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Residential Load Modeling of Price Based Demand
Response for Network Impact Studies
Killian McKenna, Student Member, IEEE, Andrew Keane, Senior Member, IEEE

Abstract—This paper presents a comprehensive low-voltage
residential load model of price based demand response. High-
resolution load models are developed by combing Monte Carlo
Markov Chain bottom-up demand models, hot water demand
models, discrete state space representation of thermal appliances
and composite time-variant electrical load models. Price based
demand response is then modeled through control algorithms
for thermostatically controlled loads, optimal scheduling of wet
appliances and price elasticity matrices for representing the
inherent elastic response of the consumer. The developed model is
used in a case study to examine the potential distribution network
impacts of the introduction of dynamic pricing schemes. The
effects of cold load pick-up, rebound peaks, decrease in electrical
and demand diversity and impacts on loading and voltage are
presented.

Index Terms—Demand response, distribution networks, dy-
namic pricing, load modeling, residential load sector, smart grids.

I. INTRODUCTION

IMPERATIVE to the success of demand response (DR)
schemes is to ensure that their implementation does not

adversely affect the operation and control of the networks to
which they are connected. Residential DR has been identified
as a load sector with high potential, particularly when sub-
jected to dynamic pricing schemes such as time of use pricing
(TOUP), day ahead pricing (DAP), real time pricing (RTP) and
critical peak pricing (CPP) [1]. These pricing schemes have
been identified as providing the potential high-level system
benefits that have come to typify demand side management.
These include reduced peak demand, forgoing investment
in new peaking capacity and network upgrades, facilitating
the integration of renewable generation, providing regulating
capacity and lowering the required reserve margin and hence
reducing inefficiencies in capacity payment markets [2]. These
high level system objectives need to be consolidated with the
constraints of low-voltage (LV) distribution networks, such as
thermal loading and voltage deviation. There is uncertainty
around the potential impacts of such pricing schemes on the
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load diversity metrics for which the planning of traditional
distribution networks were based.

Bottom-up demand models allow high resolution simulation
of residential energy consumption, incorporating occupancy
and consumer behavior characteristics. The models require
extensive demographic, socioeconomic, lifestyle and appliance
operation data [3]–[5]. The US Department of Energy has
developed a residential distribution simulation environment,
GridLAB-D, [6], which has been used in the literature, notably
in [7] where an equivalent thermal parameter model and time-
variant load model of air-conditioning units was coupled with
the software. In [8], a sequential Monte Carlo (MC) simulation
platform for residential networks was developed with a multi-
phase network and a load/generation behavior model. Models
of physical based appliances for demand response (DR) stud-
ies, such as heating and cooling loads, have also been used
[9].

Time-Use Survey (TUS) data has been widely used in the
literature for developing consumer occupancy and behavior
models [10]–[12]. These data are used to create transition
probability matrices for modeling occupancy using a Markov
Chain Monte Carlo (MCMC) approach, and also for creating
activity probability profiles for modeling behaviors using MC
simulations. Lighting models have been developed that include
dependence on irradiance levels allowing seasonal variations
to be captured [13], [14]. Further development in this area has
incorporated these energy demand models with electrical load
models to create high-resolution time-variant steady-state load
models [15].

There is wide potential for price-based DR in the residential
sector, this response comes primarily in two forms; inherent
elastic response of the consumer and automatic DR controllers.
Price elasticity matrices (PEM), traditionally used under the
assumption that demand is continuous with uniform response
across all hours, [16], have been used in the literature to assess
elastic DR. Time-varying elasticity values of hour resolution
have been used to examine the effects of residential DR
on distribution networks [17], and statistical demand-price
elasticity models have been used to assess the optimal real
time price [18].

There has also been much research into developing control
algorithms and residential energy optimization frameworks.
In [19] an optimal residential energy consumption scheduling
framework is proposed with price prediction to manage the
trade-off between minimizing the electricity payment and wait-
ing time. The potential of spot price based control algorithms
for residential load, in particular scheduling, [20], and thermal
storage potentials have been investigated [21]. Discrete time
difference equations have been used in the literature to assess
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the potential control of thermostatically controlled appliances
(TCAs) for the purposes of providing regulation service, [22],
appliance commitment for load scheduling, [23], dynamic
controllers for real-time demand response, [24], and gener-
alized control strategies for TCAs in a competitive electricity
market [25]. The effect of these different control algorithms on
the creation of rebound peaks, and potential solutions using
randomized scheduling, maximum household power signals,
and concurrent use of multiple pricing schemes to increase
diversity have also been investigated [26].

