<table>
<thead>
<tr>
<th>Title</th>
<th>Palawan Island Palaeohistoric Research Project: Report on the 2008 Dewil Valley Field Season</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors(s)</td>
<td>Paz, Victor; Ronquillo, Wilfredo; Lewis, Helen; et al.</td>
</tr>
<tr>
<td>Publication date</td>
<td>2008-09</td>
</tr>
<tr>
<td>Publisher</td>
<td>Archaeological Studies Program, University of the Philippines and National Museum of the Philippines</td>
</tr>
<tr>
<td>Item record/more information</td>
<td>http://hdl.handle.net/10197/7225</td>
</tr>
</tbody>
</table>
Palawan Island
Palaeohistoric Research Project
Report on the 2008 Dewil Valley field season

Victor Paz, Wilfredo Ronquillo, Helen Lewis, Philip Piper, Jane Carlos, Emil Robles, Vito Hernandez, Taj Vitales, Janine Ochoa, Tara Reyes and Hermine Xhaufair

Archaeological Studies Program
University of the Philippines

National Museum of the Philippines

2008
ACKNOWLEDGEMENT

The members of the project would like to acknowledge the Chancellor of UP Diliman, Dr. Sergio Cao, The National Museum of the Philippines under the leadership of Director Corazon Alvina, Barangay Captain Armando Abis of New Ibajay and Mayor Leonor D. Coral of El Nido, and the Provincial Government of Palawan.

This project has benefited tremendously from the support of the following: The Coral Bay and Rio Tuba Nickel Mining Company, The Solheim Foundation for Archaeological Research, Nido Petroleum Limited, Petro Energy Resources Corporation, and the Philodrill Corporation. The team also would like to especially thank Anthony Ferrer for all the valuable assistance he has given towards the success of this season’s work.

We would also like to thank the good people of New Ibajay for helping us during the excavation period at Dewil valley, especially the family of Mrs. Herminia Libudan, and Mimi Cabral. From the town of El Nido, many thanks to the local government, especially its tourism officer, Arvin Dela Costa. Our gratitude also goes to Mariglo and Angelo Laririt for their support, and Cely Dangan, her family and her Laly and Abet staff - our base in town.

At the ASP, we acknowledge the help of Aida Tiama, Digna Jacar, Arcadio Pagulayan and Danilo Galang.
CONTENTS

Acknowledgment ... 1
List of Figures .. 3
List of Plates .. 3
Appendix .. 4
1. Introduction .. 5
2. Objectives ... 5
3. Palaeohistoric work in northern Palawan .. 6
 3.1 Background on the work done in the Dewil valley .. 10
4. Methodology .. 13
 4.1 Excavation ... 14
 4.2 Survey ... 14
 4.3 High resolution recovery of finds .. 14
 4.4 Public archaeology initiatives ... 14
5. Results .. 15
 5.1 Ille excavation ... 15
 5.2 Pasimbahan excavation ... 18
 5.3 Survey ... 24
 5.4 Exhibit mounting .. 24
6. Discussion ... 25
 6.1 Understanding the sequence of cultural deposits at Ille ... 26
 6.2 Understanding the archaeology at Ille ... 27
 6.3 On the Pasimbahan site ... 28
 6.4 Public archaeology ... 30
7. Summary ... 32
8. Recommendations and Prospects ... 32
9. Members of Team .. 34
10. References .. 35
11. Figures ... 38
12. Plates .. 51
13. Appendices .. 66
LIST OF FIGURES

Figure 1. General location map of project area
Figure 2. General location map of landscape features
Figure 3. General plan of Ille site
Figure 4. East Mouth Trench, East Wall with deep trench profile
Figure 5. West Mouth, West Wall profile and part of the West Mouth Connection Trench
Figure 6. Ihian Trench profiles
Figure 7. Pasimbahan site plan
Figure 8. Pasimbahan site, Trench A, south and west wall profiles
Figure 9. Pasimbahan site, Trench B, east wall profile
Figure 10. Pasimbahan site, S1W5, east and north wall profiles
Figure 11. Pasimbahan site, Trench C, east and west wall profiles
Figure 12. Pasimbahan site, Midden 2, southwest profiles
Figure 13. Pasimbahan site, N2E5 extension profiles and the stratigraphic matrix inside the cave
Figure 14. Pasimbahan site comparative matrix

LIST OF PLATES

Plate 1. The sites, base camp, and the team
Plate 2. Work at Ille site
Plate 3. Work at Pasimbahan site
Plate 4. Ille artefacts
Plate 5. Sample of Ille earthenware pottery
Plate 6. Sample of decorated pottery from the West Mouth Trench, 26 cm DP, context 705
Plate 7. Large fragments of pots found inside pit, context 1517, at the West Mouth Trench
Plate 8. Ille metal and other artefacts
Plate 9. Lithics and beads from Pasimbahan
Plate 10. Pasimbahan beads
Plate 11. Pasimbahan pottery
Plate 12. Public archaeology in El Nido town and Pasimbahan site
Plate 13. Public archaeology at Ille
Plate 14. Curated exhibit at Ille site
APPENDICES

Appendix A. Authorization/Permit from the National Museum for 2008.

Appendix B. “Cultural Properties Deputy” document given to individuals tasked to safeguard the Ille archaeological site.

Appendix C. Summary list of metal artefacts from Ille
1. INTRODUCTION

This research initiative coming out of the Archaeological Studies Program is called “The Palawan Island Palaeohistoric Research Project”. For the season of 2008 work focused on the Dewil valley, Municipality of El Nido. The various research interests of the Archaeological Studies Program (ASP), The Solheim Foundation, and the National Museum of the Philippines were further advanced by this latest season. Similar to previous years, specialist collaborators from the Philippines, Europe and North America were involved in the project. The research concerns of our collaborators dove-tailed mainly through each specialist’s own research interest with that of the ASP project. This season saw the participation of a number of graduate students coming from France, Italy, Greece, Belgium, Ireland, and Azerbaijan.

The field season for this year covered the entire month of April, and multifaceted post-exavcation work continues as of writing. Authorization to conduct the project was granted by the National Museum through Director Corazon Alvina. Attempts were made to get clearance from the Palawan Council for Sustainable Development. The office of the Mayor of the municipality, under the leadership of Mayor Corral was very supportive of the continuation of the project and permission was requested directly from the Barangay administration under the leadership of returning New Ibajay Barangay Captain Armando Abis, who was the Barangay Captain in 1998 when the valley was first surveyed.

2. OBJECTIVES

The objectives set for this season were:

1. To continue the excavation at the base of the Ille tower karst, and continue improving the recording system of the excavation in the Dewil valley; specifically, excavate deeper at the East mouth sector, Ille site, to pursue possible older archaeology beyond the sterile natural layers encountered in the last season.

2. Expand the excavation at Pasimbahan site and understand the relationship of the site's archaeology to Ille;

3. Continue searching for new archaeological sites, and improve the recording of known sites around Dewil valley and in the island of Imorigue;
4. Continue improving the community based heritage initiative of the project at New Ibajay, and help in the heritage management program of the municipal government of El Nido.

As in previous seasons, there was no illusion that these objectives could be comprehensively answered at the end of this season. It was however the goal of the 2008 season to move the research significantly towards this direction.

3. PALAEOHISTORIC RESEARCH WORK IN NORTHERN PALAWAN

The history of archaeological research in Palawan is not geographically well distributed. There is much more work concentrated on the northern part of the island compared to the southern part. The middle of the main island has some recorded archaeological work done throughout the 20th century, but to date, the most studied parts are associated with Lipuun point in Quezon Palawan and the municipality of El Nido, in the northern part of Palawan. A large part of the main island, and the associated smaller islands around it, are totally unknown to archaeological and historical science studies. While archaeological research has a relatively long history in northern Palawan, starting in the 1920s, there has never been a sustained research effort matching the initiative now seen at the Dewil valley. It is instructive to see what has been done in the past to illustrate the significance of the current work.

In the 1920s, the archaeologist Carl Guthe (1927,1929, 1935,1938) pioneered a Philippine wide material culture survey. Guthe specifically explored northern Palawan as part of his project/objective to collect as much ethnographic and archaeological materials from the Philippines for the University of Michigan. In the process he recorded archaeological sites in the vicinity of El Nido (see also Solheim 2002). Guthe’s work however never went beyond recording and reporting what he surveyed and collected. There was no attempt to earnestly do a synthesis derived from the vast collection of material culture he gathered and brought back to the United States. Specifically, the Palawan data was not utilized to better understand the nature of human culture transformation through time.

In the 1960s, Robert Fox (1970) headed a National Museum team that continued Guthe’s work in northern Palawan; new sites were added to the list of sites first described by Guthe. A good number of these sites were from small islands located in Bacquit Bay. Of the sites Guthe surveyed, there were a few that National Museum excavated. One such site excavated in the 1960s was Leta-leta cave. Located in Lagen island, in the bay of Bacquit; the conclusion of the 1960s excavation led Fox (1970) to confidently describe the archaeology as a “Metal Age” burial site. The excavation was highlighted by the recovered unique earthenware jar with a
mouth fashioned to look like a yawning/shouting person. This unique jar is now considered a national heritage artefact and displayed in the National Museum in Manila.

During Fox’s stay in El Nido, he did his survey with the help of local knowledge coming from sympathetic and enthusiastic residents of El Nido. The most significant of the people who helped were the Fernandez family. Mrs. Gloria Fernandez’s interest in archaeology led to the National Museum deputizing her to monitor and continue the exploration of the area for new archaeological sites. Way after the end of the National Museum initiative in northern Palawan, Mrs. Fernandez continued her reports to the National Museum of new archaeological sites. Some of these sites were personally explored by Mrs. Fernandez or were brought to her attention by people who witnessed pot hunting activities. Gloria Fernandez is likely the source for the short reference of Fox in his work stating “reliable reports of caves containing cultural materials in the Diwil (sic) and Taytay areas…” (Fox 1970:179). The information shared by Mrs. Fernandez played a significant role in the 1998 El Nido survey, though, more recently an eyewitness account was recorded by the current project that Fox personally inspected the Makangit karst in the Dewil valley. Gloria Fernandez was responsible for directing the 1998 survey team to Dewil valley. The survey made at the valley consequently led to the discovery of the Ille site – an unrecorded site near known sites within the valley, such as, “Star” and “Makangit”.

In the 1960s to the 1980s, after the initial interest on sites such as Leta-leta waned, northern Palawan was for all intents and purposes relegated to the sideline of archaeological research. This was the case mainly because interest was focused on central Palawan, which was brought about by the recovery of fossilized human remains in the Tabon cave. These human remains are the earliest secured evidence of modern human existence in the Philippines (Fox 1970; Dizon 2003). By the 1970s, northern Palawan could also not compete in priority with the work pursued in the Cagayan valley in northern Luzon. Consistent with the research direction of the time, the initiatives in the Cagayan valley were mainly focused on the discovery of places of evidences of pre-modern human existence in the Philippines (Fox & Peralta 1974).

While there was another initial survey done by the National Museum in 1990 on the vast landscape of El Nido and Taytay (Aguilera 1990), a sustained archaeological interest only returned to northern Palawan in the late 1990s through the initiatives of Non Government Organizations (NGO) like the Philippine Rural
Figure 1. General location map of project area.
Reconstruction Movement (PRRM), and the Southeast Asian Institute of Culture and Environment, Inc. (SEAICE). These initiatives were closely coordinated with the National Museum of the Philippines and Ten Knots - a private company that managed a group of resorts located in El Nido. The survey done in 1998 resulted not only in improving the data on previously reported sites (Paz 1998; Jago-on 1998), it also resulted in the rediscovery of the high research potential of Dewil valley. Within the Dewil valley the Ille tower karst captured the imagination of pioneer archaeologists Wilhelm G. Solheim II, who was part of the 1998 survey team. Solheim was instrumental in the National Museum allotting personnel to start the Ille excavation. Within the same year of the survey the Ille site was mapped (Mijares et al. 1998) and a test excavation initiated.

