollen. The system of describing, sketching and photographing each new grain encountered, and assigning a general name (such as Type 1, Type 2, etc) to each grouping of similar grains shall be continued. Assigning taxonomic names awaits access to suitable reference material. Potential reference material exists in the form of: a partially published Philippine pollen flora by the late palynologist Bulalacoa; Bernard Maloney’s reference collection from lowland Borneo, housed at Queen’s University Belfast (QUB); and the online Australasian Pollen and Spore Atlas (APSA), maintained by the ANU working group PalaeoWorks. Ascribing ecological significance to the microfossil assemblages can then proceed, the first step of which is the compilation of a training set from surface sampling, and use of this training set to calibrate the fossil assemblages with likely vegetation types that may have produced them. It is planned to initiate a programme of surface sampling within environments that span a gradient in degree of human impact and across a spectrum of human land use.

In relation to the samples from the cave sediments, this would be processed for both pollen and phytoliths according to a less destructive procedure devised by Chris Hunt at QUB and used for his palynological work on the Niah Cave sediments. These samples include: the abovementioned 31 samples from the Pasimbahan-Magsanib excavation sequence; a series of 37 samples from the East Mouth Trench of Ille Cave spanning the entire excavated sequence, collected by Janelle Stevenson in 2005 but never analysed; and a single environmental sample from context 2161 in the East Chamber Trench associated with a few lithic flakes and a core. The speculative idea is that Makinit may yield a late Holocene record of vegetation changes, while the pollen from the cave sediments will supplement this with a record spanning the terminal Pleistocene to mid Holocene. Additionally, the phytolith analyses have the potential to
bolster our relatively sparse archaeobotanical record which, to date, is based solely upon a macrobotanical assemblage of only a handful of taxa [see Carlos 2010].

There is great potential to expand upon and refine our understanding of how past human populations existed within the environments of northern Palawan. It remains in the form of, and indeed necessitates, an unorthodox approach to palaeoecological research. Such an approach can paint a more complete picture of the suite of floral resources available to past inhabitants of Ille site, as well as establish a human ecological dynamic through time. Preliminary assessment of the material gathered during the 2012 season of the Palawan Island Palaeohistoric Research Project provides for optimism that this potential will soon be realised.

INVENTORY AND DESCRIPTIONS OF SAMPLES

The samples described and listed below may potentially be good for radiocarbon dates on sequences. O’Donnell plans to process all of the following samples will be processed for pollen analysis. In addition, I plan to process the samples from Pasimbahan-Magsanib and Ille Cave excavations samples will be processed for phytoliths. All the samples were accessioned. From this year’s fieldwork, these include:

- the section of T3 on the south bank of the Dewil River just downstream from the bridge under reconstruction labelled DR1;
- the short (1 m) core which was taken from a marshy area surrounding a spring high up in the Kagbanaba River catchment (southern sub-catchment of the Dewil River Valley – the Kagbanaba River flows into the Dewil River just upstream from the present mangrove complex);
- two columns of samples which were taken from the Pasimbahan excavation sequence in Trench A/B, one column at regular depth intervals and the other sampled by context number. These will be used in a contained study on post-depositional mobility of microfossils within cave sediments;
- a single sample which was taken from context 2161 in the East Chamber Trench where Archie found a few flakes and a core were found; and
- a core which was taken in the catchment to the north of the Dewil Valley where Emil Robles - through word of mouth from Joey Sugbojo – prospected a 2 m+ deep organic deposit near a hot spring (close to Happy Valley).

Below are short descriptions and/or field notes for each of these groups of samples.

DR1

This site is an exposed section on the outside of a small meander on the Dewil River just downstream from the main bridge into New Ibajay, which is currently under reconstruction at the time of study. This section is understood to be representative of the T3 sequence. The
whole 3.9 m sequence appears to be fluvially deposited. The upper ~2.5 m consist of bedded light brown silts, which is suggested to date to the past 60 years, following widespread logging within the catchment which dramatically increased sediment supply to Dewil Valley waterways; labelled Unit 2. The lower ~1.5 m consist predominantly of clays, but interspersed with thin lenses of silts and sands (Plate 2), of unknown time-depth unknown, but believe may represent the past 300 or so years of deposition during which landuse within the catchment was dominated by swiddening. A ~15 cm thick layer of days with a high concentration of organic debris is at the base of this lower unit. This entire clay unit is labelled Unit 1, which is further broken down into sub-units based mainly upon changes in colour. The predominant colour is grey, with sub-units of solid grey, grey with orange mottles (owing to either redox or bioturbation), and light brown-grey (the aforementioned organic-rich sub-unit at the base). A series of 8 samples was taken from sub-units 1b-1f (Plate 3). We took heights from the base of the exposed sequence (not depths from the terrace surface). Table 1 shows the accession numbers, sub-units from which they come and heights for each of these 8 samples.

Table 6. Accession numbers, sub-units of origin and height from the base of the exposed section for each of the 8 sub-samples

<table>
<thead>
<tr>
<th>Accession number</th>
<th>Sub-unit</th>
<th>Height from base of section</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV-2012-____-1</td>
<td>1b</td>
<td>12-13 cm</td>
</tr>
<tr>
<td>IV-2012-____-2</td>
<td>1b</td>
<td>18-19 cm</td>
</tr>
<tr>
<td>IV-2012-____-3</td>
<td>1c</td>
<td>26-27 cm</td>
</tr>
<tr>
<td>IV-2012-____-4</td>
<td>1c</td>
<td>34-35 cm</td>
</tr>
<tr>
<td>IV-2012-____-5</td>
<td>1d</td>
<td>50-51 cm</td>
</tr>
<tr>
<td>IV-2012-____-6</td>
<td>1e</td>
<td>70-71 cm</td>
</tr>
<tr>
<td>IV-2012-____-7</td>
<td>1e</td>
<td>78-79 cm</td>
</tr>
<tr>
<td>IV-2012-____-8</td>
<td>1f</td>
<td>96-97 cm</td>
</tr>
</tbody>
</table>

