<table>
<thead>
<tr>
<th>Title</th>
<th>Should stress management be part of the clinical care provided to chronically ill dogs?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors(s)</td>
<td>Nicholson, Sandra L.; Meredith, Joanne E.</td>
</tr>
<tr>
<td>Publication date</td>
<td>2015-12</td>
</tr>
<tr>
<td>Publication information</td>
<td>Journal of Veterinary Behavior: Clinical Applications and Research, 10 (6): 489-495</td>
</tr>
<tr>
<td>Publisher</td>
<td>Elsevier</td>
</tr>
<tr>
<td>Item record/more information</td>
<td>http://hdl.handle.net/10197/8239</td>
</tr>
<tr>
<td>Publisher's statement</td>
<td>This is the author's version of a work that was accepted for publication in Journal of Veterinary Behavior: Clinical Applications and Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Veterinary Behavior: Clinical Applications and Research (VOL 10, ISSUE 6, (2015)) DOI: 10.1016/j.jveb.2015.09.002.</td>
</tr>
<tr>
<td>Publisher's version (DOI)</td>
<td>10.1016/j.jveb.2015.09.002</td>
</tr>
</tbody>
</table>
Should stress management be part of the clinical care provided to chronically ill dogs?

Sandra L. Nicholson¹ and Joanne E. Meredith²

¹, ²Bishop Burton College, York Road, Bishop Burton, Beverley, HU17 8QG, England, United Kingdom

¹Present address: Room 240 Veterinary Sciences Centre, School of Veterinary medicine, University College Dublin, Belfield, Dublin 4, Ireland
Abstract

As a consequence of their physical and/or psychological effects, on-going diseases have the potential to elicit chronic stress in dogs. Chronic stress may contribute to disease progression and negatively affect welfare. By investigating whether on-going illnesses cause chronic stress in dogs and exploring the relationship between hair cortisol and potential disease-dependent and disease-independent stressors, this research aimed to determine if stress management should be integrated into veterinary care. Hair samples were collected from 33 dogs to assess cortisol levels (Ill n = 16; 12 non-black and 4 black; healthy n = 17; 12 non-black and 5 black) using a commercially available biochemical assay. In addition, a questionnaire was distributed to the owners of these dogs to gather information on pet care, chronic stress behaviours and disease characteristics. The hair cortisol levels of black and non-black dogs did not differ significantly (U = 89, df = 31, p = 0.442). Data were therefore pooled for further analysis. Significant differences were not found in the hair cortisol levels of chronically ill compared to healthy dogs (t = -0.655, df = 30, p = 0.517) or the number of dogs with chronic stress behaviours in each group ($\chi^2 = 0.667, df = 1, p = 0.414$). Ill dogs with disease signs or lifestyle restrictions did not have significantly different hair cortisol levels to those without them (signs: $t = 0.321, df = 14, p = 0.753$; lifestyle restrictions: $t = 0.154, df = 14, p = 0.880$). Hair cortisol was not significantly related to the number of veterinary visits ($r_s = -0.152, df = 31, p = 0.397$). However, it was significantly correlated with the length of time regularly left alone in healthy and chronically ill dogs ($r_s = 0.417, df = 31, p = 0.016$). In addition, the hair cortisol levels of healthy dogs were significantly correlated with time regularly left alone in single dog ($r_s = 0.726, df = 7, p = 0.027$), but not multidog households ($r_s = 0.528, df = 6, p = 0.179$). Further research with a larger sample size is required to confirm our findings. Nonetheless, as chronic stress may be detrimental to the health of dogs, lifestyle factors, such as the social environment and time regularly left alone, should be taken into consideration when planning canine veterinary care.

Keywords

Dog, welfare, chronic disease, chronic stress, hair cortisol, time left alone
1. Introduction