It is not difficult to explain why a limestone tower such as Ille was initially missed by Fox and the Fernandez teams – it is a relatively small karst away from the usual pathways used in the past by people passing through the dense forest vegetation of the valley in the 1960s. The karst was not easily visible and for an initial survey, reaching the Makangit karst formation, the nearest to the traditional pathway from the town to Dewil, was already a daunting task, which may have limited the scope of the survey. When the 1998 survey took place, the valley was already cleared of its primary forest vegetation and a road system was newly opened, allowing for a different approach to the valley, and made the Ille karst much more accessible than before.

Excavation at Ille started in 1998 with a 1.87 m x 1m (site grid location of N3W12) test pit at the front of the West mouth; time, manpower constraints, the presence of human burials, and large buried boulders limited the depth of this excavation to less than a metre (Hara & Cayron 2001). The first full scale excavation was done in 1999 (Solheim 1999, de la Torre 1999, Bautista 1999) with four excavation areas opened, following the 1m x 1m grid previously established across the platform. The excavation concentrated on grid squares N3W12, N4W12, N2W12, N3W13, and N2W13. Several human burials were excavated in the process as well as a shell midden. The richness of the archaeology slowed down the efforts of the team to get to the deeper cultural deposits.

In 2000, excavations continued at Ille with the previous West mouth excavation reopened and excavated deeper (Jago-on 2000; SEAICE 2000a, 2000b). The excavation did not manage to go much deeper than the previous season due to a large rock fall that occupied most of the space of the excavation area. Work continued at Ille in 2002 (Swete Kelly & Szabó 2002; Kress 2002), excavating with equal emphasis on both the East and West mouth fronts of the cave’s platform. The 2002 season ended with substantial progress in the understanding of the archaeology at Ille. There was better evidence at hand to conclude that a shell midden layer existed in both the West and East mouth excavation areas; more burials and artefacts were uncovered similar to the results of the previous excavations; more importantly, a series of tight radiocarbon dates came out for the stratigraphic sequence at the East mouth excavation area. The dates gave an exciting glimpse of the deep time depth of the cultural deposits at Ille. There was a consensus amongst specialists in the understanding that there were still much potential for archaeology to be older than the 10,000 years ago
mark indicated by the 2002 excavation (see Szabó et al. 2004). Almost simultaneous with the report of the 2002 season, all previous excavations were further synthesized in a status report written by Prof. Wilhelm Solheim (2004) for the Solheim Foundation. In this report, insights on the possible fate of Burial No.1 to 4 at the West mouth were expanded. It was postulated at this time that we may be looking at the remains of massacred individuals hurriedly buried. The Solheim report also reiterated a call for the Philippine archaeology community to commit to a long-term research initiative at Ille. It is within this exciting and intriguing background context that the Palawan Island Palaeohistoric Research Project, which was concentrating its research at southern and central Palawan, shifted its efforts at the Dewil valley.

3.1 BACKGROUND ON THE WORK DONE IN THE DEWIL VALLEY

Palawan is the largest westernmost island of the Philippines. At the northern region of the main island is the valley of Dewil. The valley is nine kilometers northwest of the town of El Nido, which lies between 11º 00’ to 11º15’ North and 119º29’ East. It is the town that governs New Ibajay, the settlement located inside the Dewil Valley. From El Nido, Dewil valley is 9 km to the northwest, and the Ille tower karst is 14 km away. It takes around 45 minutes by jeepney to reach New Ibajay from El Nido. The barangay of New Ibajay is approximately 235 km North of Puerto Princesa, the capital of the province of Palawan. The Dewil valley is approximately seven kilometers long and four kilometers wide. New Ibajay has a Global Positioning System (GPS) reading of 11º11’46" North and 119º30’19" East. It has a population mainly composed of late 20th century settlers, originally from the province of Aklan, in northern Panay Island. The people of the barangay are now familiar with the presence of research teams working in the valley. It is however still a challenge to protect archaeological sites located inside the Dewil valley from destructive treasure hunting. Equally challenging is the ongoing advocacy of our research group to inform the local population about the importance of the archaeological sites and involve them in the heritage advocacy that has far reaching significance beyond the local communities of El Nido.

The Ille karst tower is a short walk northwards from the main road of the barangay. It is approximately 75 meters high from the base. A cave network hollows the tower with at least 3 mouths located at its base. The main entrance to the cave is composed of two mouths leading to a single chamber. There is a large platform in front of the cave mouths and an overhang that extends to about 10 metres. Thick vegetation surrounds the karst tower, which creates a shaded and cool environment around the platform of the cave. The karst tower formations in the Dewil valley are surrounded by islands of thick vegetation, which in turn are surrounded by rain-fed rice fields and vegetable gardens tended by people living in New Ibajay. From the Ille tower, the Sibaltan Bay is approximately four kilometers away to the East. The main Dewil River sits south of Ille and runs eastward towards Sibaltan Bay. The river is mainly shallow with a few tributaries. During the rainy season, the waters can turn torrential. Near the Ille karst tower, what are mainly dry ponds and streams during the dry months fill up with water and turn into fast running streams during the wet months of the year.
The research and heritage work at Dewil has accumulated much information throughout its years of existence. In 2004 the excavation of Ille site was expanded ten folds. As a result much more clarity was achieved in understanding the archaeology at both the East and West mouth trenches. More human burials were uncovered and recovered – a trend that would be constant for all seasons of work at Ille. It was also established that there was no archaeology in the open fields in front of Ille, based on the negative results of test excavations done in the area. In 2005 more artefacts were recovered at Ille in the form of pottery design and nephrite ornaments that reinforced the Mainland Southeast Asian connection of the site. More archaeological sites were also discovered and surveyed, especially in the limestone karst formations of Makangit, and at the western face of the Ille tower. In 2006 the excavation at Ille further expanded to include areas inside the cave itself. There were more artefacts recovered and the understanding of the stratigraphy became clearer. There were also significant radiocarbon dating results, which supported previously established time depths for the cultural deposits in the site. Most importantly, the first cremation burial was uncovered at the East mouth trench. A first time survey of Imorigue island was made as well as a further survey of the western limestone karst formations in the valley such as Star and Diribungan towers. The 2007 excavation saw the recovery of more cremation remains as well as tiger bones, and the Pasimbahan site was excavated for the first time.

The materials from all the Ille excavation seasons are mainly stored in the facilities of the Archaeological Studies Program in Diliman, where further analysis is currently in progress. The continuing post-excavation work on the Dewil valley materials has already resulted in the publication of several studies. The challenge of initially mapping the site was reflected on by Pawlik (2004), which resulted in the creation of the first detailed maps of the platform. The human teeth from burials excavated in the first two seasons were initially studied by Medrana (2002). The teeth study gave us a better understanding of the ages and condition of health of some of the individuals buried at the platform – this was the most that could be done at the time of publication, working on badly preserved skeletal remains recovered from the first three seasons of excavation. This study can be further improved with more detailed work done on the better-preserved human remains from the last four seasons of excavation. From the various shell remains excavated from Ille an initial study managed to determine most of these shells to species level and initiate a discussion on subsistence (Faylona 2003, 2006). The shell artefacts from Ille also contributed to the dissertation research of Dr. Katherine Szabó from the Australian National University (Szabó 2004), and parts of this study are included in upcoming publications by Szabó. From another perspective, the discovery of a terracotta turtle figurine from Sinilakan, another Dewil valley tower karst, allowed for reflection on the significance of turtles in the cosmology of early inhabitants of the valley (Cayron 2004). Two of the polished stone adzes found at Ille were subjected to useware analysis by Pawlik (2006); interesting insights were revealed on the technology and production/use processes of these artefacts. A more recent attempt was also made to infer on the possible meaning of a cluster of artefacts from a grave more than 6000 years old at Ille (Paz & Vitales 2008). It was argued that they are meaningful, similar to clothing amulets observed in ethnographically extant cultures in the Philippines.
There is also an article published by Ochoa (2005) analysing the juvenile dog remains found at the West mouth trench at Ille. She situated this find within a large view of dog domestication. Ochoa (2008) also studied the animal remains from Ille for her Masters in archaeology at the University of the Philippines, where she argued that the change of frequency of deer and pig remains through time reflected the change in the nature of the immediate environment and accessibility of the animals. The Ille excavations also became a starting point for a larger discussion on the work of Robert Fox, the Negritos, and the peopling of the Philippines; hypothesizing mainly on the implications of initial observations of oseological features amongst the human remains assemblage from Ille (see Kress 2006). There is also an article written looking at the possible implication of a specific cluster of artefacts from burial 727 at Ille.

Some recent publications in high impact journals by members of the research team manifest the fruits of the continuing post excavation work of this long term project. A long sequence of radio carbon dates confirms a sequence of cultural deposits that range from at least 11,000 BP to 200 years ago (see Lewis et al. 2008). This is also the first time that an archaeological site in Palawan has been dated in a long and tight sequence of laboratory generated dates. The recovery of tiger bones (*Panthera tigris* (L.)) from the site was also confirmed through extensive post excavation work, which included consulting the top specialists in the field and comparing the bones to reference collections in the United States (Piper et al. 2008). These finds established the easternmost extent of the tiger in Island Southeast Asia. It has also given insight on the interplay between vegetation change, sea level rise, and species extinction in an island environment.

The study at the Dewil valley also benefits from parallel research by Quaternary geologists from the National Institute of Geological Sciences at UP (see Maeda et al. 2003). The combined analysis of data collected from the study of uplifted tidal notches, sediment cores, and coral reef terraces may allow for an understanding of sea levels and possible climatic conditions at the time the Ille tower was utilized as a burial and habitation site. As of writing, there are many more works being written on materials and questions associated with the study that is on-going in the island of Palawan. There is also a pioneering study on the use of guano deposits as proxy evidence for local and regional vegetation change, as well as a dating proxy for archaeological sites in the area. This work started with deposits from the Makangit tower inside the Dewil valley (Bird et al. 2007).

4. METHODOLOGY

Several methods were utilized to address the research objectives of this project.

4.1 EXCAVATION

This is the primary method for this research. For this season we excavated specifically at Ille site (IV-1998-P), and at Pasimbahan site (IV-2007-Q). The excavation method employed was a contextual excavation approach (see Harris 1989) consistent with the previous excavation methods at Dewil since 2004. This
season’s work at Ille continued the excavation that was started in 1999, continued in 2000, 2002, 2004 to 2007. The work at Ille concentrated at the West Mouth section of the site and at the deep section of the East Mouth Trench. The backfill from previous excavations were taken out to expose the plastic lining left on top of the last exposed surface of the 2007 excavation. At the Pasimbahan site, excavation continued from last year’s work at the rockshelter and at the mouths of the two caves of the complex. At the end of the season all excavated areas were lined with plastic sacks and back-filled in anticipation of future seasons.

4.2 SURVEY

The survey method was done by applying informant work. From the areas pointed out by the informant, an ocular inspection was carried out on the known area and its surroundings. The survey of the Dewil valley continued as well as that of Imorigue Island.

4.3 HIGH RESOLUTION RECOVERY OF FINDS

It has been the aim of the excavation at Dewil to practice high resolution recovery of all possible evidence of past human activity, especially human-plant and human-animal interactions; there is a constant aim to understand both ecological and cultural patterns in the landscape. The matrix associated with known surfaces and features such as shell middens and hearths were subjected to flotation. The heavy fraction that remained after the wet sieving were sun-dried, sorted for biological remains and artefacts while at the field base. The light fraction samples from the flotation were brought back to the ASP laboratories for further sorting and analysis. Special interest was also given to the types of shell remains recovered from the site. All sediments above the shell midden layers not associated with hearths and pits were dry sieved. The sediments from the shell middens were completely floated and wet sieved. All context from the shell middens down to the lowest levels that were not hearths, pits or combustion features underwent wet sieving.