There is uncertainty and concern around how many of
the proposed algorithms will work in practice, in particular
when the complex interactions between consumer behavior,
appliance characteristics, electrical load dependency and the
distribution network are taken into account [27]. There is
a need to consolidate the detailed bottom-up load modeling
research with the proposed control algorithms and pricing
structure to see the overall effect on consumer welfare and
network operation. Consumer demand is discrete in both
magnitude and duration, and can be highly volatile at a sub-
hourly time frame. Hence, it is imperative that such studies are
conducted at high temporal resolution to capture these effects.

To that end this paper proposes a TUS based bottom-up
load modeling platform for price based residential elastic and
automatic demand response. The model extends the method-
ology for capturing the elastic response of consumers by the
authors in [28], by addition of thermal modeling of TCAs with
hot water demand models, time-variant electrical load models,
static and dynamic control algorithms for thermal appliances,
optimal scheduling of wet appliances and distribution network
load flow and analysis.

The methodology for the load model is presented in Section
II with elastic and automatic residential demand response
presented in Sections III and IV respectively. Model imple-
mentation is presented in Section V and Section VI presents
details of the case study. Section VII presents the results and
discussion, examining the network impacts and effects on con-
sumer revenue. Finally, Section VIII presents the conclusions
of this paper.

II. RESIDENTIAL LOAD MODEL

The residential load model developed in this paper is com-
prised of modeling consumer occupancy, activity, appliance
electrical and thermal operation and consequently the electrical
demand.

A. Consumer Activity Modeling

Activity profiles are used for up to six different activities, for
up to four occupants, for both weekday and weekend profiles
using activity profiles and occupancy transition probability
matrices from [29]. Using transition probability matrices from
TUS data, occupancy profiles can be generated using MCMC
methods [11]. The activity profiles are linked to appliance
use, with the sharing of appliances captured both through
using occupancy and activity profiles as a function of the
number of occupants present resulting in a non-linear increase
in probability.

B. Appliance Use

Appliances are assigned to each household based on own-
ership statistics at initialization. Data is required for each
appliance detailing cycle power, duration, standby power and
cycles per year, among other parameters [28].

1) General Appliance Model: The general appliance model
for bottom-up models is used for the consumer use of cooking,
information communication technology (ICT) and consumer
electronics (CE) appliances, and wet appliances [13]. For this
model the switch-on probability, Pa, of any appliance, a, for
any time step, t, is dependent on a number of factors. These are
the binary variable O(t) dependent on the presence of an active
occupant, the calibration scalar, Ca, for each appliance which
is used to calibrate the number of switch-on events based on
appliance data. Finally, the activity probability itself, A(t, n),
which is dependent both on the number of occupants, n, and
time. Using these variables the probability of a switch-on event
for appliances with an associated activity are determined by
(1) and those solely dependent on occupancy are determined
by (2), see Section V for further details.

Pa(t) = (O(t)× Ca ×Ai(t, n)) (1)

Pa(t) = (O(t)× Ca) (2)

2) Lighting: The lighting model assigns each household
one of 500 possible lighting configurations based on UK
statistics on bulb penetration, type and installed wattage, [30],
all of which are necessary for the electrical load model. The
switch-on probability, Pb, of a bulb, b, can be determined by
five factors, see (3), [13]. These are the occupancy binary
variable, O(t), relative-use weighting of the bulb, Wb, the
effective occupancy, Eff(t, n), a lighting calibration scalar,
CL, and a binary irradiance variable, Irr(t), based on a
household irradiance threshold, an adjustment is made such
that 20% of switch-on events are independent of irradiance
levels to take account of the significant lighting load used
during hours of low irradiance [31]. The use of night lights,
which are both independent of occupancy and irradiance levels
are modeled separately, with mean start times, durations and
penetrations.

Pb(t) = (O(t)× CL× Irr(t)×Wb × Eff(t, n)) (3)

3) Domestic Water Heating: High resolution hot water de-
mand profiles can be created by using washing activity profiles
coupled with calibration scalars that represent the frequency
of each washing event such as hand washing, showers and
baths [32]. The probability of a washing event occurring, Pw,
is then a function of occupancy, the number of occupants, n,
the probability of a washing activity taking place, A(t), and
the washing event calibration scalar, Cwash−act (4). Then each
household is given a set of discharge rates and duration for
each washing event.