A chronic disease is a persistent illness of more than one week’s duration (Blood et al., 2007). Many chronic diseases in dogs can only be managed, rather than cured, and some are also progressive (Blood et al., 2007). Veterinarians often focus on physical health (Wojciechowska et al., 2005) but may not consider the role of stress in the disease process and in patient welfare. This is hardly surprising, as very little research exists on the relationship between stress and disease in dogs. Previously, 2 independent research groups found that dogs with non-adrenal diseases had significantly higher acute stress levels than healthy controls (plasma cortisol levels; Church et al., 1994; urinary cortisol: creatinine ratios; Kaplan et al., 1995). Indeed, based on their results, Kaplan et al. (1995) concluded that the stress response is a necessary adaptation to disease. However, Mc Ewen (2005) notes that although short-term, moderate stress (allostasis) may be beneficial, as it allows the individual to adapt to change, prolonged or excessive stress (or allostatic overload) may contribute to disease processes. Results from a study by Dreschel (2010) appear to support this. She found that stressful behavioural conditions in dogs were predictive of skin disorders (non-social fear and separation anxiety) and a shortened lifespan (stranger-related fear) (Dreschel, 2010). Although the effects of chronic stress on canine disease processes are currently unknown, one may theorise based on the physiological effects of the stress response. The stress hormones, adrenaline and cortisol, stimulate a shift in immunity from a cellular type to a humoral type (Elenkov and Chrousos, 1999). This may increase vulnerability to infections (Korte et al., 2005), trigger or exacerbate autoimmune disease (Elenkov and Chrousos, 1999) and facilitate the growth and metastasis of neoplasms (Elenkov and Chrousos, 1999). Cortisol increases blood glucose (Becker et al., 2002), which may be problematic for animals with diabetes mellitus. In addition, cortisol impedes wound healing (Tennant, 2002). Prolonged sympathetic activity may have negative cardiovascular effects (arrhythmia, endothelial damage, hypertension; Esch et al., 2002). Inflammatory diseases may directly stimulate stress via the release of cytokines (O’Connor et al., 2000). Disease may also cause stress indirectly, through unpleasant clinical signs or undesirable lifestyle changes. Ursin and Eriksen (2004) note that stress may be caused by stimuli perceived as aversive or unmet expectations. In addition, everyday stressors unrelated to disease may affect the health of chronically ill dogs.
Previously, the confounding effects of acute stressors and the need for repeated sampling created difficulties for canine chronic stress research (Davenport et al., 2006). However, hair cortisol has recently been validated as a biomarker for chronic stress in dogs (Accorsi et al., 2008; Bennett and Hayssen, 2010). It is insensitive to acute stressors (Bennett and Hayssen, 2010) and provides an average of the individual’s cortisol response over the period of hair growth (Accorsi et al., 2008).

Unless related data or precise time periods are involved, a single sample per subject is sufficient (Bennett and Hayssen, 2010). Minimal restraint is required for sampling and hair is straightforward to collect and store (Accorsi et al., 2008). However, no normal range exists for dogs. In addition, as hair colour may affect cortisol content (black hair contains less cortisol than agouti hair, which contains less than yellow hair; Bennett and Hayssen, 2010), it is important to standardise coat colour. Behavioural indicators of chronic stress may be used in combination with hair cortisol, to reduce the risk of obtaining false positive or negative results (Beerda et al., 1997; Dawkins, 2006). Unfortunately, the limited indicators available in the literature (Beerda et al., 1999a, 2000) are based on kennelled dogs, rather than pet dogs at home. There is also significant overlap between the behavioural signs of canine chronic stress and compulsions or stereotypies. Autogrooming (Beerda et al., 1999a) may also be difficult to interpret in cases with atopy. Although stereotypic behaviours may be caused by chronic stress or conflict (Luescher, 2000), they may not occur in all individuals, and once triggered, may continue in the absence of an on-going stressor (Mason and Latham, 2004). An owner-completed questionnaire can be a good method for gathering information on chronic stress behaviours in pet dogs, as it harnesses the owners’ knowledge of their behaviour over time and across contexts, and avoids the observer effect (Meagher, 2009). To investigate whether stress management should be integrated into veterinary care, this research compared the chronic stress levels of chronically ill and healthy dogs and investigated potential stressors. It was hypothesised that the levels of chronically ill dogs would be significantly higher than those of healthy dogs, and would be influenced by disease-dependent and disease-independent stimuli.
2. Materials and methods

2.1 Subjects

Thirty-three dogs participated in the research, which was carried out in June 2013. All dogs were pet dogs from Dublin, Ireland. Chronically ill subjects were recruited from the charity veterinary clinic of the North County Dublin Society for the Prevention of Cruelty to Animals (NDSPCA) and healthy dogs were recruited from the NDSPCA and the general public. Both sexes were represented (14 males, 19 females) and most dogs were neutered (27 dogs, 82%). Ages ranged from 2 to 15 years and a variety of breeds were included. Chronically ill dogs (n = 16) comprised the test group and healthy dogs (n= 17) served as the control group. Of the chronically ill dogs, 5 had osteoarthritis, 5 had cardiac failure, 2 had ocular cataracts, 1 had liver disease, 1 had atopic dermatitis, 1 had chronic bronchitis and 1 had neoplasia (perianal adenoma or carcinoma; not diagnosed histopathologically) and osteoarthritis. As Bennett and Hayssen (2010) found that black hairs contained significantly less cortisol than yellow (non-black) hairs, dogs were also initially subcategorised based on hair colour. Therefore, 4 groups were created; chronically ill non-black-haired dogs (n= 12; 9 females, 3 males), chronically ill black-haired dogs (n= 4; 3 females, 1 male), healthy non-black-haired dogs (n= 12; 4 females, 8 males) and healthy black-haired dogs (n= 5; 3 females, 2 males).