Consistent since the 2004 season, the fieldwork at the Dewil valley collected plant and animal remains at high resolution through the practice of dry sieving, wet sieving and flotation. At the same time, samples were taken when deemed necessary for pollen, starch, and phytolith analysis. There were also samples taken in blocks from open excavation areas for soil micromorphological analysis. And speleothems at the Pasimbahan site were sampled to investigate the time depth of its formation.

4.4 PUBLIC ARCHAEOLOGY INITIATIVES

In the effort to clearly share the scientific findings of the study to the general public living in Palawan, the installation of exhibits was made a priority objective since 2007. Technical cast/replicas of major artefacts found in Palawan were commissioned from the Archaeology division of the National Museum. These items were combined with short but informative text on what we know about Palawan archaeology and the place of
this body of knowledge in the overall history of humanity in the Philippines and the world. There where three locations earmarked for these exhibits: Puerto Princesa, El Nido town, and at the Ille site itself in New Ibjay, El Nido. The text for the city and town exhibits had a more general treatment of archaeology in Palawan, which included our work in the Dewil valley. The El Nido town exhibit had a special focus on the archaeology found within the town and Bacuit bay. The exhibit for Ille focuses on the findings generated from the site, which was then situated in the bigger picture of Palawan, Philippines and world history. All exhibits had bilingual text: larger font in Filipino and a smaller font text in English.

5. RESULTS

The following is a summary of results of the work done. A more detailed account will be included in the expanded report of the project.

5.1 ILLE EXCAVATION

The reports on this season excavation of Outlier Trench, the West Mouth Connection, West Mouth Extension, and the East Mouth Extension shall follow.

5.1.1 West Mouth Area

The excavation at Ille concentrated on the West Mouth section. The team went deeper in the West Mouth aiming to find deeper deposits that might be similar to what was exposed at the East Mouth. There are still significant gaps in the understanding of the stratigraphy and cultural sequencing of the trench that perhaps could be answered. Profiles were redrawn as well and records, especially the stratigraphic matrix was reexamined for a clearer understanding of the archaeology in the West Mouth trench. There is no consensus on what was revealed after the review of records and further excavation of the southern quadrants of the trench. There appears to be a large pit that covers this area. Much more thinking is needed to understand the reason for the existence of this feature.

5.1.1.1 West 16 Extension

The trench was extended westward to prevent an impending wall collapse due to a huge crack on the surface. N2W16 and N3W16 were opened and went about a meter deep just to stabilize the west wall. The first 60 centimeters of the N16 strip were highly turbated layers (c.1831, c.1834, c.1835), with pit features (c.1836, c.1837), mixed pottery sherds, human remains, shells, and other various artefacts. The first articulated burial uncovered in this trench was in N3W16 from 61-64 cm below LDP within the layer c.1838. The upper half of this juvenile skeleton (c.1842) was still on the unexcavated N4W16 so only half of the known skeleton was recovered. Other materials recovered within c.1838 were a Conus shell ring and a lingling-o made of green mica. At around 84 cm below LDP a skull was exposed (c.1848), probably from an adult female at N2W16,
the rest of the skeleton however was not found. Beneath c. 1838 was a mid reddish brown sediment (c.1856). At around a meter shell deposits began to appear in N3W16 (c.1867), which could be the first shell midden (c. 898). In N2W16 at approx. 110 cm, a whitish deposit (speleothem) was exposed (c.1868), which could be the extension of context 1500, which can be seen in the west wall of the main trench.

5.1.1.2 Deep Deposits at the North Half of the Trench

Excavation on the older deposits at the northern half of the West Mouth Trench continued exposing deeper deposits that could possibly be similar or contemporaneous with the deep deposits in the East Mouth. The sediments surrounding the boulder-filled northern area were cleaned, stripping off the remaining deposits from c.1626. Localized sediment deposits beneath c. 1626 (c.1840) and in between rocks (c.1839) were exposed. Context 1840 was a silty deposit with some snail shells and few animal bones. A tiger phalange was found in this context, around 187 cm deep as well as porcupine and reptilian bones. Other localized deposits were observed at deeper levels, some were in between boulders. At the N15 strip layers of older deposits were much clearer. A section in N5W14 was chosen for further excavation to reexpose deep deposits. The recognized layer/matrix beneath c. 1626 was labeled c. 1832, which is sediment-wise similar to the c. 806 in the East Mouth trenches. After removing some limestone cobbles and boulders and digging deeper, the section revealed an alternating sequence of gravelly-pebbly layer and clayey layer, somehow similar to the sequence uncovered in the deep hole of the East Mouth. Beneath c.1832 was c.1858, which is a clayey matrix. Chert and animal bones were found in this layer, some were in between and underneath the rocks. Underneath c. 1858 was another gravelly layer similar to c.1832 labeled as context 1860. Chert and some animal bones were also found, mostly near the surface of the layer. Underneath was a clayey deposit (c.1870) with few gravel inclusions. The deepest layer excavated for this season was context 1878, which is a gravelly layer. This sequence of deposits can also be seen from the north wall profile of the trench.

5.1.1.3 The Neolithic and Metal Period associated deposits at the Southern End

Excavation on the southern half of the trench continued with the aim of understanding the nature of having Neolithic and Metal Period deposits at deeper levels compared to most of the area of the trench. We focused on N2W14 where we continued to excavate context 1517 which was a mid reddish brown sediment. More pottery sherds were recovered within this context. Underneath c. 1517 was a gray patch (c. 1843) on the northwest portion of the square, and a dark silty sediment with concentrations of shells (c. 1844) on the northeast portion. Further excavation on these contexts yielded more materials such as pottery fragments and human remains. Some of the pottery fragments were found in concentration and belong to one vessel. Some of the most significant artefacts found in this square were a stone adze, a complete pottery pedestal base, and a *Melo* shell dipper; all were in context 1844. More pottery was found underneath the huge boulder at the north of the N2W14 (c.1550/c.1571). Beneath c. 1843 was a sediment similar to c. 1517, it was labeled c. 1850 wherein there were many animal remains that were recovered; 1844 still goes deeper. Beneath c.1850 and c. 844 was a rock layer labeled context 1871 – the deepest level reached for this season. No artefacts, so
far, were observed at this layer. At N2W15, excavation continued until the deeper deposits of c. 1626 and c. 1871 were reached. The depth in this portion reached around 320 cm from LDP.

The deposits in the southern end of the trench and the wall profiles indicated a very massive disturbance caused by a large pit that was dug in the entrance of the west mouth. It was believed that the huge boulders in the trench were part of the fill. It remains a mystery as to the cause/reason for this large pit excavation. On the other hand, another theory presented was that a huge rockfall might have pushed the Neolithic and metal period deposits almost a meter down creating massive disturbance and placing these said deposits on deeper levels, thus the presence of these materials on these levels. This needs to be investigated more. Unfortunately no datable material like charcoal were recovered in deeper deposits, however, soil micromorphological samples were obtained in contexts 1832, 1858-1860, and 1870. The recovery of more tiger remains confirmed more the presence of tigers in the Philippines (at least in Palawan) at around 11,000 bp.

5.1.2 Ihian Trench

For this season, the Ihian trench was further excavated to find out the depth and extent of context 1709 (midden). Context 1596 was taken out to uncover 1709. It was uncovered that c. 1709 was limited to N2W39, N1W39 and a few centimeters in N1W38. There is a thick concentration of 1709 from the South wall, thinning quite abruptly to the North wall. The midden sediments (c. 1709) were compact similar to c. 1596 but darker in color. In this deposit, we have found decorated pottery associated with the metal period, undecorated pottery, jar sherds, deer bones and teeth, pig mandible and teeth, human teeth, and some fragments of a macaque skull.

The exposed c. 1709 material were all taken out until the next layer was revealed. This layer, however was not excavated and given a number beyond the observation that it did not belong to the midden deposit already collected. Objective reached, the trench was closed, reaching almost a meter deep from the surface.

5.1.3 East Mouth

After the back fill from the 2007 season was taken out of most of the East Mouth trench, the surface and profiles of the trench were cleaned. The depth of the excavation started at 199 cm below DP at the western quadrants of the trench. The 2m x 2m deep sounding trench at the northeast quadrant was also opened and excavation commenced on the highly compact sediment at the bottom. The first in situ context exposed and removed was c. 336. Underneath this deposit was a thin spelaeothem layer (c.769) exposed in the squares W5 N1,2,3. Samples of this deposit was taken for U/Th dating (samples 2008/1, 2008/2 and 2008/3).

There was an interface context that was light greyish white silty sediment between 336 and 769 called c. 1359. Beneath the spelaeothem layer after the removal of c. 769, a mid yellowish brown sandy silt sediment was uncovered, where a few bones and a green chert flake was recovered (c. 1373).
The most significant finds for this area of the excavation were two features next to each other: a definite human cremation and a possible human cremation. These features were formed at the site just before and during the formation of the speleothem layer c. 769. The larger of these cremation features was labelled context 1358, uncovered in the square W5 N2 close to the West Wall. The matrix around the bones were darker than the rest of the sediments around it. Associated with this feature were fragments of human bones, mostly concentrated in the middle of the feature. The vertical shape of the feature was concave with the deeper and more concentrated material in the middle of the elongated deposit. Most of the fragmented bones in the cremation feature had transformed surfaces - dark in colour indicating an episode of burning. All the identified human remains underwent this burning episode. A few bone pieces came from animals, though, these bones were not transformed by firing. There were a few shell fragments and much fewer discernable fragments of charcoal. The implication of the presence of non-transformed animal bones, shells, and the scarcity of charcoal is that the burning process most likely happened not at the area where the materials were deposited at the East mouth trench. The smaller possible cremation feature was located directly south of c. 1358; labelled c. 1370, it had fewer associated bones compared to 1358. This cremation feature had identical characteristics as the bigger 1358 feature. Also associated with the 1358 cremation was a lighter beige sediment (c. 1374), and an orange speckled lighter beige sediment (c. 1378). Associated with c. 1378 was a small piece of obsidian flake, which looks like a debitage from a production process (W5 N2 X=16.5 cm; Y= 91 cm; Z=-224 cm). Underneath 1358 was a dark yellowish brown layer sediment with angular beige and blue stones. These stones seem to be associated with the boulder rockfalls buried in the platform, especially in the deep end of the trench. They are probably rounded fragments of this material.

In total, there are more than 50,000 artefacts recorded from Ille since the start of the excavations in 1998; broken down to around 25,000 ceramics, 23,000 shell and bone artefacts, 1,000 stone tools and 1,000 metal artefacts and other materials. There has been almost a hundred recorded human burials, excluding a minimum of 5, and a maximum of six cremations. Analysis of the cremations going on will determine with certainty the exact number.

5.2 PASIMBAHAN EXCAVATION

This was the second excavation season at Pasimbahan site. The first season was in 2007 when the site was first formally recorded as a result of a survey conducted as part of the Dewil valley research. Pasimbahan site (IV-2007-Q) is within Dewil valley, located at N110 12"881', E 1190 29"59'. The site is within the Magsanib district of Dewil, on the lower half of the southeast face of the large limestone karst called “Star”. In front of the current cave entrance are signs of ancient cave roof collapses, which created a long and tall (approximately 25 meters at highest point) rockshelter perpendicular to the main cave entrance.
The specific objectives for this season’s excavation at Pasimbahan were the following:

1. Continue the deep sounding excavation inside the cave to see if there are any old deposits of archaeology beyond the clayey natural deposits exposed last year (c. 80-90 cm deep from the surface).
2. Excavate Midden 2 and understand its deposition history better.
3. Open-up more excavation areas along the current rockshelter to look for older deposits and understand better the exposed shell midden (Shell Midden 1), which was partially destroyed by treasure hunters and was studied last year.

In total there were to date 1100 accessioned artefacts from the site: 500 lithics, 200 animal bones and shell artefacts, 300 ceramics, and 100 beads of various make and metal implements.

The grid for the site was reestablished using the same datum point set on top of the large rock fall in front of the cave entrance.