Kagbanaba core

A 1 m core was taken using a Russian (D-section) corer from within a patch of aquatic vegetation (dominated by a rush with a local name of “baryaw-baryaw” and ferns), surrounding a spring high up in the Kagbanaba River catchment. The specific location was plotted using a GPS. This patch of aquatic vegetation is roughly circular, with a diameter of ~50 m, sitting within what is presumably an alluvial landscape surrounded by rice paddies, though we got the visual impression that this area is somewhat basin-like, delimited by hills on nearly all sides. The sediments are quite different to those encountered elsewhere in the Dewil Valley.
The stratigraphy of the core consists of two units: the uppermost 20 cm are brown organic-rich muds, presumably modern marsh deposits; the underlying 80 cm consist of green-grey clays with inclusions of highly-weathered angular coarse sands and fine gravels, green and white in colour and with apparent laminations of some sort. This lower unit appears to be quite minerogenic, though visually it looks like some portions may contain an organic fraction.

Pasimbahan-Magsanib excavation sample columns

There were two vertical series of environmental samples taken from the entire stratigraphic profile of Trench A/B, with the idea that pollen and phytolith analysis can be done on them. The first sequence of samples were taken from selected contexts, in profile; the second sequence of samples formed a vertical column with even spacing between sub-samples at 20 cm depth intervals, once again in profile. The idea behind this sampling strategy is to test whether microfossils are vertically mobile within these rockshelter sediments. If these two sample columns produce similar microfossil curves, then this homogenization would imply post-depositional mobility of the microfossils; conversely, if

<table>
<thead>
<tr>
<th>Accession number</th>
<th>Context / Depth (cm)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV-2007-Q-2167</td>
<td>c.446</td>
<td>West wall (sample 1)</td>
</tr>
<tr>
<td>IV-2007-Q-2168</td>
<td>c.446</td>
<td>West wall (sample 2)</td>
</tr>
<tr>
<td>IV-2007-Q-2169</td>
<td>c.447</td>
<td>Top of context</td>
</tr>
<tr>
<td>IV-2007-Q-2170</td>
<td>c.447</td>
<td>Middle of context</td>
</tr>
<tr>
<td>IV-2007-Q-2171</td>
<td>c.447</td>
<td>Bottom of context</td>
</tr>
<tr>
<td>IV-2007 Q-2172</td>
<td>Surface (223 cm bDP)</td>
<td>Column sample</td>
</tr>
<tr>
<td>IV-2007-Q-2173</td>
<td>243 cm bDP</td>
<td>Column sample</td>
</tr>
<tr>
<td>IV-2007-Q-2174</td>
<td>263 cm bDP</td>
<td>Column sample</td>
</tr>
<tr>
<td>IV-2007-Q-2175</td>
<td>283 cm bDP</td>
<td>Column sample</td>
</tr>
<tr>
<td>IV-2007-Q-2176</td>
<td>303 cm bDP</td>
<td>Column sample</td>
</tr>
<tr>
<td>IV-2007-Q-2177</td>
<td>323 cm bDP</td>
<td>Column sample</td>
</tr>
<tr>
<td>IV-2007-Q-2178</td>
<td>343 cm bDP</td>
<td>Column sample</td>
</tr>
<tr>
<td>IV-2007-Q-2179</td>
<td>363 cm bDP</td>
<td>Column sample</td>
</tr>
<tr>
<td>IV-2007-Q-2180</td>
<td>383 cm bDP</td>
<td>Column sample</td>
</tr>
<tr>
<td>IV-2007-Q-2181</td>
<td>403 cm bDP</td>
<td>Column sample</td>
</tr>
<tr>
<td>IV-2007-Q-2182</td>
<td>c.50, under rock</td>
<td>Sample by context</td>
</tr>
<tr>
<td>IV-2007-Q-2183</td>
<td>c.51</td>
<td>Sample by context</td>
</tr>
<tr>
<td>IV-2007-Q-2184</td>
<td>c.64</td>
<td>Sample by context</td>
</tr>
<tr>
<td>IV-2007-Q-2185</td>
<td>c.68</td>
<td>Sample by context</td>
</tr>
<tr>
<td>IV-2007-Q-2186</td>
<td>c.76</td>
<td>Sample by context</td>
</tr>
</tbody>
</table>
the resultant microfossil curves differ significantly between those sampled by context and those sampled in a vertical column by depth, then post-depositional immobility of microfossils in cave sediments will be supported.

The palaeoenvironmental and archaeobotanical data produced is of obvious value to the project. Samples were also taken from the notional hearth feature [c.444] and associated layers with burnt bone and shell fragment scatters [c.446 & 447], for phytoliths analysis and radiocarbon dating.

Ille Cave East Chamber sample

An environmental sample was taken from the north wall profile of the East Chamber Trench at Ille from within c.2161, —where a few lithic flakes and a core were found. Sediment samples for phytolith analysis were also taken from this context. This sample comes from a depth of 148-154 cm below the site datum point and was given an accession number of IV-1998-P-48682.

Core from catchment to the north of Dewil Valley

After failing to locate suitable pollen coring sites within the Dewil Valley itself, the neighbouring catchments were investigated. As mentioned above, we cored a marsh in the Kaghanaba River sub-catchment to the south. Additionally, we were informed of a "peaty" deposit in the catchment to the north of the Dewil Valley, which was earlier augered. Based on the initial auger sample, there are 2+ m of organic deposits within a large patch of aquatic and mangrove vegetation surrounding a hot spring. This area was sampled again using a Russian (D-section) corer; retrieving a viable core of sediments for analysis.
6.6 PUBLIC ARCHAEOLOGY

The aim of this year’s heritage work is to involve more local residents in communicating the archaeological heritage agenda of the project. Aside from community members of New Ibajay and Sibaltan, we were interested to bring on-board individuals within the existing tourist guide industry of El Nido.