2.2 Inclusion criteria

For dogs to be included in the study a number of criteria needed to be met. Chronically ill and healthy dogs were required to be older than two years of age, as cortisol levels are significantly lower in puppies compared to adult or geriatric dogs (Palazzolo and Quadri, 1987). To ensure that each owner was fully aware of their dog’s health status, dogs must have been in their owners’ possession for at least three months prior to the commencement of the study. Dogs with agouti hairs could not participate, as agouti hairs contain a moderate amount of cortisol (Bennett and Hayssen, 2010) and may confound the interpretation of statistical test results. Dogs who had suffered from acute illnesses within the previous three months were excluded from participation, as acute illnesses may affect cortisol levels (Church et al., 1994; Kaplan et al., 1995). Recent experience of acute illness was determined by history taking. Dogs in the healthy group must have had a non-remarkable veterinary examination within the previous year. Additional inclusion criteria also
applied to chronically ill dogs. To participate, a veterinarian must have diagnosed
their chronic illness 3 or more months before the start of the study. As hair grows at
the rate of approximately one centimetre per month (Wennig, 2000), the latter
precaution was included to avoid accidentally sampling hair growth from the period
before the onset of disease. Dogs with hormonal disease (apart from diabetes
mellitus), or those on medications that could affect cortisol levels (for example,
steroids, phenobarbitone, progestagens) or interfere with the assay were also
excluded from participation.

2.3 Behaviour, Health and Lifestyle Questionnaire

The owner of each dog was asked to complete a behaviour and health
questionnaire. The content validity of the questionnaire had previously been
confirmed by a behaviourist and by an experienced veterinarian; and its test-retest
reliability was also found to be excellent ($r_s= 0.97$, df = 5, $p<0.001$). Owners were
asked to score their dog on a presence or absence scale of behavioural indicators
of canine chronic stress (Table 1) and to indicate when the behaviour was first
observed. These indicators were obtained from Beerda et al. (1999a) and Luescher
(2004). However, 4 chronic stress behaviours (vocalisation, changes in locomotion,
a low posture and paw lifting; Beerda et al., 1999a) were excluded from the
questionnaire due to their lack of specificity to chronic stress (Beerda et al., 2000).
Owners of chronically ill dogs were asked to provide information on disease type,
duration of illness and medications being administered. Disease signs were scored
on a presence or absence scale and lifestyle restrictions caused by disease were
scored on an agree or disagree scale (Table 1). In addition, owners of all dogs were
asked to indicate the number of trips to the vet or periods of hospitalisation the dogs
had experienced during the previous year.
Table 1. Behaviour, health and lifestyle questions.

<table>
<thead>
<tr>
<th>Behaviours (Does your dog carry out any of the following behaviours regularly?)</th>
<th>Signs/symptoms (Does your dog regularly display any of the following symptoms?)</th>
<th>Lifestyle restrictions (Since becoming ill, my dog...)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Licking paws causing redness and/or irritation or injury</td>
<td>Pain</td>
<td>Doesn’t want to play as much as before</td>
</tr>
<tr>
<td>Grooming (lick, bite, scratch or suck) other areas of the body causing redness and/or irritation or injury.</td>
<td>Vomiting</td>
<td>His/her ability to exercise has reduced</td>
</tr>
<tr>
<td>Tail chasing (if behaviour not trained by owner)</td>
<td>Diarrhoea</td>
<td>Is not as eager to eat as before</td>
</tr>
<tr>
<td>Eating own faeces</td>
<td>Breathing problems</td>
<td>Growls, snaps or bites at dogs more than before</td>
</tr>
<tr>
<td>Eating the faeces of another dog</td>
<td>Coughing</td>
<td>Growls, snaps or bites at people more than before</td>
</tr>
<tr>
<td>Snapping at the air (not at a toy, person or animal)</td>
<td>Passing urine often</td>
<td>Sits next to family members less than before</td>
</tr>
<tr>
<td>Chasing light beams (when not playing with owner)</td>
<td>Drinking a lot</td>
<td></td>
</tr>
<tr>
<td>Turning repeatedly in a circle on the one spot (when not playing or trying to lie down)</td>
<td>Difficulty getting comfortable when sitting or lying down</td>
<td></td>
</tr>
<tr>
<td>Chasing shadows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suddenly snapping or biting at itself</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suddenly turning and staring intently at its rear end</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Behavioural indicators of chronic stress were based on those observed by Beerda et al. (1999a) and Luescher (2004). Items were scored on a presence/absence (behaviours and signs) or agree/disagree (lifestyle) scale.
2.4 Hair sampling