5.2.1 Trench A and B (S1W10 S1W9, S2 W10, S2 W9)

After cleaning the surface of the trenches, a light yellowish brown sandy silt surface was exposed (c. 50=58). This top layer was predominant from 205 cm to 211 cm below DP; a scattering of a few secondarily deposited cultural materials were also observed. Below c. 50 a mid yellowish brown sandy silt layer (c. 52) was exposed at 221 cm below DP. This deposit was limited to the northern quadrants of both trenches; a scattering of large stones and small boulder size limestone dominated this layer. Below c. 52, a relatively hard surface, light grayish brown sandy silt, was exposed (c. 51=60=61) evenly across the two trenches. The layer contained scattered human remains including disarticulated cranium fragments and mandible, limestone rocks, shells, animal bones (monkey teeth), and a few pottery sherds. The layer was also dipping westward, with the surface exposed roughly 112 cm below DP at the eastern end, and 254 cm below DP at the western end. The cultural layers above show signs that it may have contained scattered remains of secondary burials in jars, most likely using stoneware jars as represented by the fragments of glazed stoneware sherds in these contexts.

Large areas of the trenches experienced heavy bio-turbation below c. 51, e.g., the large root action at the southeast corner of trench B (c. 73). Below c. 51, at the northern quadrants of the two trenches, a shell midden dominates the area. Context 68 has a high concentration of artefacts; underneath is context 71, a comparatively dense concentration of shells and other artefacts, limited to the eastern quadrants of Trench B. Beneath c. 71 is a less dense concentration of shells (c. 64) limited to the northern quadrants of Trench B, and dipping steeply northwestward towards the rockshelter’s wall and crevice. Underneath c. 64 is the lowest part of the concentrated deposit of shells (c. 76); 306 cm below DP. Below the shell midden deposits is a mid reddish brown sandy silt deposit (c. 79) that has a steep angle westward that starts at the eastern quadrants of
Trench A. This was the last layer exposed for the season.

Below c. 51, older than the c. 68 shell midden was a very compact mid yellowish brown clayey silt layer (c. 57). This layer most likely was formed by water action which led to the movement, mixing and pooling of sediments as the matter drained along the lowest point of the large crevice along the rockshelter’s wall. A substantial period of time soaking in calcium carbonate rich water may have also helped in the formation of the hard compact clayey turbated layer. There were numerous artefactual materials embedded in the matrix of this sediment coming from different time periods, e.g. micro glass beads concentrated near some human bone fragments, modified Melo sp. shell and a few tradeware ceramics. Underneath c. 57, as revealed in a limited sounding at the southern quadrant of Trench A, is a less compact silty layer; exposed at 210 cm below DP. Excavations ended at this exposure in Trench A.

5.2.2 S1W5

A 2m x 2m excavation following the grid set for the site. The objective for this trench was to see if the deposit represented at Midden 1 extended eastward towards the cave mouth, and if the deposit of Midden 2 extended westward along the rockshelter. It was also aimed to excavate as deep as possible to see if there were older archaeological deposits in this part of the rockshelter.

The light yellowish brown, sandy silt, surface sediment (c. 53) dominated, except for the southwest corner where there was a water drip feature that created a surface of predominantly angular and semi-angular pebbles. There were also two recent combustion features on the surface as well as shell fragments that were likely secondarily deposited. Below the surface layer was a layer composed of sandy silt (c. 55). Beneath c. 55 was a more compact layer, of light yellowish brown sandy silt with many stone and pebble inclusions (c. 54); there were two combustion features located at the northern quadrants of the trench. A fragment of a metal implement was also recovered from this layer started from 116 cm below DP. The older deposit of c. 54 was truncated in the middle of the trench, North to South, by a younger feature called c. 56 – a dark grayish brown sandy silt matrix that was compact and had numerous inclusions of stones and rocks.

Below c. 56 was a dark grayish brown sandy silt layer (c. 59) with many artefact inclusions; its surface sloped towards the southwest; initially revealed at the western quadrants at 118 to 133 cm below DP. This context was associated with many animal remains, such as, mammalian teeth, animal mandible, ulna and ribs. A green glazed stoneware rim sherd was also recovered as well as decorated body sherds from a brown glazed stoneware jar. There were also shell remains associated with this layer. At the middle of the trench within c. 59 was a combustion feature associated with some animal bones; uncovered at the depth of 126 cm below DP.
Below c. 59 was a much more compact light yellowish brown clayey silt layer (c. 62) – surface was revealed at 117 to 134 cm below DP. This layer had many shells and angular stones; there were also a few disarticulated human remains mixed with animal bones. A single piece of pottery was recovered with traces on the surfaces of the sherd suggesting it was painted. This layer had many animal burrows and large tree roots. Below context 62 was c.66; a very loose dark grayish brown sandy silt layer. This layer had inclusions of shells, angular stones, animal bones, and some pottery sherds. The animal burrows recorded at c. 62 extended to a great part of this layer. Limited at the western quadrant of the trench, underneath c. 66 was a dark grayish brown clay layer. This context was exposed at 153 cm below DP. Cutting through c. 67 and covered by c. 66 is a feature limited to the southeast corner of the trench (c. 69). This context was mid yellowish brown clayey silt; it was loose and mottled with yellowish brown clay – perhaps indicative of the feature as a filled in pit that cut through the clay of c. 67. A ray/shark vertebra was recovered from this feature. Beneath c. 67 and c. 69 was a mid yellowish brown clay layer (c. 70). This very compact layer dipped westward and was uncovered across the surface of the trench. There were no artefacts recovered in this context, which was uncovered at the depth of 168 to 171 cm below DP.

Starting from levels just below c. 66, at around 197 cm below DP, a large rock fall deposit emerged (c.80). To be able to go any deeper, large rocks had to be taken out as far as possible. Below c. 70 was a light yellowish brown sandy silt sediment (c. 72), around 85 cm thick, which was void of artefacts. Below c. 72 was a more compact light yellowish brown sediment. This was dug in two 10 cm spits. At the first spit a human tooth was recovered; no artefacts were found at the second spit.

After the removal of the last batch of large rocks, the fresh sediment that was exposed was called context 77 – a light yellowish brown clayey silt. This sediment was restricted to a small portion of the eastern portion of the trench, and slanted eastward due mainly to boulder size rocks that were still in place. Three excavation spits were applied, the first was from 252 to 265 cm below DP, where two whole gastropods were recovered together with a few animal bones. The most secure in situ finds, however, were from rodents. The last two spits did not reveal any archaeological material. Excavation ended because of the impossibility of taking out more boulders within the limited time. Context 77 ended at 289 cm at its highest and at 320 cm below DP at its lowest level.

The excavation proved that, indeed, the cultural deposit from the area of Midden 1 extended to this trench, and the deposits associated with Midden 2 extended also westerward to this point in the landscape of the rockshelter.

5.2.3 Midden 2
This concentration of archaeological material was first investigated in 2007. The extent of the archaeological unit covers an area within the established grid squares of N2 to N6 and W2 to W6. Investigation of the archaeology for this season started at the part of the midden within N5W2 quadrant. Difficulties were
encountered in the excavation due to very dim light and the cemented nature of the calcium carbonate
encrusted sediments. Most of the loose sediments were removed from the surface—many of which were
debris from the treasure hunting activity done on the area in 2002-2003.

The irregular cemented travertine/flowstone surface (c. 300) was better exposed. This surface also contained
dark grayish black silty sediments, and partially cemented irregular angular rocks and pebbles, many of which
were oxidized. The cemented layer c. 300 was much thicker nearer its source—the large dried-up flow stone
to the east of the deposit—and gets thinner (approximately up to five centimeters thick at areas away from
the sources for the calcium carbonate rich water that came down the flowstone pillars. The surface of c. 300
is at its highest on the eastern end at around 5 cm below Datum Point (DP), and at its lowest to the west and
north at 15 and 20 cm below DP.

Underneath the cemented layer was a deposit of dark grayish black clayey silt sediment, with predominantly
oxidized angular limestone rocks and some animal bones (c. 304). Below c. 304 is a higher concentration of
artefacts within a matrix similar to c. 304. This layer (c. 301) had various shells, bones, oxidized angular
limestone rocks. This concentration of artefacts was 20 to 40 cm thick and accumulated above a travertine
floor or early flowstone deposit (c. 302), around 45 cm below DP. Excavation was stopped without breaking
through new areas of cemented surfaces; work concentrated in recording the sequence of cultural deposits
and clearing a small portion of what remains of in situ material within the area damaged by the treasure
hunters.

5.2.4 Trench C

The trench was opened to determine beyond doubt that the deposits within Midden 2 were indeed refuse of
human consumption. There was also the opportunity to understand the sequence between the series of
archaeological deposits and the geological transformation of the complex within the Star limestone tower.
This trench was opened below the raised platform of Midden 2, at the lower side of the cracked and
separated platform and the rockshelter wall, which included the cave where Midden 2 is located. The main
objective was to see if the materials of Midden 2 extends beyond the cracked and raised known boundary.
This trench measured 1.5 m x 2 m.

The top most clayey layer (c. 305) was removed, which included mostly secondarily deposited rocks, shells
and tradeware ceramics. Underneath c. 305 was a dark grayish black clayey silt sediment sloping northwards
with its surface 35 cm at its highest, and 50 cm at its lowest end below DP (c. 306). This layer had large
angular limestone rocks and roots, including shells, bones, and tradeware ceramic small finds. Below c. 306 is
a mid yellowish brown clayey silt layer; surface exposed at 70 cm at its highest surface and 80 cm at its lowest
from DP; has many shells, some animal bones and a few stoneware sherds (c.308). Below c. 308 is the
midden deposit in dark grayish black clayey silt matrix (c. 309); 100 to 130 below DP. It contained mostly
shells (Batissa sp.), animal bones (mostly pigs, some monkey, lizard and deer remains. This layer is equivalent to c. 301 in Midden 2 trench. The midden deposit at its lowest level, around 130 cm below DP, was much more compacted with more shells and fewer animal bones (c. 312). The excavation ended when the travertine layer below the midden was exposed (c. 314) at 130 to 145 cm below DP.

5.2.5 N5E5

This is the deep sounding trench of the excavation, which was established in the first season to see if there were any archaeological deposits buried deep in the cave sediments. After reestablishing the extent of the 2m X 2m grid square, the backfill from the previous excavation was removed until the surface of the unexcavated layer was revealed. Excavation reached 550 cm below DP (300 cm from surface). The sediments were consistently clayey with lenses of semi-rounded to angular gravel, and pebble size rounded stones. Most were clearly deposited by water action. There was no sign of human agency in any of the compact to cemented clayey natural sediments exposed.

5.2.6 Extension - N2 E4 and N3E5

An insight came to mind after reviewing the 2007 records, and thinking about when the current cave floor dried up. What was the reason for the construction and placing of a stone marker shaped like a boat inside the cave? How is it related to the other archaeological units in the site? The records showed that at the western quadrants of the trench a high concentration of semi-angular rocks were recorded; underneath this was a concentration of well rounded pebbles, a good amount of which were coated in calcium carbonate. The objective of the excavation was to investigate the extent of the well rounded pebble layer and confirm if it was a water channel. Small extension trenches were opened to investigate the direction of this pebble laden feature.

The northwestern quadrant of N2E5 was where the pebble layer was revealed last year, this was reopened as a staging point; the adjacent area north - the 1 m x 1m southwestern quadrant of N3E5 – was excavated, as well as the adjacent western area – 0.5 m x 1m area of the northeast quadrant of N2E4. The mid reddish brown sandy silty surface of the excavation area was 260 to 263 cm below DP. After removing the surface areas, following the stratigraphy of the previous excavation at N2E5, context 1 and 2 layers were quickly taken out. Underneath c. 2 was a mid-reddish brown guano surface interface (c. 3=12) around 263 cm to 268 cm below DP; with a few highly weathered bi-valve shells and patches of black and white concentration of guano. Underneath this context was a more compact guano layer, mid-reddish brown sandy silt in composition that came out especially at N3E5 at 265 to 270 cm below DP (c.4). Older, or possibly contemporaneous, was a mid ashy grey sandy silt matrix with high concentrations of angular stones and rounded to semi-rounded pebbles (c. 6). This context only had patches of black guano and a scattering of highly weathered bi-valve and gastropod shells. This deposit was localized at the western portions N3E5 and dominating N2E4, connected to the same deposit at the western quadrant of N2E5; exposed at the depth of
268 to 270 cm below DP. Below c. 6 was a layer, exclusively associated, that was composed mostly of rounded pebbles with a scattering of highly weathered bi-valve shells. Contemporaneous, with the possibility of being older, with c. 6 is a hard surface of travertine deposit (c.22). At the end of the excavation the opened portion of N2E5 and parts of both extension trenches revealed travertine base with cavities that looked like small water channels and pools.