6.6.1. SEMINAR FOR TOURIST GUIDES

We held a seminar for tourist guiding and basic archaeology of Dewil on April 19, 2012. This was done in collaboration with the Tourism Office of El Nido. Another session was held the following day, April 20. All-in-all there were 60 participants coming from New Ibajay and El Nido town. A community museum seminar was also held on April 21 at Sibaltan. All of these activities were held at venues closest to the basic communities of New Ibajay and Sibaltan.

6.6.2. ILLE CAVE GUIDING TOUR TRAINING

We led a guide training event for Ille Site and Tower. The event was announced to registered El Nido guides by Municipal Tourism Officer Arvin Acosta, and to the entire local staff of the project at the Dewil valley by Dr. Victor Paz. Despite only being ‘advertised’ two days in advance, this event attracted more than 55 attendees.

The training for the day had the following content:

1. Discussion on Visitor, Safety, Enjoyment
2. Sample tour, from town to field school, excavation site, focusing on natural amenities
3. Presentations by Archaeologists, key discoveries in each trench
4. Reading of archaeological tour info over lunch break
5. Sample tour through Ille Cave and to top of Ille Tower
6. Review and additional Q & A with archaeologists
7. Oral exam

Certificates were awarded at the end of the session to those who passed the final exam. Four examiners (Arvin Acosta, Lace Thornberg, Jun Cayron and Mimi Cabral) tested groups of around ten examinees each. Three examiners gave the test in Filipino, while one administered the exam in English.

The test format asked participants to do the following:

- Provide an introduction covering the following four points (yourself, introduction to guide, safety, logistics, and the importance of Ille Cave).
- Explain one archaeological fact related to Ille Cave.
- Tell us something interesting. (about you, the area, the cave, etc.)
Answers were given aloud to the whole group. Because the participants who volunteered later could benefit from hearing the answers of those who volunteered first, they were encouraged to say something they hadn’t heard anyone say yet.

A second session was held on the following day for ten members of the Ille crew. This session was given in English and Filipino by Lace Thornberg and Dee Cuerdo.

6.6.3. ‘PINOY EXPLORER’ VISIT

The crew for the popular TV show Pinoy Explorer spent one afternoon scouting and one afternoon shooting at Ille site. The chance to see TV star Aga Muhlach was a huge draw for New Ibajay residents. It helped local residents appreciate the project more, and finally dispelled the notion for some that we held the view that we were ‘treasure hunters’ even after a decade of work in the valley. A 20-minute segment featuring Ille site was broadcasts nationwide on May 13, 2012.

6.6.4. PASIMBAHAN-MAGSANIB CAVE EXHIBIT

Jun Cayron and Lace Thornberg designed a series of four exhibit panels (2 feet wide x 3 feet tall) that provide the story of the Pasimbahan-Magsanib site. Dr. Paz and Romeo Fines installed these tarpaulin signs between bamboo supports, in a manner that blends harmoniously into the existing landscape.

6.6.5. NEW IBAJAY COMMUNITY OUTREACH

The idea of an ‘Archaeology Park’ at New Ibajay Elementary School was pitched to the faculty of the school. This was after discussions with elementary school teacher Emilyn Bato (5th grade teacher) and Principal Decolongon, who both welcomed the idea. Principal Decolongon pointed out the potential area for the park, adjacent to the science park, within the large open ground in front of the school compound. Temporary colorful signs stating ‘Archaeology Park’ and ‘Coming Soon – A park about our Past’ were created and left with Mrs. Bato.

The current plan is for school children and parents to assist the teachers in planting and creating the parks and planting the flowers, while the ASP team should be ready to add the archaeological infrastructure to the park in 2013.

6.6.6. SIBALTAN INITIATIVE

The project housed an independent initiative by Lace Thornberg, who was awarded a Fulbright fellowship to pursue community based heritage research/work in the Philippines. Ms.
Thornberg was part of the University of Washington team that joined the PIPRP 2011-2010 season. She came back and continued the heritage initiatives at Sibaltan with the support and help of Barangay Captain Acosta. Seminars and workshops were held with Sibaltan residents. The exhibit that was created in the barangay hall of Sibaltan in 2010 was also updated.

7. DISCUSSION
For every PIPRP annual report discussion of new insights are shared. For this year, we share our insights on the excavations at Ille, and at the two open sites within the barangay of New Ibajay. The following discussions are added insights to existing views and conclusions integrated in various parts of this report, e.g., at the end of each section, and the appendices.

7.1. ON THE LITHICS FROM ILLE EAST CHAMBER TRENCH
The sequence of depositional history at the trench covers the periods from the Terminal Pleistocene to the present. At the Terminal Pleistocene to early Holocene, the agent of deposition was the dynamic activity of fluvial deposition that led to the emplacement of fluvial terrace inside the cave. In the sequence at the archaeological units of the innermost east chamber (W2-3 N15-13 W2-3), these deposits are vertically observed approximately beginning 100cm below surface to the basal level of excavation to date, reaching 230cm. However, the depths of the deposits vary due to the pronounced steep contours of the layers towards the platform of the cave.

The compositions of sediments include the predominance of gravelly deposits and occasionally mixed with pebbles and cobbles. It is highly likely due to the amelioration change of climate (high humidity and heavy precipitation) at the boundary between Terminal Pleistocene to Early and Holocene, that occurrences of severe flooding led to the deposition of gravels (occasionally well-sorted in the degree of sorting), pebbles and cobbles. Their presence marked the character of heavy load of water discharge that steered the high and low-energy fluvial course. Both moderate and low-energy flows are represented; the latter is represented with presence of the clay- and silts, forming the main deposits. When the water receded and the area dried up, the deposits underwent in-situ geochemical weathering strongly acted with intensive oxidation processes, creating precipitation of and intrusions of manganese, iron and calcium. Markedly these allochthonous materials vividly characterized as ferruginous deposits. Contrary, the later, possible early Holocene layers exhibited the actual cave deposition of other types of cave sediments (autochthonous), such as guano and weathered clay, combined with rockfall materials from pebble to boulder materials from the partial collapse of the ceiling of the cave size.