Hair samples were taken from all dogs by brushing (short-haired dogs) or trimming (long-haired dogs); approximately 300mg was obtained per subject. The cortisol extraction technique was adapted from that of Bennett and Hayssen (2010) and Davenport et al. (2006). Hair samples were not washed before the extraction process as washing may remove cortisol from the interior of the hair shaft (Davenport et al., 2006, Gow et al., 2010). The hair was powdered to maximise cortisol recovery (Davenport et al., 2006). Hair cortisol concentrations were determined using a DRG Diagnostics salivary cortisol ELISA test kit (DRG Instruments GMBH, Marburg, Germany) with a sensitivity of 0.537ng/ml (DRG Diagnostics, 2007). Units (ng/ml) were subsequently converted to pg/mg hair.

2.5 Statistical analyses

All statistical analysis was carried out using IBM SPSS Statistics for Windows, Version 21 (IBM Corporation, Armonk, NY). The level of significance was set at p < 0.05. The Chi Square test was used for categorical data (comparison of the number of stress behaviours performed by dogs in the chronically ill or healthy groups). Parametric tests were used for ratio or interval data when the conditions for normality (determined by Kolmogorov-Smirnov test) and equality of variance (determined by Levene’s test) were met. Parametric tests were therefore performed to test for a significant difference in the ages of ill and healthy dogs and the hair cortisol levels of ill and healthy dogs, dog with and without chronic stress behaviours, ill dogs with and without current signs or lifestyle restrictions, male and female dogs and dogs from single or multidog households (Independent samples t test). A parametric test was also selected to search for a significant relationship between age and hair cortisol (Pearson correlation) and between time regularly left alone and hair cortisol levels, including in single and multidog households. When the conditions for normality were not met, non-parametric tests were selected (Mann-Whitney U test for the hair cortisol levels of black-haired and non-black-haired dogs and the number of trips made to the vet by chronically ill and healthy dogs; Spearman rank correlation for the relationship between time regularly left alone and hair cortisol levels, including in single and multidog households).
3. Results

3.1 Hair colour and cortisol levels
No significant difference was found in the hair cortisol levels of black and non-black dogs (U = 89, df = 31, p = 0.442). Therefore, hair colour data were pooled for further analysis.

3.2 Chronic stress levels of chronically ill and healthy dogs
Subject characteristics and individual hair cortisol levels are displayed in Tables 2 (ill dogs) and 3 (healthy dogs). The hair cortisol concentrations of the ill dogs ranged from 1.77pg/mg to 42.82pg/mg (15.22pg/mg ± 10.52; mean ± standard deviation). Excluding an outlier (42.82pg/mg) the range was 1.77pg/mg to 25.22pg/mg, with a mean and standard deviation of 13.38 pg/mg ± 7.7. The hair cortisol of the healthy dogs ranged from 1.70pg/mg to 28.79pg/mg (17.48pg/mg ± 8.95). The hair cortisol levels of the two groups did not differ significantly (t = -0.655, df = 30, p = 0.517) (the outlier was included in the statistical analysis). Overall, only 18% of dogs displayed chronic stress behaviours; this included 12.5% of chronically ill dogs (2 dogs) and 23.5% of healthy dogs (4 dogs) (see Tables 2 and 3). No significant difference was found in the number of chronic stress behaviours displayed in each group ($\chi^2 = 0.667, df = 1, p = 0.414$). In addition, dogs performing chronic stress behaviours did not have significantly different hair cortisol concentrations to those not performing them (t = 1.377, df = 31, p = 0.179).