A feature was exposed at the N3E5 extension trench (c. 23) that was most likely a post hole. This rounded feature cut through the surface deposit up to the brittle travertine layer (c. 20), and was filled in by a mixture of sediments – c. 1 and c. 2 – The posthole therefore represents an activity inside the cave in contemporary times. Excavation ended with the exposure of context 22 due to time constraints and the achievement of the set research goal for the trench.

5.3 SURVEYS

Romie Fines was tasked to look at the cave above the rockshelter and at the ledge above Midden 2. At the upper cave, no cultural materials were observed. At the ledge, there were noticeable cemented fragments of bone - about two were observed cemented in a pooling of calcium carbonated. There were angular stones also on the same small ledge. They may have been placed there or fell from the crevices just above the ledge. If they fell in, this may mean that there may still be some cultural deposits in smaller caves above the Pasimabahan complex. If, however, they were primary deposits, then we may be looking at a ritualized placement of these materials high above the Midden 2 cave.

A new site was recorded this year called Gwardiahan (IV-2008-H6). This site is a small collapsed rockshelter at the same elevation as Pasimabahan rockshelter. It is around 50 metres away from Pasimbahan site, following the wall of the tower going northwest. Earthenware pottery and human bone fragments were observed cemented in a thick travertine deposit, while some of the materials were loose, they equally heavily coated in calcitic material. This site can be productively investigated in the future.

The Maulohin site (IV-2007-L) in Imorigue Island was again visited and surveyed. A broken rectangular adze was recovered at the shallow sea floor approaching the entrance to the site. It was also observed for the first time that the shallow caves facing the sea next to the Maulohin sea entrance also had remains of possibly secondary jar burials – most of the materials were scattered in the shallow waters approaching the caves.

5.4 EXHIBIT MOUNTING

There were three sets of exhibit materials prepared during the 2007 season; one was tailored for the Ille site, another was for the municipal hall of El Nido town, and a third was created for the provincial capital of Puerto Princesa.
The exhibits had specific text contents for each exhibit and were all bi-lingual in Filipino and English. All three exhibits had an illustrated time-line, which placed the Dewil valley, El Nido town, and Palawan island in a larger historical setting. Three sets of replicas of key artefacts excavated in Palawan where commissioned from the National Museum of the Philippines and included in these exhibits.

The exhibits were updated this year, with the new companies and institutions helping the project acknowledged; the faded pictures were also replaced. The Puerta Princesa exhibit has not been mounted to date. The reason for this is because of the master plan of the provincial government to create a provincial museum in the center of the provincial capital, Puerta Princesa; the project’s exhibit would be part of this museum as envisioned by the Palawan provincial government. Nevertheless, the materials for the exhibit were turned over to the governor’s office, including the updates made for this year.

6. DISCUSSION

This season’s results were consistent with previous seasons. The scale of the excavation at Ille is unprecedented in northern Palawan with significant impact on our overall understanding of the Philippine deep past. The second season at Pasimbahan led us to exciting insights that brings us much closer to the way ancestral Filipinos appreciated their world.

6.1 UNDERSTANDING THE SEQUENCE OF CULTURAL DEPOSITION AT ILLE

In the effort to better understand the deposition of archaeological deposits, we use the labels “layer” and “phase”. Layers are identified cultural deposits or surfaces local to an excavation area’s stratigraphy. “Layers” in this sense are only labels to a sequence of cultural deposits or localized surfaces, and may not correspond to the site-wide understanding of human use of the surrounding landscape. The term “Phase” is, however, defined in this report as a site-wide current understanding of the nature of human occupation. As such, it is mainly a description of the nature of the archaeology so far uncovered and not yet an exhaustive understanding of the complexity of past human behaviour. To illustrate this point, there were nine phases as reflected in the 2004 excavation report (see Paz & Ronquillo 2004). Since then it has been modified annually and as reflected below, there are only six phases identified for the most current analysis of the site.

Phase A: Current Phase – ca. late 19th century CE to present

Current/modern deposits of sediments; included were the current surface and subsurfaces across the site. This is characterized at the platform as a light yellowish brown surface. Artefacts scattered at the surface were from lower layers due to recent treasure hunting activity and recent human utilization of the site, such as the first cave chamber used as an animal corral during wet seasons in the 1990s, and a hang-out place for
young adults. It was also for a short period of time in the 1990s transformed into a religious center/church where people created wooden platforms and camped inside the cave entrance chamber. It can also be underscored that within this phase the landscape has turned into an active archaeological and heritage site with significance to people from the local to the national level.

Phase B: Intensified burial phase ca. 2,000 y.a. – 200 y.a. (19th century CE.)

This phase was characterized by the high density of human burials from several time periods. In all excavation areas it ends with Layer 2 (around 16 cm); predominantly brown clayey silt at the East mouth and in the West mouth trenches the matrix is a light pinkish brown silty sand, with angular pebbles. Stratigraphically this phase started just above the shell middens. The youngest burials that cut through the surface of this period had a terminus post quem date of 1761 based on the recovered coin associated with a burial. The burials do not have any grave goods or remains of body ornaments. The burial pits were shallow with depths of around 12 cms. (most likely due to post 1960s erosion dynamics due to the clearing of the forest at the platform). Recovered deeper in the sediment were burials associated with glass bead ornaments. A dog burial was associated with this phase, as well as a badly preserved burial associated with a probable pig tusk necklace. In this phase various types of tradeware ceramics were recovered with a date range of 10th century CE to the 14th century CE.

The previous view (Paz & Ronquillo 2004) that burial pits from the lowest level of this phase were lined at the bottom with a layer of bivalve shells before the dead was laid down is not supported anymore. A better understanding of the stratigraphic sequence showed that these burials cut through the shell midden (e.g. context 803, 332, and 785).

Phase C : Dominantly habitation, Post ca. 6,000 to ca. 2,000

This phase was dominated by features associated with humans that actively utilized the platform for domestic activity. There was at least one episode of shell midden formation, followed by several sediment deposits all of which were associated with pottery remains, hearths, shell implements, animal remains and various other types of artefacts. This was the first and youngest midden phase. The shell midden was observed at the West mouth (context 898/912) and in the East mouth (context 803). The midden contains various types of shells (some worked) and pottery with a few animal bones.

Phase D: Dominantly pre-pottery habitation, ca. 6,000 to ca. 8,000

Shell middens that were not associated with pottery; there were a few hearth formations, and burials associated with an assemblage of shell artefacts. The middens were overlaid by a well sorted dark yellowish brown clayey sand, possible surface for the burials (West Mouth – 868 and East Mouth – 727) Underneath
Phase E: Habitation and cremation practice, 8,000 to ca. 10,000

It was mostly composed of hearth features that extended from around 160 to 200 cm from the surface. The temporal difference of these features was established and the phasing fine tuned as soon as results came out on radiocarbon dates of charcoal samples collected from the matrix (see Lewis et al. 2008). Aside from heating stones, the features in this phase also included bone remains, bone points and stone flakes. At the upper levels was the layer associated with the cremation features.

Phase F: Habitation phase – campsite. 12,000 b.p. and older

Approximately two meters deep from the surface, with chert flakes and animal bones. It is now known that the surface of this period was a steep slope, and thus, we have only managed to expose a small portion of this surface within the excavation floor at the depth of 2 meters. At this phase of human presence, the site must have only been frequented occasionally and by a small population of humans.

6.2 UNDERSTANDING THE ARCHAEOLOGY AT ILLE

A significant component in the understanding of the archaeology at Dewil is dating. The laboratory dates generated from the 2002 excavation at Ille established a good baseline for establishing time depths for a substantial part of the deposits - we knew then that we were dealing with materials with an age range of 2500 to 12,000 years ago. The dates encouraged an intensification of excavation at Ille; knowing very well that we were still far from exposing the bedrock on site. While the dates from 2002 were mostly coming from shell samples, the 2004 to 2006 datable materials were mostly composed of charcoal. The results reported in the Lewis et al. (2008) shows a consistent sequence of dates when compared with what Szabó et al. (2004) had already published. What the dates are telling us is that the lower level archaeology – levels from the shell middens down – are fairly in situ. The upper layers are very problematic for laboratory dating given the extensive bioturbation observed caused by animals, plants and especially human activity.

Concerning the nature of the archaeological assemblages through time, there is still no clarity if we are looking at the remains of cultures that inhabited the Dewil valley at different times, not at all related to each other, or that there was a general continuation of the same population with the material culture assemblage transforming through time due to interaction with other communities outside the valley.

The changes in the way the people treated their dead may be linked to a change in the lifeway or even in the expression of their cosmology; from cremating, to burying underneath stone markers - in one example shaping the stone marker to look like a boat - to just burying the dead with the head facing south (or the body
facing the cave entrances), to a period when the cave was used to inter burial jars.

At two periods of time in the history of human utilization of the platform, there could have been an intensification of human habitation. The presence of the two major shell middens exposed in both the West and East Mouth Trenches supports this view. The deposits showed consumption of various species of fresh water/brackish and marine species; a good amount of shell debitage was also observed indicating that various shells were raw materials for material culture making; there were also remains of hearths and smaller combustion features.

Concerning later phases stone artefacts, the excavated nephrite artefacts are interesting to underscore. There is high confidence that the jade used for fashioning these artefacts did not come from the island of Palawan. The white nephrite could perhaps have come from the Batangas region in Luzon. The green nephrite artefacts, upon low magnification inspection of the surfaces, revealed features that may fit the description of green nephrite coming from Fengtian in the island of Taiwan. At the minimum we are seeing long distance connections between the cultures that came further north of the Dewil valley; easily coming from Luzon, and most likely an interaction that goes as far as Mainland Southeast Asia and what is now southern China at time depths of perhaps 2000 years ago.

6.3 ON THE PASIMBAHAN SITE

Our understanding of this rockshelter and cave complex was further advanced since last year's work. We have better inference on the formation of the site; a sequence of massive rockfalls, flowing and drying water features, which has some possible meaning to people in the past, and also helped in the preservation of the archaeology on site. We now have better insights on how people in the past had given profound meaning to the space and form of Pasimbahan.

We can infer that a large portion of the Star karst broke, fell, and rested not far from the karst. This resulted to the cracking open of the Pasimbahan cave network, creating a rockshelter perpendicular to a new cave mouth. This happened at a time period way before human utilization of the site.

6.3.1 The negative results of deep trench excavation

The deep sounding trench did not reveal any older cultural deposits. There is still a need to go deeper. The possibility that very old remains of plants and animals may still be deposited beyond the current level of clay and gravel layers is still open. Having said this, the current rockshelter area of the site must also be excavated as deep as possible, beyond the massive rockfall recorded in the trenches, to see if there were any trapped remains of plants and animals that may be relevant to the understanding of the palaeoenvironmental history of the Dewil valley.
6.3.2 Relationship of Midden 1 and 2

There was a cautionary hypothesis that the deposits labeled Midden 2 was not actually an in situ assemblage of shells and stones and bones, rather, it was an accumulated assemblage deposited by natural water action passing through the cave when it was an active water channel. This view was addressed and negated. First of all, the assemblage of artefacts were composed of stone tools, consumed remains of animals (pigs mostly) and shell fish. Secondly, all stone artefacts were angular and do not show signs of rounding that may be caused by water movement. Thirdly, the animal bones were not polished or rounded; most rocks are angular and not rounded. Fourthly, the assemblage was deposited very much after the former water tunnel was already cracked, creating the current rockshelter. In other words, the water flowing at a large volume from the inner caves of Pasimbahan will not pool in the location of the Midden 2 cave.