All of the lithic artefacts found in these deposits are made of chert material, although the actual source of this is. However, the progress in identifying the sources of chert material has been
elusive, as no one has successfully pinpointed exactly where the sources in the area are: whether the toolmakers exploited raw materials that are considerably far away from the cave or locally available unknown, and there are both local and long-distance possibilities. Examining the quality of chert exploited, the flakes mainly show selection of high-quality material, although one core contains numerous internal cracks. The flakes bear the good selectivity of material having very fine quality markedly contrasted to the core that contains numerous internal cracks.

Despite the recurrences of fluvial regimes, abrasion analyses of the lithic artefacts informs us that they were not transported far from their location of deposition. The very freshness of the condition of lithic materials suggests the anthropic human activity related to the introduction of the lithic artefacts into the site may have had occurred at the location, i.e. exactly on the they do not appear to have been transported to the location by stream action, drier period when the flooding receded. Therefore, the former fluvial terrace that trapped inside the innermost chamber was the paleosurface of the prehistoric human occupation. Furthermore, The low density of the associated faunal-animal bone assemblage and the lithic artefacts indicates that the prehistoric occupation in the Chamber during the Terminal Late Pleistocene-early Holocene was rather very short and temporary in nature.

7.2. On the Dela Cruz-Anastacio Site

It was previously mentioned that the excavation of the Dela Cruz – Anastacio Site was undertaken to explore the possible presence of a settlement site in this area. Postholes are evidence of this, but unfortunately, no such features were found in the four trenches excavated. Adding to the frustration, we indeed, features that first appeared to be postholes turned out to be termite holes.

Excavation of Trench 1 has revealed a relatively thin cultural layer, hence the decision to open other trenches (2, 3 & 4). The other trenches also showed the thin cultural layer which almost had no artefacts. In general, there were only a few artefacts recovered from this site, mostly coming from c. 3, the only layer (out of five layers) that proved to contain archaeological materials. The other layers are contexts 1 & 2, 4, 14 and 17. Context 3 is the layer where a stone adze was found in Trench 1, the single blue-green indol-indo-pacific bead in Trench 2 (c. 22 = c. 3) and the other stone adze in Trench 3 (c. 42 = c. 3). The thickness of c.3 in Trench 1 ranged from 5 cm in the west wall to 45 cm in the north wall. The excavated thick layers beneath c.3 (c. 14, 15, & 17) are all sterile of any cultural materials. These sterile layers are all clayey, blue-green to black in color and are most likely a result of rock weathering. Context 17 distinctly shows this weathering of rocks, with its angular black colored clay features (which used to be rocks).
Further excavation of the DLCA Site is not recommended since the four trenches dug have basically sampled the whole area. The remaining areas are not promising, either disturbed by house construction or digging for garbage pits. For now, the presence of at least eight ground stone adzes is peculiar and might suggest a ritual site or an area that cannot still be explained by the present data. Other sites near the DLCA Site, like the nearby Adventist Church, could be explored in the coming excavation seasons.

7.3. **The Florante Reyes Site Discussion**

There were two test excavation trenches at the Reyes 2 Site. The deepest excavation was at TP1 that reached up to 1.70 meters; further testing using an auger reached to a depth of 4.85 m. There were five contexts identified, and overall only a few rounded earthenware sherds were recovered from the excavations. However, the mere presence of artefacts on this trench here confirms human activity in the area prior to the current living culture in the past. The scarcity of the materials, though, suggests that the area was not heavily utilized by people in the past.

At Test Pit 2, there were three contexts exposed and documented. The stratigraphy of TP2 is represented at TP1, with a similar stratigraphy. However, no artefacts, particularly ceramics, were found at TP2. This result does not support our hypothesis that the artefacts found at TP1 were eroded from the upper slope of the site. The survey conducted at the vicinity of TP2 further negates our hypothesis as we did not find any archaeological materials.

It is unfortunate that the team did not manage to see the artefacts that Lolo Ante found in his backyard reported from the site. The presence of trade ware ceramics and metal bangles would have been very significant if found in situ within the site, and their condition could have told us much about their use and purpose. Nevertheless, based on the reported materials, we include the Reyes 2 Site as a location dating to later prehistory/early history in the Dewil valley. See the condition of the ceramics, i.e., whole or buried broken in antiquity, can tell us if they were part of a burial/votive offering or if they come from a midden. We can also easily integrate the Reyes 2 Site with the rest of the Dewil valley’s archaeology where trade ceramics and metals were also recovered.

For this fieldwork, only the first objective was met; that is to verify the presence of archaeology in the area. Evidence to support the second and the most important aim of this excavation is lacking. However, this does not preclude us from pursuing future archaeological work at the site. There are other areas within the property that are worthy of archaeological probing. The spot at the back of the house is a potential site for test excavation in the future. Similarly, the...
area in front of the house overlooking the river offers good potential to find better archaeo-
logical deposits.

7.4 The Valley Survey
Perhaps the most important groundwork of the entire project was carried out in this season, namely the examination of the valley by an expert geomorphologist, Dr. Gerald Foster, and the beginning of a model of the history of the river. As well as being vital to understanding the archaeology of the valley over all time periods, we hope that the identification and tentative assignment of periods to the four river terraces found will help us in our future surveys of the valley for pre-modern archaeological sites. We currently have a model which includes three possibly pre-modern terraces, and the survey identified a few locations where each can be accessed, recorded and, hopefully, test-excavated. This is a major breakthrough for our landscape study and for the future location of later prehistoric settlement (vs. cemetery) sites. The continued investigation of the valley for sampling sites for regional botanical reconstructions has also found a couple of new sites with potential, and we expect this aspect of our work to begin to contribute significant results in the next year or two.

8. Summary and Recommendations
At the end of this year’s work, we have succeeded in excavating Ille site. We have expanded the Ille excavation in search of the extent of the cremation cemetery, and the stone-marked 4000 plus year old burials at the West Mouth area. There was a substantially contribution this year to our growing knowledge of landscape history around the Dewil valley. Our palaeoenvironmental geomorphological investigations have begun to recorded the changing flow and direction of the Dewil river through the remnants of its river terraces. However, we still have not connected this knowledge to current and future disaster management applications.