Pw(t) = (O(t)× n(t)× Cwash−act ×A(t)) (4)

The hot water demand profiles are used as an input into
dual-element electric water heater model which can be repre-
sented through discrete thermal dynamic equations [22]. For
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the domestic hot water (DHW) model, the energy balance
equations for the two layers of the tank are described in (5) and
(6) respectively where c is the specific heat capacity of water,
ρ is the density of water, the temperatures and liter capacity of
the lower and upper sections are T1, T2, L1and L2 respectively,
p is the electrical power input with the subscripts denoting
the element (p1e, p2e), the heat radiation (pa1, pa2), the heat
transfer from each section (p21), the hot water heat demand
(phw) and the binary variables controlling the electrical input
(Y1, Y2). The heat radiation from each section (i = 1 or 2)
is given in (7), where τ is the time constant and Tamb is the
ambient temperature.

cρL1
dT1
dt

= Y1(t)p1e − pa1 − p21 (5)

cρL2
dT2
dt

= Y2(t)p2e − pa2 + p21 − phw (6)

pai = cmLi(Ti−Tamb)/τ (7)

The time constant, (8), is calculated by finding the thermal
capacitance, Cth, and the thermal resistance, Rth, of the
electric water heater, see (9) and (10) respectively. The thermal
conductivity of the insulating material, κ, its thickness, x, and
the total area, A, are needed to calculate the thermal resistance.
For the thermal capacitance, the mass, m, and specific heat
capacity, cp, are needed.

τ = CthRth (8)

Rth =
x

κA
(9)

Cth = mcp (10)

The power consumption of the electric water heater is
controlled thermostatically with a dead-band, δa, around the
temperature set point, Tset,a. The state of the binary variables,
Y1and Y2, the hysteretic control of the electrical power input
for the two heating elements where 1 is on and 0 is off, are
described by (11) and (12) respectively.

Y1(t+1) =


0,

1,

Y1(t),

T1(t) > Tset,a + δa/2

T1(t) < Tset,a − δa/2

otherwise

and T2 6 T1

(11)

Y2(t+1) =


0,

1,

Y2(t),

T2(t) > Tset,a + δa/2

T2(t) < Tset,a − δa/2

otherwise

and T2 > T1

(12)

4) Other Thermostatically Controlled Appliances: Other
TCAs are modeled using a discrete time difference equation
representation, (13), which is commonly used in the literature
[22], [23]. Here the time step is represented by h, the co-
efficient of performance is COPa, equal to 1 for non-heat
pumps, for each appliance a, the electrical power input is
Pelec,a and θa is the temperature gain (14). This methodology
also uses the thermal capacitance and the thermal resistance of
the appliance, requiring data on the thermal mass, insulation
material and area of the device.

Ta(t+1) = e
−h/τTa(t)+(1−e−h/τ)(Tamb(t)−Ya(t)θa) (13)

θa = COPaPelec,aRth,a (14)

The control strategy for these thermostatically-controlled
appliances is similar to that of DHW heaters. Equation (15) is
presented for refrigeration appliances, for heating devices the
same equations are used but with the important difference of
a change in sign of the term θa in (14) and the status of the
binary variables in (15) are reversed.

Ya(t+ 1) =


0,

1,

Ya(t),

Ta(t) < Tset,a − δa/2

Ta(t) ≥ Tset,a + δa/2

otherwise

(15)

C. Electrical Load Model

In order to use the demand model in power system simula-
tions a time-variant steady-state load model is implemented
using a composite polynomial load model with appliances
represented in terms of constant impedance, constant current
and constant power loads for active power, P , for each
appliance, a, ZPa, IPa and PPa, and for reactive power ZQa,
IQa and PQa, respectively. Using displacement power factors
for each appliance, PFa, allows the loads to be represented by
both their active, Pa, and reactive, Qa, power demand (20, 21)
and aggregate household demands (18, 19). For each house,
the aggregate effect of each appliances on the total load model
ZPh, IPh and PPh parameters can be calculated (16, 17)
for each time step, as the polynomial household components
change depending on what appliances are being operated. ZPh(t)

IPh(t)
PPh(t)

 =

A∑
a=1

Pa(t)

Ph,0(t)

 ZPa
IPa
PPa

 (16)

 ZQh(t)
IQh(t)
PQh(t)

 =

A∑
a=1

Qa(t)

|Qh,0(t)|

 ZQa
IQa
PQa

 (17)

Ph(t) =

A∑
a=1

Pa(t) (18)

Qh(t) =

A∑
a=1

Pa(t) tan(cos
−1(PFa)) (19)

Ph(t) = Ph,0(t)

[
ZPh(t)

(
V (t)
V0

)2

+ IPh(t)
(

V (t)
V0

)
+ PPh(t)

]
(20)

Qh(t) = Qh,0(t)

[
ZQh(t)

(
V (t)
V0

)2

+ IQh(t)
(

V (t)
V0

)
+ PQh(t)

]
(21)

Each appliance is categorized according to library of 12
archetypal appliances from research conducted which pre-
sented a time-variant steady state bottom-up load model [15],
with some appliances, such as wet appliances, behaving as
different load types depending on which stage of its cycle
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it is operating at. The composite load model for each house
is updated at each time-step, resulting in time-variant voltage
dependencies.