Regarding the sequence of deposition, Midden 2 was an earlier deposit than Midden 1 as demonstrated in the stratigraphic relationship of the edges of these deposits at N1W5 trench. Another reason for this conclusion is the lack of any of the younger artefacts associated with the upper layers of Midden 1 in Midden 2, i.e., tradeware ceramic sherds.

6.3.3 The boat shape marker

The boat shape marker was created when there was still running water in the cave – limited to a channel running in front of the boat marker nearer to the current cave entrance. The source of the water may likely have been from the large flowstone that is now dried up, and divides the cave of Midden 2 with the main cave entrance. The same flowstone that generated interest amongsts people who have utilized the cave; they seem to have given meaning to what is perceived as a significant figure, i.e., buried in front of it, putting a jar in it, setting up an ossuary above and behind it. Alternatively, however, the water source may be further inside the cave through the northern, water carved, passage. The water flowed across the cave chamber’s floor and disappears into a subterranean chamber entering a hole in the southern wall of the cave mouth chamber. Through time this water channel slowly dried-up and a black guano deposit covered both the former water channel and the boat shape marker. A mid-reddish brown sediment accumulated on top of the black guano layer afterwards, which now is the current cave floor surface.

It can be argued that the location of the boat marker was precisely where it was in relation to the water feature inside the cave. The orientation of this water channel flowing down to a hidden chamber through a hole may have added to its significance, which was possibly linked to their cosmology.

6.3.4. A working sequence of human use of the Pasimbahan site

1. The site must have settled geologically for a long period of time after the creation of the rockshelter from the massive cracking of the Star karst. The earliest phase of human occupation of the site was around mid-Holocene, or around 6,000 years ago. This was based on the nature of the archaeology at Midden 2, where
there were cobble size stone tools associated with shell food remains, and pig bones. The predominantly pig assemblage concurs with the study of animal remains done at Ille, which showed a shift from mostly deer remains to pig remains around this time period. This comparative dating is of course very much tentative.

2. A second massive change in the complex would be the cracking open of the Pasimbahan cave mouth, which led to the scattering of big boulders across the site. The large boulders created a corridor effect for people walking towards the cave complex approaching it from the rockshelter. The current drip line of the cave led to natural light to reach the flowstone with the meaningful image. The magnitude of this rock fall most likely may have resulted to the cracking of the floor of the old cave/rockshelter.

3. The next phase of occupation (c. 2000 to c. 1000 ya) happened after the last major transformation of the Pasimbahan landscape. People started using the cave for secondary burials and were using the platform, perhaps as a temporary shelter or as an area to prepare for rituals, such as, the ossuary burial (context 18) inside the cave, and secondary burials in jars possibly just near the mouth of the two caves. Not having any laboratory dates that may further narrow down the estimate age of the boat marker, the thin accumulated deposit of guano and aeoline sediments on top of the marker may indicate that its time depth is younger than the Midden 2 deposits.

4. The next period would see a continuation of the ritual function of the site (c. 800 to 100 y.a.), except this time, there was a primary burial (with bent sword) and the continuation, perhaps of votive offerings in tradeware ceramic containers.

5. The youngest phase (20th century until present) will have the Cuyunin inhabitants of the valley naming the cave complex “Pasimbahan”, Romie and Rosie Fines seeing meaning in the flowstone figure, and the transformation of the site into an archaeological and heritage site.

It is clear that at Pasimbahan, just like at Ille, and in other cave sites, the signs of human activity are pregnant with symbolic meaning connected with the people’s cosmology. It is, however, still an unresolved question whether we are seeing a transforming culture through time or a changing population with distinct cultures utilising the resources of the Dewil valley.

6.4. PUBLIC ARCHAEOLOGY

There was a significant improvement in the protection of sites within the Dewil valley. Since the years of escalated vandalism from 2002 to 2004 were arrested, a gradual cleaning of graffiti was implemented. We were delighted to find out that dubbing calcium carbonate rich mud coming from sediments produced by the tower was sufficient in masking paint graffiti. After three years of application we realized that the paint underneath the mud fades away and the mud itself becomes integrated in the general natural look of the rock
face. We were also gladdened by the fact that there were no new graffiti on the limestone walls of archaeological sites since 2005, and there was no sign of new treasure hunting activity in and around the tower. This was mainly due to the active protection work done by the project in close cooperation with the local community. There was also the constant presence of signages made at the end of the 2004 season and posted along the path to Ille, inside the Ille, and the Pasimbahan platforms, explaining the cultural value of the sites, and requesting people to protect it. As a result of the effective conservation of the sites, two members from our local New Ibajay team were deputized by the National Museum since 2006.

The team also dedicated time to explain to local visitors from New Ibajay and tourist visiting from El Nido town what we discovered and our latest understanding of the archaeology at Ille. This is more a commitment we have to the local stakeholders, and our contribution to the development of a heritage consciousness throughout El Nido. At the end of the excavation season a thanksgiving gathering was organized at the base camp, where everyone involved and interested from New Ibajay were invited.

The latest addition of substantial exhibits at Ille and at the town hall of the town of El Nido has raised the level of heritage work in the region. It is now possible for visitors to the archaeological sites to be informed through the exhibits – a mark change from the time when only locals and visitors to El Nido who managed to catch the excavation team in action had substantial information relayed to them about the project. The principle followed for this approach was not simply to raise the tourism profile of archaeology in an already tourist town, but really, to substantially contribute to the education of the inhabitants of El Nido, from the barrio level to the provincial, about the value of our collective cultural heritage. We would like to believe that a community that develops a consciousness that sees the value of cultural heritage will be effective protectors of these resources. A community that has a good sense of culture attached to the landscape they are living in, that sees these resources as theirs, will be pro-active members of this community for the better good of many.

A significant development that came out of this year’s work was a much more active participation of the local government of El Nido. Under the new administration of Mayor Leonor D. Coral, the local government has committed more to the heritage project by purchasing one hectare of land next to the Ille tower for the creation of a site museum and research center. The local tourism office under Arvin Acosta has launched several projects linked to the research at Dewil starting with an attempt to make a walk-way from the village of New Ibajay to the Ille tower. This year, they have formally launched a ‘Dewil tour’, which includes the Ille cave, the Mangrove forest boat ride towards Imorigue and the Maulohin site. Tour operators from the town were involved in this launching. A Department of Tourism funded tour guide training was also hosted by the local government, and at least two individuals from New Ibajay were involved in the training. To put more structure to the initiative, the office of the Mayor with the Municipal Council created the Municipal Council for Culture and Art (MCCA), where they included as board member the director of the Dewil Valley research project, Dr. Victor Paz. The MCCA’s mandate is to strategically plan the cultural and artistic direction of initiatives in El Nido.
7. SUMMARY

The 2008 season saw the continuing excavation of Ille site and the accumulation of rich data connected to the history of human activity in the valley of Dewil. We have reconfirmed the practice of cremation at Ille with the recovery of two more cremation features at the 9000 years deposit. More sites were found and recorded from the nearby limestone karst inside the valley as well as the known archaeologically rich island of Imorigue. This year also saw the improvement on the two exhibits for the general public to appreciate the knowledge accumulated so far from our work at the Dewil valley and in the island of Palawan in general.

The excavation at the East mouth of Ille however went very slow and we still have not reached the very bottom sediment deposits. The hard compact sediments at the current bottom of the trench are not yielding any signs of human activity. We now have laboratory date estimates of 12,000 years ago for cultural deposits, but failed to find datable material for the deepest culturally sterile layers of the deep trench at the East mouth. We still have not found settlement sites in the open landscape that can be correlated to the limestone tower sites, though we have recorded more cave sites that show practices involve in the cosmology of the people who made use of the Dewil valley landscape. Due to time and resource constraints, the exhibit set for Puerto Princesa was not installed.

Since the initial investigation at Pasimbahan we knew that the site was occupied by humans at a period before the introduction of pottery. We are now more confident of the meaning-laden flowstone figure between the two cave mouths of Pasimbahan. It has also been established that the rockshelter was utilized, at least, from the period that pottery was introduce to the valley communities.

8. RECOMMENDATIONS AND PROSPECTS

This is a preliminary report of the 2008 season. The post-excavation work will continue for years to come. In the coming months, more specialized reports and articles are expected to come out from the continuing post excavation work.

The intensity of work and the scale of pos-excavation work demands much more resources than what we have at the moment. This only means that much work is yet to be done. Ille still holds a lot of potential. We have to continue excavating deeper at the East Mouth to see if there could be older archaeology beyond the sterile clay deposits now encountered. The mystery of the large pit feature in the west mouth area needs to be
further investigated. At Pasimbahan, there is a need to get isotope dates for the bone fragments recovered within the ossuary. The study of the travertine layer that sealed Midden 2 is on going, and in due time, we may have laboratory dates for its formation, which then will tell us the minimum age of the archaeological deposits it covered. Attempts are being made to see if we can get dates for the guano deposit on top of the boat shape marker and the dried up water channel, which also will give us a better basis for knowing the minimum age of these features. The deep sounding excavation must continue, but for next season, it shall also be done on the rockshelter part of the site, near the estimated old drip-line of the cave mouth.

Aside from questions coming out directly from information derived from the excavations, there is a running hypothesis that needs to be proven beyond doubt about the formation of the Dewil valley. Was the landscape that we now recognize as a valley formerly a lake, a sound, or a cove, during most of the early human occupation of the region? The samples taken near the current town of New Ibajay by the team of Dr. Fernando Siringan of the Marine Science Institute at UP Diliman may give us substantial information to competently answer this question.

The search for an habitation site in the open landscape of the valley will continue. Recent information points to the possibility that it may be around the Makangit karst formation. There are oral accounts that tell of a Cuyunin settlement in this location. It was also clarified this season that the location of the first Panay settlers was near the Makangit area. This area shall be seriously studied in the next season. More explorations should be done on the island of Imorigue, in the town of El Nido and in the surrounding high elevation coastal areas to see if we could also locate settlement sites that will correspond to the burial sites we have been recording in the limestone towers. From the standpoint of archaeology and heritage, we must be able to maintain the exhibits we already have established at Ille and El Nido, and must set-up the prepared Puerto Princesa exhibit in the coming year.