The excavation of Pasimbahan-Magsanib was implemented as planned. We have uncovered more evidence for human activity, including the significant uncovering of a substantial hearth, which can be radiocarbon dated in the near future. It was also established that the later cultural horizons at Pasimbahan appear to coincide with that of Ille. However, as aimed at the beginning of the year, there are still no cultural layers that coincide with periods beyond the 10,000 years mark at Pasimbahan. Equally important was the successful mounting of the Pasimbahan-Magsanib site exhibit. The subtle placing of the exhibit avoids the clash between respects the desires of visitors those who would like to appreciate seeing nature, and those who want to read and know on-site the details of human history in this dramatic landscape.
We are happy with the amount of heritage work we did for the year, achieving the aim of advancing basic community interaction and heritage activities in the form of seminars, workshops and new exhibits. The objective of initiating a livelihood project, however, was not pursued. This was after consultation with local stakeholders, which resulted to the conclusion that there is a clear danger that such an initiative may be divisive to the community of New Ibajay. The groundwork for any future attempt was pursued instead by letting our local team members think of ideas as to how we can get such a program going without reaping unexpected negative effects.

The continuous analysis of materials and data from past field seasons has as always been productive. This is reflected in the following appendix section of this report, and more work as in progress as we write. We shall definitely continue encouraging researchers to work on the data coming from our project.

Equally so, for the 2013 season, the excavation at Ille will continue, especially at the EWCT and at the WMWE. We plan to finally begin excavations at Malangit. At Pasimbahan-Magsanib, the excavation of Trench A & B is projected to be completed. The further investigation of the Florante Reyes site may be pursued, as well as, if allowed, the investigation of the Adventist church property within the New Ibajay barangay proper, and one of the earlier terraces of the Dewil. There is a need to further investigate the Makangit karst complex, and we will continue the previous attempts to look for settlement sites within the open landscape, and our heritage work through public archaeology and archaeotourism will continue.
PROJECT PARTICIPANTS FOR 2011

Wilhelm G. Solheim II – Honorary Team Leader

Project Directors
Victor Paz, Ph.D.
Helen Lewis, Ph.D.
Wilfredo Ronquillo, MS

UP - ASP
Jun Cayron, Ph.D.
Jane Carlos, MS
Omar Choa
Deo Cuerdo
Vito Hernandez, MS
Myra Lara, MS
Jessica Pena
Emil Robles, MS
Archie Tiauzon, MS

Jonathan Kress
Gerald Foster, Ph.D. (University College Dublin)
Mark Mabanag (University of Washington)
Shawn O'Donnell (Cambridge University)
Lace Thornberg (Fullbright Scholar)

Kahir Abdul (University of Macao, Portugal)
Antoine Gossez (University of Paris, MNHN*, France)
Pedro Guilhardi (University of Macao, Portugal)
Giulia Marciani (University of Macao, Portugal)
Alice La Porta (University of Ferrara, Italy)
Eugenie Roux (University of Paris, MNHN*, France)

*Musée National d'Histoire Naturelle, Paris

Core New Ibajay Team Members
Eustaquio Danay
Potencias Reyes
Rosie Fines
Joelius Naranjo
Jomer Danay
Jic Naranjo
Joey Sugbo
Boy Danay
Remedios Cabral
Felicito Paulino
Dyna Libudan
Joey Naranjo
Jay-Ar Danay
Froilan Barrientos
Jenix Naranjo
Jayron Danay
Joven Naranjo
Gerald Leuterio

Marlon Anastacio
Michelle Anastacio
Arthur Dela Cruz, Jr.

Dominator Gillang
Joel Andensio
Macmac
Kim Barrentos
Grimaldo Sugbo
Louie Barrientos
Lorenzo Ingcad
Kelvin Cervantes
Ador Reyes
Bebet Naranjo
Edna Libudan
Myrna Danay
Mary Anne Votorin
Petra Gabayan
Jovenly Naranjo
Guests
Martin Porr, PhD. (University of Western Australia)
Janine Ochoa, MS
Kristina Solheim
Rafael Dy-Liaco

From Barangay New Ibajay
George Danay (Deputized by National Museum)
Danilo Libudan (Deputized by National Museum)
Romy Fines (Responsible for Pasimbahan)

Secondary Dewil Team Members
Noel Sarmiento
Jay-Ar Vallejo
Rose Ann Dionson
Gemarie Vallejo
Alvin Agon
Cyril Vallejo
Venson Agon
Eric Vallejo

10. PLATES
Ille karst, at the background is the hill that separates the barangay from the limestone towers in the valley.

View of limestone karst formation with the Sungkukan ridge at the background.

Closer view of Istar & Diribungan with the nearby landmarks.

Preparations for backfilling at Pasimbahan.

Ille site after complete backfilling of trenches.

Excavation crew walking to Pasimbahan-Magsanib; carrying the panel boards for the exhibit.

Project signage for this season placed at the start of the trail going to Ille; also placed at the town center, and at the base camp.

Plate 1. Project setting in the Dewil Valley.
Dry sieving station at Ille platform

Sorting shells recovered from Ille through the years – board holds the reference collection for guidance

Sampling for environmental proxy material at the east wall of Pasimbahan Trench B; samples are taken from each known depositional context and as much as possible in a column

Ocular surveys done with the help of informant work; a view of the mouth of the newly surveyed cave within Imorigue Island, Bebelayen cave (IV-2012-W), with positive archaeology

Recording profiles at the East Chamber Trench, Ille

Recording of surface finds in the survey of Badynag maliit (IV-2012-Y) within Imorigue Island

Excavation areas are summarized by team members at the end of each working day

Dry sieving station at Ille platform

Nightly lectures and discussion at the base camp located next to the Ille tower

Plate 2. Images showing methods
Looking across the rockshelter towards the cave mouth
Reopening Trench A&B and establishing LDP
Plate 3. Pasimbahan-Magsanib Images