III. ELASTIC DEMAND RESPONSE

To represent the elastic DR of consumers the effects of
consumer occupancy, natural temporal activity preferences,
the inter and intra-temporal effects, stochastic nature due to
lack of complete visibility of consumer utility and lastly the
discrete nature of both the level and duration of demand need
to be taken into account. The authors developed a methodology
for capturing these elastic consumer effects in [28], which is
briefly presented in this section.

A. Price Elasticity Matrices

The methodology takes into account the discrete nature
of the consumer by altering the probability of consumption,
P , and using MC techniques to test switch-on probabilities.
Over a large number of simulations this method is equivalent
to the classical elasticity function which alters demand as a
continuous variable; it is observed that the classical elasticity
approach is only an approximation of a large number of
discrete changes in demand. This approach results in elasticity
defined as relating a change in price, 4p, to a change in the
probability of a switch-on event, 4P , given the elasticity ε,
with respect to an equilibrium point, of the reference price,
p0, and reference probability, P0. To take into account of the
intra and inter-temporal effects of electricity price on demand,
the model uses both self-elasticity, εii, and cross-elasticity, εij ,
coefficients for different time intervals, (i, j). A matrix of self
and cross elasticity coefficients can be constructed to form a
price elasticity matrix (22). The elasticity coefficients can be
used to represent lossless and lossy cases of demand response.(

4Pi
4Pj

)
=

(
εii εij
εji εjj

)( 4pi
p0
4pj
p0

)(
Pi
Pj

)
(22)

The window over which consumers are willing to shift
their demand is represented by W , and it is over this value
for which consumers react to changes in price. Rational
consumers schedule their demand taking into account the price
difference over the duration, D, of the appliance, and hence
the probability of a switch-on event is altered to be a reaction
to price differentials over the duration of appliance operation
(23).

4Pi =
i+W∑
j=i−W

Pjεij

(∑j+D−1
d=j

4pd
D

)
− p0

p0
(23)

Occupancy dynamically affects not only the window over
which a consumer responds but also the level of the response.
Cross-elasticity coefficients must be weighted according to
occupancy over the duration of the window. To represent these
effects, the cross-elasticity coefficients are weighted by the
occupancy factor, aj , and all coefficients are multiplied by the
binary variable for occupancy, Oj (24, 25). The developed
methodology is shown graphically in Fig. 1, showing the

change in normalized change in probability of a switch-on
event of appliance, Pa, in equations (1) and (2).

aj =

{
2W∑i+W

j=i−W Oj

1

j 6= i

j = i
(24)

4Pi =
i+W∑
j=i−W

OjajPjεij

(∑j+D−1
d=j

4pd
D

)
− p0

p0
(25)
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Fig. 1. Elasticity method: (a) TOUP signal and reference price (b) Change in
normalized probability with different device duration (c) Occupancy profile (d)
Effect of occupancy on change in normalized probability with device duration
of 60 minutes.

IV. AUTOMATIC DEMAND RESPONSE

There are two categories of control modeled, the first is
optimal scheduling of wet appliances, and the second is price-
based control of the set-point of TCAs. Residential appliance
automation and control can be facilitated by in-home smart
technologies and home-area communication networks for the
internet of things, such as ZigBee [33].

A. Optimal Scheduling

Wet appliances can be optimally scheduled as the presence
of the consumer is not required after start has been initiated. To
model this, a simple cost minimization is implemented based
on the known energy cycle of the appliance, Ed, and the prices,
Pd, over a given horizon, D (26). Consumers initiate the start
of the appliance, αa,n, and their requested end time, βa,n,
which is modeled by a logarithmic distribution, γa,n, with,
X , a random number of uniform distribution between 0 and
1, with a mean wait time, Tm,a, from the initial end time, µa,n,
should the appliance have initiated on start (27). The end time
is also modeled with the constraint that it must be less than
the next start time of the appliance, αa,n+1, and it must occur
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in the next period of occupancy greater than or equal to the
variable γa,n which is denoted ζa,n.