With the new leadership at both the municipal and barangay level at El Nido and New Ibajay, we are looking forward to much more active collaboration with the local government in finding ways to improve our current heritage efforts in the region.
9. MEMBERS OF THE TEAM FOR 2008

Wilhelm G. Solheim II – Honorary Team Leader

Project Directors
Victor Paz, Ph.D.
Helen Lewis, Ph.D.
Wilfredo Ronquillo, MSc

Specialist Members
Jack Medrana, MD
Philip Piper, PhD
Alfred Pawlik, PhD
Jane Carlos
Emil Robles
Vito Hernandez
Janine Ochoa

National Museum of the Philippines Representative
Giovanni Bautista, MA

Team Members from UP-ASP
Donna Arriola
Danny Galang
Tara Reyes
Bernice Varona
Timothy Vitales

From University College Dublin, Ireland
Kim Rice
Patricia La Piscopia

From University of Paris, MNHN, France
Florent Detroit, PhD (Musée de l’Homme)
Julie Arnaud
Guillaume Champion
Marie-Alice Martin
Marine Foucher
Carole Ridel
Hermine Xhauffair

From University of Ferrara, Italy
Marta Arzarello, PhD
Laura Falceri
Anna Casini

From University of Frankfurt, Germany
Alik Huseynov

From Institute Polytechnic Tomar, Portugal
Athanasia Gallou

From Barangay New Ibajay
George Danay (Deputized by National Museum)
Danilo Libudan (Deputized by National Museum)
Romie Fines (Responsible for Pasimbahan)

Aljon Agon
Froilan Barrientos
Jeffrey Barrientos
Mimi Cabral
Nimfra Castro
Milbert Carino
Eustaquito Danay
Eric Danay
Jomer Danay
Junjun Evanghelio
Rosie Fines
Dominador Gillang
Boyet Guillan
Lorenzo Ingcad
Gerald Leuterio

Jake Naranjo
Jeney Naranjo
Joel Naranjo
Joelius Naranjo
Joey Naranjo
Felcito Paulino
Ammen Sarmiento
Noel Sarmiento
Jojo Sugbo
Cesar Vitorin
Mary Ann Vitorin
10. REFERENCES

37
12. PLATES
13. APPENDICES
Figure 2. General location map of landscape features: 1) Ille 2) Makangit Malaki 3) Makangit Maliit 4) Sinilakan 5) low karst A 6) low karst B 7) Diribungan 8) Star 9)Kulanga Malaki 10) Kulanga Maliit 11) Idulot 12) Imorigue
Figure 3. General plan of Ille site
<table>
<thead>
<tr>
<th>Context</th>
<th>Description</th>
<th>Location & Depth</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>336 Layer</td>
<td>N1W12, N1W14, ~between 86-180cm MDP (in drawn profile)</td>
<td>Dark reddish brown clayey sand, very soft fine-grained sediment. Discontinuous lamina of limestone</td>
<td></td>
</tr>
<tr>
<td>389 Layer</td>
<td>N1W14, ~between 63-90cm MDP (in drawn profile)</td>
<td>Dark reddish brown silty sand, soft fine-grained sediment. Bedding south.</td>
<td></td>
</tr>
<tr>
<td>434 Layer</td>
<td>N1W1, ~between 0-40cm bDP (in drawn profile)</td>
<td>Fine sand with calcareous silt to sandy intrusions within matrix</td>
<td></td>
</tr>
<tr>
<td>459 Layer</td>
<td>N1W1, ~between 40-70cm bDP</td>
<td>Light greyish brown clayey silt with unsorted artifacts.</td>
<td></td>
</tr>
<tr>
<td>749 Burial</td>
<td>N4W1, ~7cm bDP (in notebook), between 12-24cm bDP (in drawn profile)</td>
<td>Not retrieved, extending northward, only side of long bone exposed.</td>
<td></td>
</tr>
<tr>
<td>748 Burial</td>
<td>N4W1, ~27cm bDP (in notebook), between 12-50cm (in drawn profile)</td>
<td>Not retrieved, only left side of body exposed</td>
<td></td>
</tr>
<tr>
<td>863 Cut and Fill</td>
<td>N3W1, ~between 30-55cm MDP (in drawn profile)</td>
<td>Identified on the wall during drawing of profile. Later deleted from the context notebook. Reasons unspecified</td>
<td></td>
</tr>
<tr>
<td>862 Cut and Fill</td>
<td>N3W1, ~between 38-62cm MDP (in drawn profile)</td>
<td>Identified on the wall during drawing of profile. Later deleted from the context notebook. Reasons unspecified</td>
<td></td>
</tr>
<tr>
<td>864 Cut and Fill</td>
<td>N2W1, ~between 90-120cm MDP (in drawn profile)</td>
<td>Identified on the wall during drawing of profile. Later deleted from the context notebook. Reasons unspecified</td>
<td></td>
</tr>
<tr>
<td>860 Cut and Fill</td>
<td>N4W1</td>
<td>Identified on the wall during drawing of profile. No further entries</td>
<td></td>
</tr>
<tr>
<td>857 Layer</td>
<td>N4W1, ~between 55-90cm bDP (in drawn profile)</td>
<td>Possible surface. Identified on the wall during drawing of profile</td>
<td></td>
</tr>
<tr>
<td>858 Cut and Fill</td>
<td>N2W1, ~between 46-70cm MDP (in drawn profile)</td>
<td>Identified on the wall during drawing of profile</td>
<td></td>
</tr>
<tr>
<td>859 Cut and Fill</td>
<td>N2W1, ~between 38-70cm MDP (in drawn profile)</td>
<td>Identified on the wall during drawing of profile</td>
<td></td>
</tr>
<tr>
<td>803 Lens</td>
<td>N3W1, ~40-80cm MDP (in drawn profile)</td>
<td>Bedding south. A continuation of 302 (Shell lens)</td>
<td></td>
</tr>
<tr>
<td>854 Layer</td>
<td>N2W1-N5W1, ~between 50-125cm MDP (in drawn profile)</td>
<td>Possible surface. Identified on the wall during drawing of profile. Bedding South</td>
<td></td>
</tr>
<tr>
<td>853 Cut and Fill</td>
<td>N4W1</td>
<td>Identified on the wall during drawing of profile. No further entries</td>
<td></td>
</tr>
<tr>
<td>852 Cut and Fill</td>
<td>N2W1</td>
<td>Identified on the wall during drawing of profile. No further entries</td>
<td></td>
</tr>
<tr>
<td>769 Layer</td>
<td>N4W1, ~between 160-180cm MDP</td>
<td>Dominantly crushed limestone. Relatively flat bed</td>
<td></td>
</tr>
<tr>
<td>850 Layer</td>
<td>N2W1-N5W1, ~between 172-230cm MDP (in drawn profile)</td>
<td>Similar to 336 in general composition.</td>
<td></td>
</tr>
<tr>
<td>852 Cut and Fill</td>
<td>N2W1</td>
<td>Identified on the wall during drawing of profile. No further entries</td>
<td></td>
</tr>
<tr>
<td>790 Layer</td>
<td>N2W1-NW1, ~between 190-215cm MDP</td>
<td>Dark reddish brown silty clay under 769. Possibly part of 768 (Hearth Activity area). With burnt stones, chert flakes.</td>
<td></td>
</tr>
<tr>
<td>806 Layer</td>
<td>N4W1, ~between 195-215cm MDP</td>
<td>Very compact under weathered stones. Possible surface exposed.</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4. East Mouth Trench, East Wall with deep trench profile
Figure 5. West Mouth, West Wall profile and part of the West Mouth Connection Trench
Figure 6. Ihian Trench profiles
Figure 7. Pasimbahan site plan
58, 50 Light yellowish brown silty sand, scattered shells, stones, cobble stones
Current surface of rockshelter after cleaning
51, 60, 61 Light grayish brown sandy silt, scattered shells, human bones, tradeware
More compact than layer above, c. 58
57 Very compact mid yellowish brown clayey silt layer
Numerous secondary deposit artefacts
64 Midden, composed mostly of bi valve shells
Less dense concentration than 68
65 Midden, mid grayish brown very loose sandy silt, many shells and cobble
2 worked stone flakes recovered
68 Mid reddish brown clayey silt, possible interface to the surface below
Scattering of shells and animal bones
71 Mid reddish brown clayey silt
Part of midden deposits
73 Spit layer at south east of Trench B
Scatter of secondary deposited artefacts
76 Mid grayish brown sandy silt, numerous artefactual inclusions
Lowest part of midden deposit
78 Mid yellowish brown clayey silt, compact
Some animal bones
79 Mid reddish brown sandy silt
Lower concentration of artefacts

Figure 8. Pasimbahan, Trench A, south and west wall profile
50, 76	Light yellowish brown silty sand, scattered shells, stones, cobble stones	Current surface of rockshelter after cleaning
51, 60, 61	Light grayish brown sandy silt, scattered shells, human bones, tradeware	More compact than layer above, c. 58
57	Very compact mid yellowish brown clayey silt layer	Numerous secondary deposit artefacts
64	Midden, composed mostly of bivalve shells	Less dense concentration than 68
65	Midden, mid grayish brown very loose sandy silt, many shells and cobble	2 worked stone flakes recovered
68	Mid reddish brown clayey silt, possible interface to the surface below	Scattering of shells and animal bones
71	Mid reddish brown clayey silt	Part of midden deposits
73	Spit layer at south east of Trench B	Scatter of secondary deposited artefacts
76	Mid grayish brown sandy silt, numerous artefactual inclusions	Lowest part of midden deposit
78	Mid yellowish brown clayey silt, compact	Some animal bones
79	Mid reddish brown sandy silt	Lower concentration of artefacts

Figure 9. Pasimbahan site, Trench B, east wall profile
53 Light yellowish brown sandy silt, surface sediment
54 Mid yellowish brown sandy silt, with a few shells and rocks
55 Loose mid yellowish brown sandy silt with combustion features and mottling
56 Mid grayish brown sandy silt, compact,
59 Midden, dark grayish brown sandy silt, many shells, stones
62 Mid yellowish brown compact clayey silt, many burrows
63 Combustion feature with lots of ash, some bones in the middle of trench
66 Dark grayish brown (nearly black) sandy silt, very loose, many stones and shells
67 Dark grayish brown, very compact, full of shells and stones in SW quadrant
69 Dark yellowish brown clayey silt, many stones and few shells
70 A 10 cm spit layer within light yellowish brown sandy silt, many boulder size rocks
72 A 10 cm spit within light yellowish brown sandy silt, after removal of boulders
75 Spit after removal of boulders
77 Spat after excavation of boulders
80 Rock fall of boulders with sediments filling in cracks and crevices

53 Light yellowish brown sandy silt, surface sediment
54 Mid yellowish brown sandy silt, with a few shells and rocks
55 Loose mid yellowish brown sandy silt with combustion features and mottling
56 Mid grayish brown sandy silt, compact,
59 Midden, dark grayish brown sandy silt, many shells, stones
62 Mid yellowish brown compact clayey silt, many burrows
63 Combustion feature with lots of ash, some bones in the middle of trench
66 Dark grayish brown (nearly black) sandy silt, very loose, many stones and shells
67 Dark grayish brown, very compact, full of shells and stones in SW quadrant
69 Dark yellowish brown clayey silt, many stones and few shells
70 A 10 cm spit layer within light yellowish brown sandy silt, many boulder size rocks
72 A 10 cm spit within light yellowish brown sandy silt, after removal of boulders
75 Spit after removal of boulders
77 Spat after excavation of boulders
80 Rock fall of boulders with sediments filling in cracks and crevices

Figure 10. Pasimbahan site, S1W5, east and north wall profiles

46
Figure 11. Pasimbahan site, Trench C, east and west wall profiles
Area destroyed by treasure hunters, but material left behind

Surface after cleaning

Dark grayish brown clay with bones, shells and oxidized limestones

Travertine floor under Midden 2

Travertine on top of the midden deposit

Deposit of clayey silt with oxidized limestone above 301

Topmost deposit of mid yellowish brown compact clay

Mid yellowish brown silty clay at southeast corner, fewer limestone pebbles compared to 308

Contains stoneware and earthenware sherds

Mid grayish brown silty clay

Many angular limestone and bivalve shells

Midden consisting of very dark grey sediment; shells, animal bones

Pig remains most abundant

Mid grayish brown sediment with shells, bones and stones

Midden compacted by calcium carbonate

Dark gray sediment with shell and bones still present

Compacted by calcium carbonate

Pit at SE part Trench C, fill composed of 308 sediment

Prob. infilled crevice caused by rock fall

Mid grayish brown silt with inclusions of compacted sediments

Figure 12. Pasimbahan site, Midden 2, southwest profile
Figure 13 Pasimbahan site N2E5 extension profiles and the stratigraphic matrix inside the cave
Figure 14. Pasimbahan site comparative matrix, excluding inside the main cave
Plate 1.
The sites, base camp and the team

The 2008 Field season team at the base camp, Dewil Valley.

The Ille tower, looking East

The Imorigue Island viewed just off coast

Approach to Pasimbahan site

Base camp next to the Ille tower

Pasimbahan crew next to S1W5 trench

View of most of the Dewil valley limestone karst formations
Dr. Lewis and Dr. Piper reviews stratigraphy of the north wall of the west mouth

From top, clockwise: East Mouth Trenches, indicating location of cremations; view of deep trench and East Mouth Cave trench; safety fence around excavation area; backfilling the West Mouth Trenches

The East Mouth Trench viewed from inside the cave

Plate 2. Work at the Ille site
Trenches A & B at the approach to the rockshelter; cranium from a secondary burial, the remains most likely placed in a stoneware jar; deposited along the rockshelter, the burial was disturbed and its contents scattered in antiquity.