Trench A&B at looking towards the north
Trench A&B looking towards the east
Excavating hearth c.444; sectioned and sediments collected for further analysis; concentration of oxidized deposits further confirm the combustion episode
General area of the Reyes 2 site

Test Pit 1 at Reyes 2 site

Test Pit 2, Reyes 2 site

View of New Ibajay with the Barangay proper sites indicated

Lithic adze (IV-2011-J4-1) in situ at Trench 1 DLCA site, c.4; see also Pl. 11

Trench 1, DLCA site showing the selected quadrants that went deep; image at right shows quadrant at 260 cm LDP and the auger sampling hole

Trench 2, DLCA site

Trench 3, DLCA site, showing in situ location of lithic adze (IV-2011-J4-5) in c. 42; see also Pl. 11

Trench 4, DLCA site

Plate 4. Images of Dela Cruz-Anastacio and Florante Reyes Sites
Plate 5. Ille Images
Plate 6. Plan and profile of Ille platform and cave network
The West Mouth trenches newly reopened with the WEWE at the beginning of excavation. The WMWE almost at the end of the season.

Looking west: second pit c.2303 + c.2304 which contained the first pit c.2301 + c.2302.

View looking west of the first of many pits, with cut c.2301 and fill c.2302.

Burial c.1842 in the topmost part of the image; represented only by the pelvis and the left lower limbs minus the foot. The two adjacent burials c.2324 and c.2325 were situated so close that they were discovered in cleaning and attempting to recover c.1842.

Juvenile burial c.2324 (left) and infant burial c.2325 (right). The two burials were found in a state of extremely poor preservation. The sediment incaving in the cranium of c.2324 and the extremely fragmented nature of the ribs of both burials are visible in the photograph.

Plate 7. West Mouth West Extension Trench Images
Perforated shell disk IV-1998-P-48858
With possible remnants of paint/resin
C.2297, EWCT, Ille

Worked Tridacna spp. shell;
Possibly fossilized and likely a pre-form
IV-1998-P-48350
C.1835/1838, WMWE, Ille

Plate 8. Example of shell artefacts, including Tridacna spp.
Plate 9. Example of shell artefacts including *Melo* spp.
Carnelian stone bead
IV-1998-P-47759
1835/1838, c.2304 WMWE (N5W16), Ille site

Carnelian stone beads
C.2304 (right and lighter); c.1835/1838 (left, darker)
WMWE (N5W16), Ille site

Various glass beads
IV-1998-P-48170
C.2204 WMWE, Ille site

Various glass beads; larger examples are highly weathered
IV-1998-P-48223
C.2315 WMWE, Ille site

Stone bead, possibly nephrite
IV-1998-P-48231
C.1835, Ille site

Carnelian stone bead
IV-1998-P-48321
C.1835, Ille site

Indo-Pacific glass bead, c.22, Trench 2 Dela Cruz-Anastacio Site

Two types of shell beads
IV-2007-Q-2125
Recovered from wall cleaning, Pasimbahan-Magsanib

Two carnelian beads and a glass indo-pacific bead,
IV-1998-P-48386
C.1835, Ille site

Plate 10. Examples of beads found this season
Plate 11. Examples of lithic flakes recovered this year
Plate 12. Examples of polished stone/lithic artefacts from this season
Decorated pottery sherds from two vessels
IV-1998-P-48655
c.2315, EWCT, Ille

Decorated body sherd of jarlet with portion of the base
IV-1998-P-48455
c.1835/1838
WMWE, Ille

Body sherd with grain impression and a highly organic temper, IV-1998-P-48455; c.1835/1838; WMWE, Ille

Decorated dark body sherd
IV-1998-P-48455
c.1835/1838
WMWE, Ille

Plate 13. Pottery sherds
Plate 14. Samples of pottery sherds
A sherd with unique pottery design
IV-1998-P-48753
c.1835 WMWE, Ille

Fragment of metal bangle
IV-1998-P-47905
c.1835 / 1838
WMWE (N4W14) -23 cm DP, Ille

Plate 15. Pottery sherd and examples of metal artefacts
The basal 50 cm of the Makinit core, with top of core section at left and bottom at right. Eight 1 cm thick slices were removed from this 50 cm long core section (one each from top and bottom, as well as at the six intervening gaps).

Plate 16. Landscape study images
Plate 17. Latest installed exhibit at Pasimbahan-Magsanib site; exhibit staged with bamboo frames and arranged in a way that they do not capture the eye of the visitor as they enter the rockshelter, thus not competing with the beauty of the rock formation; only when they walked further in will they notice the exhibit.
Check plate number
APPENDIX 1: NATIONAL MUSEUM AUTHORIZATION
SPECIAL AUTHORIZATION FOR LAND ARCHAEOLOGICAL EXPLORATION AND/OR EXCAVATION

This authorizes VICTOR PAZ, Ph.D., University of the Philippines Archaeological Studies Program/ National Museum Research Associate to conduct archaeological excavation in the Municipality of El Nido, Palawan Province from March 29 to May 12, 2012. This undertaking is in accordance with R.A. 4846, as amended by P.D. 374 “Cultural Properties Preservation and Protection Act” and by R.A. 8492 “An Act Establishing a National Museum, providing for its permanent home and for other purposes”.

This authorization complies with the provisions of Section 12, of Presidential Decree 374 wherein it clearly states “It shall be unlawful to explore, excavate, or make diggings on archaeological or historical sites for the purpose of obtaining materials of cultural or historical value without the prior written authority from the Director of the National Museum. No excavation or diggings shall be permitted without the supervision of an archaeologist certified as such by the Director of the National Museum, or of such other person who in the opinion of the Director is competent to supervise the work, and who shall, upon completion of the project, deposit with the Museum a catalogue of all the materials found thereon, and a description of the archaeological context in accordance with accepted archaeological practices”.

Authority granted at the National Museum, Manila, Philippines, on March 07, 2012.