3.3 Disease-dependent factors and hair cortisol levels
Of the chronically ill dogs, 62.5% (10 dogs) experienced signs of clinical disease (see Table 2). However, dogs with clinical signs did not have significantly different hair cortisol levels to those without them (t = 0.321, df = 14, p = 0.753). Eighty-one per cent of chronically ill dogs (13) had lifestyle restrictions imposed by disease. Dogs experiencing lifestyle restrictions did not have significantly different hair cortisol concentrations to dogs not experiencing these (t = 0.154, df = 14, p = 0.880). Three ill dogs but no healthy dogs had been hospitalised within the previous year. Unsurprisingly, chronically ill dogs visited the vet highly significantly more often than healthy dogs (U = 52, df = 31, p = 0.001). However, hair cortisol levels were not significantly related to the frequency of visitation ($r_s = -0.152, df = 31, p = 0.397$).
Table 2: Characteristics and hair cortisol levels of ill dogs

<table>
<thead>
<tr>
<th>Subject No.</th>
<th>Breed</th>
<th>Disease type</th>
<th>Age (yrs.)</th>
<th>Sex</th>
<th>Neuter (Y/N)</th>
<th>Hair cortisol (pg/mg)</th>
<th>No. chronic Stress behaviours</th>
<th>No. of symptoms/symptoms</th>
<th>Type of symptoms/signs</th>
<th>No. of lifestyle restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Crossbreed</td>
<td>Cardiac failure</td>
<td>9</td>
<td>F</td>
<td>Y</td>
<td>1.77</td>
<td>0</td>
<td>1</td>
<td>Dyspnoea</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Crossbreed</td>
<td>Osteoarthritis</td>
<td>9</td>
<td>F</td>
<td>Y</td>
<td>20.80</td>
<td>0</td>
<td>2</td>
<td>Pain</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Labrador Retriever</td>
<td>Osteoarthritis</td>
<td>13</td>
<td>F</td>
<td>Y</td>
<td>7.92</td>
<td>0</td>
<td>1</td>
<td>Pain</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Labrador Retriever</td>
<td>Chronic Bronchitis</td>
<td>10</td>
<td>F</td>
<td>Y</td>
<td>11.05</td>
<td>0</td>
<td>1</td>
<td>Coughing</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Springer Spaniel</td>
<td>Cardiac failure</td>
<td>14</td>
<td>F</td>
<td>Y</td>
<td>10.87</td>
<td>0</td>
<td>2</td>
<td>Polydipsia Discomfort</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Crossbreed</td>
<td>Osteoarthritis</td>
<td>7</td>
<td>F</td>
<td>Y</td>
<td>10.72</td>
<td>0</td>
<td>0</td>
<td>None</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Crossbreed</td>
<td>Atopy</td>
<td>4</td>
<td>F</td>
<td>Y</td>
<td>3.03</td>
<td>3</td>
<td>0</td>
<td>None</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Shih Tzu</td>
<td>Cardiac failure</td>
<td>9</td>
<td>M</td>
<td>N</td>
<td>7.66</td>
<td>1</td>
<td>3</td>
<td>Diarrhoea Coughing Polyuria</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Crossbreed</td>
<td>Neoplasia and osteoarthritis</td>
<td>15</td>
<td>M</td>
<td>Y</td>
<td>42.82</td>
<td>0</td>
<td>3</td>
<td>Coughing Tachypnoea Discomfort</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Crossbreed</td>
<td>Ocular cataracts</td>
<td>2</td>
<td>F</td>
<td>Y</td>
<td>25.22</td>
<td>0</td>
<td>0</td>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>King Charles Spaniel</td>
<td>Cardiac failure</td>
<td>10</td>
<td>M</td>
<td>N</td>
<td>3.31</td>
<td>0</td>
<td>5</td>
<td>Diarrhoea Dyspnoea Coughing Polyuria Polydipsia</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>Crossbreed</td>
<td>Liver disease</td>
<td>10</td>
<td>F</td>
<td>Y</td>
<td>19.22</td>
<td>0</td>
<td>2</td>
<td>Polyuria Polydipsia</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>Jack Russell Terrier</td>
<td>Cardiac failure</td>
<td>13</td>
<td>F</td>
<td>Y</td>
<td>19.75</td>
<td>0</td>
<td>0</td>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>Labrador Retriever</td>
<td>Ocular cataracts</td>
<td>10</td>
<td>F</td>
<td>Y</td>
<td>23.56</td>
<td>0</td>
<td>0</td>
<td>None</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>Crossbreed</td>
<td>Osteoarthritis</td>
<td>6</td>
<td>F</td>
<td>Y</td>
<td>15.79</td>
<td>0</td>
<td>0</td>
<td>None</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>Crossbreed</td>
<td>Osteoarthritis</td>
<td>8</td>
<td>M</td>
<td>Y</td>
<td>20.02</td>
<td>0</td>
<td>1</td>
<td>Pain</td>
<td>2</td>
</tr>
</tbody>
</table>
Table 3: Characteristics and hair cortisol levels of healthy dogs