min

(
D+1∑
d=1

EdPt+d

)
for t = [αa,n, . . . , βa,n −D] (26)

γa,n = −Tm,alog(X) + µa,n (27)

βa,n =


αa,n+1 − 1

ζa,n − 1

γa,n

γa,n ≥ αa,n+1

γa,n ≤ ζa,n
otherwise

(28)

B. Thermostatic Controller

TCAs have the potential to change their energy consumption
by altering their thermostatic set-point to either increase or
decrease energy consumption [22]–[24]. There are two control
strategies used in this paper for thermal appliances, the first is
a static controller implemented for TOUP, and the second is a
dynamic controller implemented for pricing schemes such as
DAP.

1) Static Demand Response Peak Controller: Static con-
trollers are best implemented for TOUP, where a set number
of tariff rates of fixed duration are repeated day on day. The
controller has prior knowledge of the peak tariff rate, due to its
fixed time for entire seasons, and tries to maximize pre-peak
period thermal inertia to ensure maximum ride through, hence
lowering in-peak energy consumption. For refrigeration appli-
ances the controller achieves this by altering the thermostatic
set-point of the controller, Tctrl,a, to a lower set-point before
the peak, Tpre,a, where tstart and tstore denote the start-time
of the peak period and the time before the peak for which
the thermostatic set point is altered. During the peak, the set-
point of the controller is set to a higher temperature, Tpeak,a,
to reduce energy consumption during the peak. The controller
then stays at this setting until the end of the peak period, tend
(29).

Tctrl,a(t) =


Tpre,a,

Tpeak,a,

Tset,a,

t < tstart − tstore
tstart ≤ t < tend

otherwise

(29)

2) Dynamic Demand Response Elastic Controller: For non-
periodic pricing signals, such as CPP, DAP or RTP, dynamic
controllers are better suited to adapting energy consumption
to the price signal. The controller implemented in this paper
adjusts the thermostatic set-point based on a maximum and
mean price parameters set by the consumer, Pmax,a and
Pavg,a respectively. For these parameters, the consumer gives
a corresponding maximum and mean temperature set-point,
Tmax,a and Tavg,a, given these parameters a linear relationship
between price and temperature can be established with the
consumer lastly setting a minimum temperature, Tmin,a, based
on the established linear response, which determines the full
range of response for the controller (30, 31). The controller
responds to price linearly across this range, and remains at the

maximum or minimum temperature set-point should the price
exceed the price boundaries (32, 33).

αDDREC,a =
Tmax,a − Tset,a
Pmax,a − Pavg,a

(30)

βDDREC,a = Tmax,a − Pmax,aαDDREC,a (31)

Telas,a(t) = αDDREC,aP (t) + βDDREC,a (32)

Tcntrl,a(t) =


Tmax,a,

Tmin,a,

Telas,a(t),

P (t) ≥ Pmax,a
P (t) ≤ 1

αDDREC,a
Tmin,a

otherwise
(33)

The linear controller is adjusted such that the temperature
set-point is a stepped approximation of the linear slope,
see Fig. 2. This reflects that standard TCAs do not have
linear control over temperature settings; for this paper the
appliances are assumed to operate in discrete steps of 0.5◦C.
The above formulation is for refrigeration appliances, where
higher temperature set point are used in periods of high prices
to reduce energy consumption with the reverse strategy is used
for heating appliances, such as DHW heaters.
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m
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Fig. 2. Dynamic Demand Response Elastic Controller for a Domestic Hot
Water Heater

V. MODEL IMPLEMENTATION

A. Input Data

Whilst there are obvious advantages to bottom-up load
modeling techniques, a disadvantage is the extensive data
requirements needed. However, this data is becoming more
readily available with increased communications, smart grid
and load monitoring trials. For the activity profiles and occu-
pancy transition matrices, these can be extracted from national
time-use survey data. Appliance ownership and operation can
be extracted from a combination of national statistical data and
detailed load monitoring surveys. Thermal appliance resistance
and capacitance can be calculated using a bottom up approach,
using commonly available information on mass, typically
water, and insulation material. Electrical load monitoring is
becoming increasingly prevalent in the literature, and is fre-
quently being conducted on a per-appliance data; it is these
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Fig. 3. Overall model implementation and basic flow chart describing key inputs (i/p) and outputs (o/p) of each module for residential appliances (Appl.).

data that can be used for the time-variant load model. For this
paper Republic of Ireland data is primarily used, and when not
available, UK data is used as the two countries have similar
temperate, economic and social characteristics [28].