HEAD OFFICE:
Tel. No. 122-3221
122-3242
122-3259
Fax No. 122-3256
E-mail: nmuseum@nmut.net

APPENDIX 2
SURVEY OF OTHER ARCHAEOLOGICALLY SIGNIFICANT AREAS IN THE ILLE KARST TOWER

Emil Robles

The karst tower of Ille is well known for its archaeological importance. Aside from the famous site with the same name, other archaeologically important areas have been seen throughout the tower which can be seen if one does the usual climb to the summit for the view. This report describes the attempt to record, via Global Positioning System (GPS) and photographs, other archaeologically important areas most of which have been discovered by the team in previous seasons but have not been recorded. The Tonio Cave and Tultok ng Ille have already been recorded and are included in the map. This survey focused on the western part of the karst tower. For the sake of consistency, the Ille platform shall be called 'Ille' here and the other areas are given different labels.

Inside Ille Cave

A number of significant archaeological areas have been discovered in Ille cave and these were mapped by the author along with one of the locals Jojo Sugbo in 2010 (ASP). The midden inside the cave has been known to be redeposited from a rockshelter further on top of the tower which has collapsed (see Ille B). Shell ornaments, ceramics and human remains have also been recovered from many areas inside the cave.

Ille B

This rockshelter is located at the left side of the trail to the summit. It is not very visible from the trail because of the rockfall that covers it. It can be accessed by climbing the rockfall. The surface of this rockshelter has midden remains composed of shells, animal bones and rockfall. The southern part of the midden has collapsed, redepositing archaeological remains inside the cave. This rockshelter can actually be accessed via treacherous climb inside the cave with a couple of tree roots to help the climb.

Ille Crevice

There is a very distinct crevice that traverses the whole of the Ille tower. This can be clearly seen from the trail to Pasimbahan. This crevice runs northwest-southeast. The southeastern part of the crevice extends down to Ille cave which can be viewed if one climbs the large rocks in the south eastern part of the cave. Sediment deposits with shells are found in the northwestern part of the crevice. This can be accessed via the trail to the summit heading west before the vertical climb. One has to climb and descend some rock fall which has covered the entrance. The crevice is around 30 meters in length and the which varies from 2 to 3 meters in the area. Upon preliminary observation of the surface, only shells were found on the surface and
no pottery or other types of archaeological materials were observed. The formation of a relatively large stalagnite-stalactite between the crevice suggest a relatively early date for the crack event.

Ille C

This area is around 20 meters north of the opening which can be seen at the left side after the vertical climb going up to the summit. The materials are composed of shells and cobbles of sandstone, basalt and other types probably coming from the river because of their rounded/sub-rounded shapes. These materials are not natural in Ille tower and thus were probably transported by humans.

Ille D

This rockshelter is also obstructed by rockfall. A significant amount of shells can be seen in between the rocks.

Ille E

This is a cave in the western part of the tower which can be accessed via the rice paddy and stream west of Ille. The archaeological materials can be found inside the cave and were probably redeposited from higher up the tower via cracks and crevices. The materials include animal remains, shells and earthenware sherds.

Ille F

This is a small rockshelter which is mostly covered with rockfall but below these is a deposit of shells similar to the other areas described here. The area can be accessed by climbing the rockfall area west of the Ille platform.

Discussions

This survey shows the whole of the Ille tower is significant in terms of archaeology and that the use of the site is not only confined in the platform where the bulk of the archaeological excavations have taken place. In terms of excavation possibilities, most of the sites mentioned are mostly covered with rockfall and it would be difficult logistically to carry out a proper archaeological investigation except for the Ille crevice. A relatively large area of sediment deposit is still intact in the crevice which is possible for excavation. The presence of shell remains comparable to the shell midden in Ille and the absence of any form of pottery on the surface would suggest a mid-Holocene date to the deposits here.

Images of within Ille tower
UPDATE ON THE ZOOARCHAEOLOGICAL ANALYSIS
AND RADIOCARBON DATING OF PASIMBAHAN CAVE

Janine Ochoa

Preliminary quantification and analysis of the Pasimbahan Cave vertebrate assemblage reveal the presence of many of Palawan’s extant mammal and reptile species such as those described from Ille Cave (Fig. 1). The deepest and oldest accumulations of fossils are found in two major aceramic deposits. The first and most widespread across the site is a midden layer consisting of guano-rich dark gray to black silt (Fig. 2 and 3; Contexts 301, 309, 349, 352, 408). This aceramic ‘dark’ midden deposit contains numerous bivalve shell remains and the fragmentary bones of pig, macaques, deer, squirrels, turtles, and monitor lizards. Natural death accumulations of rodents and bats are also present. A few bird remains have also been identified so far, including several heron (Ardeidae sp.) bones in the deep midden deposit (Context 408). The other group of deposits comes from Trenches A and B, where several pits, hearths and accumulations of shell and bone have been uncovered (Fig. 2).

Figure 1. List of hunted taxa from Ille and Pasimbahan Caves; *some domestic dog remains from Ille may have been interred (Ochoa 2005); **extirpated/extinct on Palawan Island.

<table>
<thead>
<tr>
<th>Age</th>
<th>Taxon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Late Holocene</td>
<td>Cyclence dentata</td>
</tr>
<tr>
<td></td>
<td>Crocodyles imbricatus</td>
</tr>
<tr>
<td></td>
<td>Varanus antiquus</td>
</tr>
<tr>
<td></td>
<td>Psammodactylus lanka</td>
</tr>
<tr>
<td></td>
<td>Macaca fascicularis</td>
</tr>
<tr>
<td></td>
<td>Macaca sylvanus</td>
</tr>
<tr>
<td></td>
<td>Hylochilus nigriventer</td>
</tr>
<tr>
<td></td>
<td>Sandalodon sp.</td>
</tr>
<tr>
<td></td>
<td>Myotis rumata</td>
</tr>
<tr>
<td></td>
<td>Canis familiaris*</td>
</tr>
<tr>
<td></td>
<td>Panthera tigris</td>
</tr>
<tr>
<td></td>
<td>Ponerurus bengalensis</td>
</tr>
<tr>
<td></td>
<td>Amblygnathus trivittatus</td>
</tr>
<tr>
<td></td>
<td>Mycteria niger</td>
</tr>
<tr>
<td></td>
<td>Herpetes javanicus</td>
</tr>
<tr>
<td></td>
<td>Pecculus bilharuri</td>
</tr>
<tr>
<td></td>
<td>Pecculus hemaphorhoides</td>
</tr>
<tr>
<td></td>
<td>Viverra tangalis</td>
</tr>
<tr>
<td></td>
<td>Ahaetulla pallasii</td>
</tr>
<tr>
<td></td>
<td>Rusa sp. **</td>
</tr>
</tbody>
</table>