Midden 2 cave (top) before the excavation of Trench C, just below the raised and cracked cave entrance. A view of Midden 2 (right) along with the ossuary (where the people are) and the meaningful flowstone formation in the middle (image taken during 2007 season).

Investigating the water channel hypothesis (above), which is hypothesized to be relevant to the placing of the boat shape marker inside the cave (right). Image at right taken during the 2007 season.

Plate 3. Work at the Pasimbahan site
A collection of modified shells from sieving, West Mouth, N2W16, 74–86 c, BDP, C. 1848 90 pcs.

Modified shells, West Mouth Trench, N3W16, Context 1835

A fragment of a stone tool with drilled hole in the middle to hold handle, most likely served as a hammer based on the pitting at one end of the tool. West Mouth, N5W13, 276 cm DP, context 1554

Example of modified shell that is likely a by product of shell artefact production on site; West Mouth, N2W14, context 1843

Plate 4. Ille artefacts
Decorated earthenware sherds from West Mouth Trench, N2W14: Top Left, c.1844; Top right, c. 1517; Bottom Left, c. 1844; Bottom Right, c. 1844

Decorated body sherd N2W14, West Mouth, context 1844

Lip decorated sherd, West Mouth, context 1844

Decorated sherds, West Mouth, context 1844

Plate 5. Sample of Ille earthenware pottery
Plate 6. Sample of decorated pottery from the West Mouth trench, 26 cm DP, context 705.
Plate 7. Large fragments of pots found inside pit, context 1517, at the West Mouth Trench
Counter clockwise: Lingling-o, prob. made from mica, N3W16, context 1838; Metal ring, probably copper alloy, found in a disarticulated 4th finger, East Mouth, east wall, Context 120; Socketed axe, copper alloy (prob. Bronze), West Mouth Trench, S5W14; S 5.62 cm, W 14.79 cm, 30 cm DP, context 343.

Two rectangular adzes analyzed by Dr. Pawlik (2006) from 2005 season showing the process of production and use of this artifact type found at Ille.

Plate 8. Ille metal and other artefacts

Chaine opératoire
Glass and ‘paste’ beads S2W10, context 57

Yellow glass beads S1W5, context 66,

Dark blue glass beads S1W5, context 62

Trench A, S2W10, context 51

Trench B, S2W9, context 65

Uniquely shaped dark green glass bead, weathered, Trench B, from surface sieving

Carnelian bead, Trench A, S2W10, context 51

Carnelian bead, S1W5, context 66

Bead/ possible pendant, cf. mica, N2W16-N3W16 West Mouth Trench, context 705

Plate 10. Pasimbahan beads
Highly fragmented weathered pottery, S2W10, Trench A context 13. There were very few earthenware remains recovered from the site, and most were in this kind of condition.

Greenish brown glazed stoneware with traces of line design, S1W5, context 54

Plate 11. Pasimbahan pottery
Temporary set-up of Municipal Hall exhibit in the process of being mounted by team members of the project (2007). This exhibit places special emphasis on artefacts and information coming from the El Nido/Bacuit Bay area.

Image of the time-line section of the exhibit at the Municipal Hall.

One night exhibit outside the Municipal Hall during the April 2007 Arts Fest; shows that the exhibit is easy to move and set up.

Signage made and posted at the front of the Pasimbahan site. The text is coached in a language that will hopefully deter further treasure hunting and destruction of the site.

Plate 12. Public archaeology in El Nido town and Pasimbahan site.
Left: Students from a local college purposefully visited Ille site. Archaeologist Taj Vitales stops work and explains to the crowd what was being done in the excavation trench. At this time, a series of cremations were being excavated in the East Mouth (2007). Below: Ille exhibit in the process of being mounted; local members of Barangay New Ibajay already showing interest (2007).

Plate 13. Public Archaeology at Ille
The two sides of the panel exhibit (above, from 2007) and the time line framed and hanged by the Ille cave

Plate 14. Curated exhibit at Ille site: an example of what was done this year
Lithic flakes from Trench A S2W10:
Left: context 65;
Right: context 52

Above: Shell bead and glass bead; S2W9, context 73 (IV-2007-Q-240)
Shell disc with perforation. Left: S2W9, context 65; Right: S2W9, context 71

Perforated shell; Possible shell pendant; S1W5, Context 74
Shell bead and glass bead; S2W10, context 57 (IV-2007-Q-240)

Flat Shell bead, Trench B, context 57

Shell bead and Glass beads S2W9, context 57
Shell bead and Glass beads, S2W9, c. 57

Plate 9. Lithics and Beads from Pasimbahan
Appendix A. Authorization/Permit from the National Museum for 2008
Appendix B. Deputisation of individuals tasked to safeguard the Ille archaeological site.
<table>
<thead>
<tr>
<th>metal artifacts</th>
<th>accession #</th>
<th>description</th>
<th>mouth</th>
<th>square</th>
<th>depth (cm bdp)</th>
<th>context</th>
<th>association</th>
</tr>
</thead>
<tbody>
<tr>
<td>socketed axe</td>
<td>IV-1998-P-40412</td>
<td>copper alloy, prob. bronze</td>
<td>south extension</td>
<td>S5 W14</td>
<td>30</td>
<td>343</td>
<td></td>
</tr>
<tr>
<td>coin</td>
<td>IV-1998-P-30196</td>
<td>Spanish coin, dated 1761</td>
<td>east</td>
<td>N4W1</td>
<td>748</td>
<td>part of grave fill</td>
<td></td>
</tr>
<tr>
<td>ring</td>
<td>IV-1998-P-43973</td>
<td>copper, whole</td>
<td>east</td>
<td>N1W2</td>
<td>55</td>
<td>female burial</td>
<td>female burial</td>
</tr>
<tr>
<td></td>
<td>IV-1998-P-22621</td>
<td>copper, whole</td>
<td>west</td>
<td>6</td>
<td>719-720</td>
<td>male burial</td>
<td>male burial</td>
</tr>
<tr>
<td></td>
<td>IV-1998-P-41698</td>
<td>copper, broken</td>
<td>west</td>
<td></td>
<td>120</td>
<td>burial</td>
<td>burial</td>
</tr>
<tr>
<td></td>
<td>IV-1998-P-40418</td>
<td>copper, fragment</td>
<td>west</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bead</td>
<td>IV-1998-P-31738</td>
<td>Au</td>
<td>east</td>
<td>N3W1</td>
<td>20-30</td>
<td>1226</td>
<td>not assoc. w/ burial</td>
</tr>
<tr>
<td></td>
<td>IV-1998-P-30277</td>
<td>not iron, w/ design</td>
<td>west</td>
<td>N9W2</td>
<td>10-15cm</td>
<td>903</td>
<td>burial</td>
</tr>
<tr>
<td></td>
<td>IV-1998-P-22825</td>
<td>not iron</td>
<td>east</td>
<td></td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>blade</td>
<td>IV-1998-P-43984</td>
<td>iron</td>
<td>east</td>
<td>N1W4</td>
<td>31</td>
<td>722</td>
<td>prob. burial</td>
</tr>
<tr>
<td></td>
<td>IV-1998-P-19978</td>
<td>iron</td>
<td>east</td>
<td>N1-2 W2-3</td>
<td>80-90</td>
<td>731</td>
<td>prob. burial</td>
</tr>
<tr>
<td></td>
<td>IV-1998-P-35091</td>
<td>iron</td>
<td>east chamber long trench</td>
<td></td>
<td>931</td>
<td>burial (prob. female)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV-1998-P-43974</td>
<td>iron, big</td>
<td>east</td>
<td></td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV-1998-P-43985</td>
<td>iron, fragment</td>
<td>east</td>
<td>N1W4</td>
<td>31</td>
<td>722</td>
<td>burial</td>
</tr>
<tr>
<td></td>
<td>IV-1998-P-43976</td>
<td>iron, fragment</td>
<td>west</td>
<td>N3W15</td>
<td>0-26</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV-1998-P-43977</td>
<td>iron, fragment</td>
<td>west</td>
<td>N5W15</td>
<td>0-36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV-1998-P-43978</td>
<td>iron, (w/ mat impression)</td>
<td>east</td>
<td>N1W3</td>
<td>42</td>
<td></td>
<td>prob. burial</td>
</tr>
<tr>
<td></td>
<td>IV-1998-P-40417</td>
<td>iron, fragment</td>
<td>west</td>
<td>N2W16</td>
<td>64-74</td>
<td>1838</td>
<td>prob. burial</td>
</tr>
<tr>
<td></td>
<td>IV-1998-P-40416</td>
<td>iron, fragment</td>
<td>south extension</td>
<td>S5W14</td>
<td>24</td>
<td>343</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV-1998-P-22613</td>
<td>iron, fragment</td>
<td>west</td>
<td>N4W14</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>unidentified</td>
<td>IV-1998-P-43979</td>
<td>iron fragments (axe?)</td>
<td>west</td>
<td>N2W15</td>
<td>30-50</td>
<td></td>
<td>prob. burial</td>
</tr>
<tr>
<td></td>
<td>IV-1998-P-43986</td>
<td>fragment w/ cloth-like impression</td>
<td>west</td>
<td>N2W15</td>
<td>30-50</td>
<td></td>
<td>prob. burial</td>
</tr>
<tr>
<td></td>
<td>IV-1998-P-43987</td>
<td>metal fragments</td>
<td>west</td>
<td>N2W15</td>
<td>30-50</td>
<td></td>
<td>prob. burial</td>
</tr>
<tr>
<td></td>
<td>IV-1998-P-22365</td>
<td>metal fragment</td>
<td>east</td>
<td>N4W1</td>
<td>20-40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV-1998-P-22613</td>
<td>metal fragment</td>
<td>west</td>
<td>N4W14-15</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV-1998-P-17355</td>
<td>metal fragment</td>
<td>west</td>
<td>N2W15</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV-1998-P-22689</td>
<td>iron fragment</td>
<td>west</td>
<td>N4W14</td>
<td>56-84</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV-1998-P-43980</td>
<td>iron fragment</td>
<td>east</td>
<td>N2W3</td>
<td>20-40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV-1998-P-43981</td>
<td>iron, fragment</td>
<td>west</td>
<td>N2W14</td>
<td>26. Jun</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV-1998-P-43988</td>
<td>metal fragment</td>
<td>west</td>
<td>N2W14</td>
<td>26. Jun</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV-1998-P-43989</td>
<td>metal fragment</td>
<td>east</td>
<td>N1W3-4</td>
<td>46</td>
<td>761</td>
<td>prob. burial</td>
</tr>
<tr>
<td></td>
<td>IV-1998-P-43982</td>
<td>metal fragment</td>
<td>west</td>
<td>N3W15</td>
<td>0-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV-1998-P-43983</td>
<td>metal fragment</td>
<td>east</td>
<td>N4W3</td>
<td>485</td>
<td></td>
<td>prob. burial</td>
</tr>
<tr>
<td></td>
<td>IV-1998-P-16959</td>
<td>metal point</td>
<td>west</td>
<td>N2W15</td>
<td>0-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV-1998-P-40413</td>
<td>iron, fragment</td>
<td>west</td>
<td></td>
<td>343</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV-1998-P-41705</td>
<td>iron, fragments</td>
<td>west</td>
<td></td>
<td>705</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV-1998-P-35971</td>
<td>metal point</td>
<td>west connection</td>
<td></td>
<td>883</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV-1998-P-27321</td>
<td>metal fragment</td>
<td>east</td>
<td>N6-7 W3</td>
<td>1313</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV-1998-P-27325</td>
<td>metal fragment</td>
<td>west</td>
<td>N3-4 W12</td>
<td>1595</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

total no. or metal artifacts (2004-2008) - 39
majority or 41% of the total artifacts were made from iron; all blades are iron

Appendix C. List of metal artifacts from Ille