B. Model Platform
The model was implemented in MATLAB, [34], and a

steady-state three-phase unbalanced load flow for a test dis-
tribution network run in Power Factory [35]. A flow-chart
of the load model is given in Fig. 3, the time step for the
model is of one minute, and appliance category and associated
activities are shown in Table I. The random variables used to
test the switch-on probability of any appliance are created in
MATLAB using a uniform distribution between 0 and 1, the
random number generator is seeded for each simulation such
that they can be directly comparable, i.e. going from a flat-
tariff to a DAP simulation the test random variables are the
same. Some notable areas of difficulty can be dealing with both
the memory requirements and time to run these simulations.
These problems can both be minimized through parallelisation
for increased speed and implementation of sparse matrices for
cumbersome data arrays. MATLAB is used to simulate the
load model demand, producing active, reactive and polynomial
electrical load model data with automated communication to
Power Factory via .csv files for power flow analysis.

VI. CASE STUDY

A case study for a typical Irish suburban residential distribu-
tion network is presented, examining multiple scenarios of dif-
ferent levels of DR under the three different pricing schemes,

Table I
APPLIANCES & MODEL CATEGORIES

THERMAL WET DHW

(1.) Freezer, Fridge-freezer, 
Refrige rato r, S to rage hea te rs      
(2.) Space Hea ting

(3.) Dis h Was her                      
(6.) Tumble  Dryer, Was hing 
Machine

(8.) Immers io n 
Heate r

GENERAL AP P LIANCES

(2.) CD P layer, CE Appliances , S te reo , ICT Appliances , Ke ttle , Lapto p, 
Co mpute r, P rinter, Te lepho ne . (3.) Ho b, Kitchen Heating, Kitchen Mo to rs , 
Micro wave , Oven (4.) Cleaning Appliances , Vacuum (5.) Iro n (7.) DVD, Games  
Co ns o le , Se t-to p Bo x, TV 1, TV 2 o r mo re  (8.) Elec tric  Sho wer, Ha ir Dryer

ACTIVITIES

(1.) Independent (2.) Ac tive  (3.) Co o king (4.) Ho us e  C leaning (5.) Iro ning (6.) 
Laundry (7.) TV (8.) Was hing/Dres s ing

with the flat rate tariff used as a base case for comparison.
Energy regulators are currently investigating mandating the
use of these dynamic pricing signals and smart metering
technologies [27]. The simulation is run for a Winter week,
as this typically represents the highest loading conditions for
the network as heating and lighting loads are at their most
prevalent.

A. Test Network

The test network is a LV suburban residential distribution
feeder in Dublin, Ireland. The LV substation serves a total
of 85 nodes, 11 of which are three-phase with the remaining
74 being single-phase customer nodes, Fig. 4. The network in-
cludes a 400 kVA, 10/0.4 kV step-down transformer supplying
the customer nodes through 1.2 km of 3-phase copper mains
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cables and 980 m of single-phase copper service cables. The
Irish distribution network is operated at a nominal voltage of
230/400 V with a tolerance of +/- 10%, giving a minimum
and maximum allowable line to ground voltage of 207 V and
253 V respectively as specified by Electricity Supply Board
Networks [36]. The mains cable has a three-phase maximum
current rating of 424 A and the maximum import capacity for
average domestic households is 12 kVA. To capture the voltage
drop and profile at the LV side of the distribution transformer
accurately two three-phase lumped loads are modeled, at the
0.4 kV and 10 kV side of the distribution transformer, with
74 and 1628 customers respectively. This configuration allows
for greater accuracy in the medium voltage (MV) line flows
between the LV network and the primary substation, which
has tap changing abilities and regulates its MV side voltage
to 1.045 per unit.

�������������������
�������������������

External Grid

10 kV

0.4 kV

400 kVA Transformer
1

2

34567

8

9 10

Three Lumped Phase Load
Domestic Load Phase A
Domestic Load Phase B
Domestic Load Phase C

Fig. 4. Test urban distribution network

B. Pricing Schemes

The TOUP signal used is tariff D from the Consumer
Behavior Trial conducted by the Irish Commission for Energy
Regulation (CER), that tariff was chosen as it has the biggest
peak to day tariff price differential [37]. The reference price,
P0, was taken to be 18.5 cents/kWh price and is also the price
for the flat rate tariff [37]. For the DAP price signal, the paper
uses Winter data for the corresponding period for the ex-ante
system marginal price DAP price, that is released 24 hours in
advance by the Irish Single Electricity Market Operator [38].
The price signal is of half hourly resolution, and is altered to
include the distribution use of system charge that would be
experienced by residential customers.