<table>
<thead>
<tr>
<th>Subject No.</th>
<th>Breed</th>
<th>Age (yrs.)</th>
<th>Sex</th>
<th>Neuter (Y/N)</th>
<th>Hair Cortisol (pg/mg)</th>
<th>No. Chronic Stress behaviours</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Labrador Retriever</td>
<td>6</td>
<td>F</td>
<td>Y</td>
<td>17.48</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>Border Collie</td>
<td>7</td>
<td>M</td>
<td>Y</td>
<td>25.56</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>King Charles Spaniel</td>
<td>6</td>
<td>F</td>
<td>Y</td>
<td>20.23</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>Terrier (West Highland)</td>
<td>5</td>
<td>M</td>
<td>Y</td>
<td>17.66</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>Cocker Spaniel</td>
<td>5</td>
<td>M</td>
<td>N</td>
<td>12.58</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>Springer Spaniel</td>
<td>4</td>
<td>M</td>
<td>Y</td>
<td>28.50</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>Bichon Frise</td>
<td>2</td>
<td>F</td>
<td>N</td>
<td>4.33</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>Akita</td>
<td>5</td>
<td>F</td>
<td>N</td>
<td>28.79</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>Crossbreed</td>
<td>2</td>
<td>M</td>
<td>N</td>
<td>27.73</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>Labrador Retriever</td>
<td>5</td>
<td>M</td>
<td>Y</td>
<td>16.67</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>Crossbreed</td>
<td>2</td>
<td>M</td>
<td>Y</td>
<td>9.55</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>Crossbreed</td>
<td>5</td>
<td>M</td>
<td>Y</td>
<td>1.70</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>Labrador Retriever</td>
<td>10</td>
<td>M</td>
<td>Y</td>
<td>23.64</td>
<td>0</td>
</tr>
<tr>
<td>36</td>
<td>Springer Spaniel</td>
<td>2</td>
<td>F</td>
<td>Y</td>
<td>18.14</td>
<td>0</td>
</tr>
<tr>
<td>38</td>
<td>Crossbreed</td>
<td>6</td>
<td>F</td>
<td>Y</td>
<td>3.67</td>
<td>2</td>
</tr>
<tr>
<td>39</td>
<td>Golden Retriever</td>
<td>2</td>
<td>M</td>
<td>Y</td>
<td>23.48</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>Border Collie</td>
<td>7</td>
<td>F</td>
<td>N</td>
<td>10.87</td>
<td>0</td>
</tr>
</tbody>
</table>

M, male; N, no; F, female; Y, yes
3.4 Disease-independent factors and hair cortisol levels

There was no significant difference in the hair cortisol levels of male and female dogs (t = 1.274, df = 31, p = 0.212). Ill dogs were highly significantly older than healthy dogs (mean age of ill dogs = 9.31 years +/- 3.497 standard deviation; mean age of healthy dogs = 4.63 years +/- 2.247 standard deviation; t = 4.470, df = 31, p < 0.001). However, hair cortisol levels were not significantly related to age (r = 0.666, df = 31, p = 0.714). Chronically ill dogs were left alone for a mean time of 3.5 hours and the entire sample group was left alone for a mean time of 3.7 hours (± 2.87 standard deviation). There was no significant correlation between the hair cortisol concentrations of chronically ill dogs and the length of time they were regularly left alone (rs = 0.276, df = 14, p = 0.30). However, when the subject groups were considered together (both healthy and chronically ill subjects), hair cortisol levels were significantly and positively related to the length of time regularly left alone (rs = 0.417, df = 31, p = 0.016). In contrast, time regularly left alone could not significantly predict the presence of chronic stress behaviours (odds ratio = 0.862, p = 0.416). No significant difference was found in the hair cortisol levels of dogs from single or multiple dog households (t = -0.803, df = 31, p = 0.428) and hair cortisol levels were not significantly correlated with time regularly left alone in either single (rs = 0.452, df = 12, p = 0.104) or multidog households (rs = 0.400, df = 17, p = 0.089). However, the hair cortisol levels of healthy dogs were significantly correlated with time regularly left alone in single (rs = 0.726, df = 7, p = 0.027), but not multidog households (rs = 0.528, df = 6, p = 0.179).