ILLE

PASIMBAHAN
Although quantification is still in progress, one familiar pattern already stands out in the Pasimbahan bone assemblage: the pig is the dominant large mammal prey, and deer remains are scarce throughout the archaeological sequence. Pasimbahan is located less than 3 kilometers from Ille within a very similar karst landscape, suggesting that ancient foragers were unlikely to have encountered vastly different environments at the two cave sites. At Ille, the terminal Pleistocene large mammal fauna is dominated by deer, with an increasing reliance on pig as cervid populations diminished through the mid-Holocene. Small deer (*Axis*) remains are present nonetheless throughout the Pasimbahan stratigraphic sequence in very small quantities, including in the younger layers associated with pottery. In Trench B for instance, two stratified midden remains from the upper layers - Context 64 and 71 - contain some deer remains (Fig. 4.3).
Material associations of certain Pasimbahan layers signify their probable antiquity. For instance in Trench A and B, aceramic layers have been found with chert and obsidian flakes. These contexts are stratigraphically below context 339. The ‘dark’ shell midden deposits distributed across several trenches is also aceramic and is dominated by pig remains. Biostratigraphic correlation with the well-dated Ille assemblage points to the mid-Holocene as the maximum age of these dark midden deposits.

To test such hypothesis and obtain a secure temporal anchor for the site, radiocarbon dating material was sent to the Waikato Radiocarbon Dating Laboratory (University of Waikato) in New Zealand. The zooarchaeological analysis and radiocarbon dating programme was funded by an Outright Research Grant from the UP Office of the Vice Chancellor for Research and Development. Six dates were procured from a total of 8 samples sent to and processed in the laboratory. Two dates were from bone, one from shell and three from charcoal. The following table lists the calibrated 14C dates for the site:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wk-34844</td>
<td>IV-2007-Q-1932</td>
<td>3401 +/- 26 BP</td>
<td>B</td>
<td>71</td>
<td>Pig teeth</td>
</tr>
<tr>
<td>Wk-33712</td>
<td>IV-2007-Q-2012</td>
<td>4333 +/- 25 BP</td>
<td>Trench C</td>
<td>309</td>
<td>Deer mandible fragment</td>
</tr>
<tr>
<td>Wk-33716</td>
<td>IV-2007-Q-1541</td>
<td>4697 +/- 25 BP</td>
<td>Trench C</td>
<td>309</td>
<td>Chicoreus capuchinus shell</td>
</tr>
<tr>
<td>Wk-35999</td>
<td>IV-2007-Q-2270</td>
<td>7793 +/- 25 BP</td>
<td>B</td>
<td>441</td>
<td>Charcoal</td>
</tr>
<tr>
<td>Wk-35495</td>
<td>IV-2007-Q-881</td>
<td>7590 +/- 25 BP</td>
<td>B</td>
<td>425</td>
<td>Charcoal</td>
</tr>
<tr>
<td>Wk-34845</td>
<td>IV-2007-Q-2151</td>
<td>9442 +/- 46 BP</td>
<td>B</td>
<td>428</td>
<td>Charcoal</td>
</tr>
</tbody>
</table>

The dates confirm the biostratigraphic correlation for a mid-Holocene date for the aceramic ‘dark’ midden deposits from Trench C. Context 71 is a midden deposit that also contains a very small number of small deer (Axis) and hence this provides a temporal association for the late Holocene presence of the extirpated Calamian hog deer. The dates from charcoal indicate an early Holocene assignation for the aceramic layers below context 339.
Appendix 4

<table>
<thead>
<tr>
<th>Burial count</th>
<th>Context No.</th>
<th>other label</th>
<th>represented bone/elements present in situ</th>
<th>portions present at time of analysis</th>
<th>bone(s)</th>
<th>sex</th>
<th>commingling</th>
<th>other remarks</th>
<th>zero positive level (BDP)</th>
<th>other remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>83</td>
<td></td>
<td>skull, left ribs</td>
<td>2001, 2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>695</td>
<td>B3</td>
<td>skull, L scapula, clavicle, ribs</td>
<td>2003, 2004</td>
<td>young adult</td>
<td>male</td>
<td></td>
<td>skull, left shoulder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>83</td>
<td>legs</td>
<td>skull, L scapula, clavicle, ribs</td>
<td>2004, 2007</td>
<td>adult</td>
<td>undetermined</td>
<td>lower extremities</td>
<td></td>
<td>46?</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>55</td>
<td></td>
<td>skull on wall</td>
<td>2004</td>
<td></td>
<td></td>
<td></td>
<td>skull on wall</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[1] may not be a burial; zero positive excavation data pertaining to antemortem; bones or assemblage examined labelled as Context 55 is composed of at least two adults and one child/infant based on three ulnae.
12. REFERENCES

Balbaligo, Y. 2009. 'Notes on the 2008 tradeware ceramics from Ille Cave, Palawan, the Philippines '. In Test pit, 14: 15-16.

Balbaligo, Y. Forthcoming. 'Preliminary report on the earthenware pottery from Ille Cave and Rockshelter, Palawan, 2004-2008'. In Hukay – Journal for archaeological research in Asia and the Pacific.

Eusebio, M. S. 2006. 'Notes on the Earthenware Jarlet from the West Mouth'. In Test Pit, 8: 28.

Terminal Pleistocene to mid-Holocene occupation and an early cremation burial at Ille cave, Philippines. *Antiquity* 82(316): 318-335.