C. Consumer Characteristics

For the simulations in this paper elasticity coefficients for
self and cross elasticity of -0.3 and 0.001667 are chosen based
on a review of values of elasticity of electricity demand and
a shifting window, W , of 90 minutes representing a lossless
simulation [39]. This results in the total period in which a
consumer will consider substituting their demand to be a
3 hour moving horizon, with customers willing to consider
shifting their demand forward or back an hour and a half
from their current time step. Global irradiance data used for
the lighting model was data of 15 minute resolution from
a Dublin weather station close to the LV network, with the
data corresponding to the Winter week used for the DAP
signal. Water heating is a significant load proportion and
76% of households in Ireland have electric immersion heaters

[40], [41]. From available data only 10% of households use
immersion heaters in the Winter months, due to winter use of
central heating systems, and 67% of these use timers which
mainly operate on a morning and evening cycle corresponding
to periods of hot water demand [40].

VII. RESULTS AND DISCUSSION

The developed methodology allows a high-resolution de-
tailed analysis to be conducted on the network impacts of price
based demand response for the residential sector, capturing
increased volatility in the demand profile due to step changes
in price.

A. Model Validation

The developed model was validated against data for the Irish
residential sector, validating both the load profile and energy
consumption per appliance sector [41]. Fig. 5 shows the model
load profile against Irish data for the residential sector for a
typical Winter weekday [42]. Comparing this data against the
model gives a Pearson correlation coefficient of 0.97 and a
mean absolute percentage error of 14.45% and a root-mean
square error of 7.6%. The annual energy consumption data for
each sector, [41], such as heating and cooling, was compared
against Irish data for the residential sector and all sectors
compared favorably within +/- 5% apart from the circulation
pumps and fans sector which was not modeled and accounts
for approximately 4% of average annual residential energy
consumption.
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Fig. 5. Model generated average household Winter demand profile and
composition validation against CER Data [42]

B. Price Demand Response

The three different elements of price response modeled
in this paper each present different characteristic effects on
demand and electrical diversity. Coupled with the elastic
response (ER) different penetration levels of automatic de-
mand response (ADR) are examined, with the analysis here
presenting adoption rates of the control strategies presented in
Section IV in steps of 20%.
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Fig. 6. (a) TOUP Signal and (b) Demand response composition for elastic
consumers for the entire network with 50% penetration of automatic demand
response compared against the base case scenario.

Fig. 7. (a) DAP Signal and (b) Demand response composition for elastic
consumers for the entire network with 50% penetration of automatic demand
response compared against the base case scenario.
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Fig. 8. Change in (a) Active(P ) and (b) Reactive(Q) power flows at the MV
side of the distribution transformer under each scenario for TOUP signal.

Fig. 9. Change in (a) Active(P ) and (b) Reactive(Q) power flows at the MV
side of the distribution transformer under each scenario for DAP signal.

1) Elastic Demand: Through the comprehensive modeling
techniques developed in this paper it is shown that there is
low potential to shift elastic demand to off peak hours, as
there is traditionally lower levels of occupancy and low activity
preferences for these hours. The duration of appliances heavily
effects the magnitude and duration of pre and post-peak price
rebounds. The pre-peak rebound tends to be more diversified
whilst the post peak rebound tends to have a large coincidental
operation of appliances as the duration of demand is no longer
a major determining factor in switch-on probability.

2) Thermostatic Controls: Dynamic pricing schemes cou-
pled with thermostatic control introduces cold load pick-up
effects traditionally seen in network restoration, with water
heating primarily affecting active power demand and refriger-
ation appliances also significantly affecting the reactive power

demand profile. As refrigeration appliances constituent the
main reactive power demand in LV networks, particularly
when wet appliances have been optimally scheduled to be off
peak, any control actions within this sector causes large scale
reactive power fluctuations, see Fig. 8 and Fig. 9. The pre and
post-peak rebounds cause significant voltage dips due to the
increase in active power demand.

3) Optimal Scheduling: Wet appliances are optimally
scheduled subject to the consumer constraints in Section IV.
Typically they are scheduled to off-peak hours, but cascaded
operation create new spikes in demand, as can be seen in
Fig. 6 and Fig. 7. Furthermore, these appliances have similar
electrical characteristics, typically operating a resistive element
followed by motor operation, leading to reduced electrical
diversification when the coincidence of operation is increased.
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C. Network Impacts

The introduction of dynamic pricing schemes introduce the
effects of rebound peaks, synchronizing of appliances and cold
load pick-up effects that have impacts on network loading,
voltage profile and voltage unbalance.