4. Discussion

4.1 Hair colour and cortisol levels

In this study, hair cortisol concentrations did not significantly differ between black-haired and non-black-haired subjects. This contrasts with the results of Bennett and Hayssen (2010), who found that the hair cortisol levels of black dogs were significantly lower than those of non-black dogs. However, Bennett and Hayssen (2010) only studied German shepherd dogs and Labrador retrievers, while our subject group contained a greater variety of breeds, including crossbreeds. Our finding may simplify the experimental design of future research, as dogs with black hair may not need to be considered separately to those with non-black hair.
4.2 Chronic stress state of subjects

This research found that the hair cortisol levels of healthy and chronically ill dogs did not differ significantly. Chronic stress behaviours were only performed by a small number of dogs and there was no significant difference in their prevalence in each group. These results suggest that either both groups were chronically stressed or that neither were chronically stressed. The lack of a normal range of canine hair cortisol, the current scarcity of published research applying this technique, and the lack of standardisation in hair cortisol extraction and assay methods, create difficulties for interpretation. However imperfect, comparison to other studies is presently the only aid to interpretation. Bennett and Hayssen (2010) used similar cortisol extraction and assay techniques as the present study and had results similar to our findings [Bennett and Hayssen, 2010; old hair growth; 12.63 ± 5.45pg/mg mean ± standard deviation; present study; 15.22pg/mg ± 10.52; mean ± standard deviation (ill), 17.48pg/mg ± 8.95 (healthy)]. Although the health status of their subject dogs was not disclosed, their sample group were living in a home environment and the majority were not exposed to any major stressors (with the potential exception of 2 dogs who had recently weaned puppies and 2 dogs who were guide dogs). Accorsi et al. (2008) found a much lower mean hair cortisol concentration in dogs (2.10 ± 0.22pg/mg). However, their hair samples were minced, rather than powdered, and this may result in lower cortisol extraction yields (Bennett and Hayssen, 2010). In addition, they used a radioimmunoassay rather than an enzyme immunoassay and this too may account for the disparity in results (Bennett and Hayssen, 2010). Although Siniscalchi et al. (2013) used the same cortisol extraction and assay techniques as Accorsi et al. (2008) they found much higher hair cortisol levels (10:00 hour = 65.53pg/mg + 21.49 mean + standard error; 17:00 hour = 96.01pg/mg + 9.57; originally presented in pM/g). Indeed their results were also much higher than those of Bennett and Hayssen (2010), and those of the current study. However, Siniscalchi et al. (2013) exposed their subjects to various acoustic stimuli, including noise from a simulated thunderstorm, and hair cortisol was measured two weeks later. At 9 am hair cortisol levels were significantly and positively correlated with acute stress behaviours displayed during stimuli presentation, likely reflecting a state of chronic stress caused by the sounds (Siniscalchi et al., 2013). As the hair cortisol levels from dogs in a normal home environment (Bennett and Hayssen, 2010) were similar to those in our study and as the levels of stressed dogs (Siniscalchi et al., 2013) were much higher, we may
deduce that the subjects in our research were not chronically stressed. The absence of a chronic stress response to on-going disease is curious given that Church et al. (1994) and Kaplan et al. (1995) found significantly higher cortisol levels in ill dogs compared to healthy dogs. However, the cortisol sampling methods employed by these studies (plasma cortisol, Church et al., 1994; urinary cortisol/creatinine ratio, Kaplan et al., 1995) identify acute stress but not chronic stress (Davenport et al., 2006). Also, neither research group distinguished acutely ill from chronically ill dogs for the purposes of testing (Church et al., 1994; Kaplan et al., 1995). One of our additional findings was that dogs performing chronic stress behaviours did not have significantly higher hair cortisol levels than dogs not performing any. The concept of animal “coping styles” (Koolhaas et al., 1999) may provide an explanation for this. Animals with proactive coping styles mount a sympathetic response to stress and are likely to react actively to stressors (Koolhaas et al., 1999). This may predispose them to the development of stereotypies (Koolhaas et al., 1999). In contrast, animals with reactive coping styles are likely to mount a cortisol response and avoid or withdraw from a stressor (Koolhaas et al., 1999).