1) Line Loading: Incidents of high loading are increased
under dynamic pricing with pricing effects affecting normal
loading distribution, see Fig. 10. This is particularly due to
the operation of thermostatically controlled devices reacting to
peak pricing signals. Although loading increases there is low
risk of causing any major problems as LV lines are typically
conservatively rated.
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Fig. 10. Logarithmic plot of the total percentage duration curve of voltage
and loading conditions under a TOUP for (a) Phase C Loading on Line 1-2
(b) Phase C Voltage at Pillar 9.

2) Voltage Deviation: The increased volatility of active
power and reactive power demand results in a redistribution in
the voltage profile, see Fig. 10. This is prevalent around peak
tariff periods, causing significant short-term voltage dips. The
reactive power demand profile is primarily affected due to the
thermostatic price response control of refrigeration appliances
which typically have low power factors. There is a marginal
increase in voltage unbalance under dynamic pricing schemes,
as although load diversity decreases, thermal loading on each
phase becomes more a function of the appliance composition
on that line, as their operation becomes synchronized.

3) Load Diversity: Fundamentally the introduction of dy-
namic pricing reduces diversity of demand, increasing coin-
cidental response and promoting the same characteristics of
response among consumers and automatic appliances. Table
II shows the effect of the different scenarios on maximum
demand (MD), after-diversity maximum demand (ADMD) and
the load factor (LF) for the entire network of customers in the
case study. It can be seen that maximum demand increases in
all scenarios, and up to 30% in the full roll out of automatic
appliances under time-of-use pricing.

D. Welfare Analysis

The consumer savings are less than 10% in all cases, see
Table III for the weekly energy expenditure in all cases with

Table II
LOAD METRICS UNDER DIFFERENT PRICE SIGNALS

MD 
(kW)

ADMD 
(kW)

LF
MD 
(kW)

ADMD 
(kW)

LF

Bas e Cas e 2055 1.26 0.50 2055 1.26 0.50

ER 2108 1.29 0.48 2140 1.31 0.48

ER & 20% ADR 2180 1.34 0.47 2134 1.31 0.48

ER & 40% ADR 2321 1.43 0.44 2155 1.32 0.47

ER & 60% ADR 2423 1.49 0.42 2197 1.35 0.46

ER & 80% ADR 2547 1.56 0.40 2239 1.38 0.45

ER & 100% ADR 2687 1.65 0.38 2338 1.44 0.43

TOU DAP

Cas e :

customers broken down between those with electric domestic
hot water (DHW) heating and those without. The greatest
savings on weekly expenditure are seen to be 8% with elastic
consumer response and full installation of price controllers for
wet appliances and TCAs.

Table III
WEEKLY CONSUMER ELECTRICITY PAYMENT (EURO) UNDER DIFFERENT

PRICE SIGNALS AND LEVELS OF RESPONSE

Res po ns e: Cus to mer: F la t Tariff TOU DAP

No  DHW 21.20 21.80 16.12

DHW 15.09 15.83 11.76

No  DHW - 21.25 15.79

DHW - 15.54 11.66

No  DHW - 20.09 14.89

DHW - 14.94 11.22

No  Res po ns e

ER

ER & ADR

In the individual automatic response categories, wet appli-
ances provide the greatest value in response, with savings of
over 25% seen on the budget for that sector. Refrigeration
appliance response to prices saves in the region of 12%, and
water heating controls saving in the region of 10%.

VIII. CONCLUSION

Quantifying the impact that dynamic pricing schemes will
have on consumer demand, and consequently distribution
network operation, is a difficult and important challenge.
Consumer trials are difficult to implement, and rigorous
comparisons between demand under different scenarios is
compounded by the lack of complete knowledge of con-
sumer utility and environmental factors. This paper presents
a comprehensive high-resolution model for simulating both
the elastic and automatic price responsiveness of demand.
The developed modeling methodology enables the network
impacts of dynamic pricing strategies to be analyzed and it is
shown that the dynamic pricing signals in this paper increase
maximum demand by decreasing both diversity of demand and
the electrical load. This erosion of load diversity is of concern
as it is this assumed diversity of demand that distribution
networks were originally designed. This calls into question the
motivation for the wide-scale introduction of dynamic pricing
schemes, however, the effects seen on LV networks need to be
consolidated with the potential benefits, or otherwise, of such
schemes to the high-voltage transmission network.
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