4.3 Disease-dependent factors and chronic stress

A variety of diseases were included in our study (see Table 2). These included both progressive and nonprogressive diseases, of inflammatory and noninflammatory origin. Inflammatory diseases may directly trigger a stress response via the release of mediators such as cytokines (O’Connor et al., 2000). However, the consequences of any disease type may stimulate a stress response if negatively perceived by the animal (Ursin and Eriksen, 2004). In humans, it has been observed that individuals with chronic pain have significantly higher hair cortisol levels and perceived stress scores than pain-free controls (Van Uum et al., 2008). In addition, nausea was significantly correlated with perceived stress levels in pregnant women (Chou et al., 2008). However, in our research, ill dogs with clinical signs did not have significantly different hair cortisol levels to those without clinical signs. It is possible that some clinical signs (such as pain, vomiting or dyspnoea) may be inherently more stressful than others (such as polyuria and polydipsia), or that clinical signs are acutely or intermittently stressful. Alternatively, our small sample size may have influenced our results. In addition, some signs reported as being disease related may actually be side effects attributable to the patient’s medication (for example; polyuria and polydipsia may be caused by diuretics administered in cardiac failure). However, these too could cause stress if negatively perceived. As a discrepancy between an
animal’s environment and its expectations may stimulate stress (Dantzer and Mormède, 1983; Ursin and Eriksen, 2004), one might also expect on-going lifestyle restrictions to be a source of chronic stress. However, the hair cortisol concentrations of dogs with lifestyle restrictions were not significantly higher than those without them. Once again, however, our sample size may have affected our results. Disease severity (including severity of clinical signs and lifestyle restrictions) may be an important factor to consider, as Kaplan et al. (1995) observed that dogs with severe disease had significantly higher serum cortisol levels than dogs with mild to moderate disease. Our research did not specifically investigate this, because of the difficulties involved in gathering data for this purpose in multiple disease types. However, we did notice that one subject had a particularly high hair cortisol level (42.82 pg/mg). This subject was diagnosed with osteoarthritis and locally invasive anal neoplasia (possibly adenocarcinoma), on the basis of physical examination. His high hair cortisol concentration could be explained by the severity of his diseases and/or the presence of multiple disease types. Future research could investigate the relationship between disease severity and canine chronic stress and this may be simplified by focusing on single disease states. As none of our healthy subjects had been hospitalised within the previous year we were unable to study its effect on hair cortisol concentrations. However, we did examine the effect of visiting the veterinary clinic. Given that 78.5% of dogs display fearful behaviour upon visiting the veterinary clinic (Döring et al., 2009), it was surprising that in our subjects, hair cortisol was not significantly related to the number of trips made to the veterinarian during the previous year. This may be explained by habituation or by the triggering of only an acute stress response. Alternatively, it is likely that the samples collected were not representative of a full year’s hair growth.

4.4 Disease-independent factors and chronic stress

In our research we also investigated the effects of disease-independent variables on chronic stress levels. These included; age, gender, time left alone and the effect of living in a single or multidog household. Although our chronically ill subjects were highly significantly older than our healthy subjects, hair cortisol was not significantly related to age. This is in agreement with Palazzolo and Quadri (1987), who found no significant difference in the mean plasma cortisol levels of adult and old dogs. Although gender is not itself a stressor, it may influence stressor perception. Beerda et al. (1999b) observed that bitches had greater stress sensitivity than dogs, as demonstrated by an increased salivary cortisol response to a sound blast and higher
cortisol induction by corticotrophin releasing hormone. Therefore, gender could
ameliorate or enhance the effect of a disease-related or independent stressor.
However, this hypothesis could not be confirmed by the current research, as there
was no significant difference in the hair cortisol levels of male and female dogs.
Rehn and Keeling (2011) observed that canine greeting behaviour intensified with
an increasing length of owner absence, but were unable to attribute this to distress
caused by separation. Within our research, the hair cortisol levels of chronically ill
dogs were not significantly related to time regularly left alone. However, this was a
small sample group. When healthy dogs were considered in addition to chronically ill
dogs, hair cortisol levels were significantly and positively correlated with the length
of time regularly left alone. However, time regularly left alone could not significantly
predict the presence of chronic stress behaviours. To our best knowledge, this is the
first indicator that canine chronic stress levels may be affected by the duration of
owner absence. Because time regularly left alone accounts for only 17% of the
variability in hair cortisol, this should be interpreted with caution and future research
may be required to confirm this finding. Previous research found significantly higher
stress levels (Bennett and Hayssen, 2010; hair cortisol levels), or a tendency
towards this (Dreschel and Granger, 2005; salivary cortisol levels), in multidog
households compared to single dog households. In contrast, we did not find a
significant difference in the hair cortisol levels of dogs from single or multidog
households. Moreover, we identified a significant and positive interaction between
time regularly left alone and the hair cortisol levels of healthy dogs in single dog but
not multidog households. Canine relationships can be complex and it is possible
that there was low social stress within our multidog households. The company of
other dogs may also act as a buffer against the stress of being left alone. In the
study of Dreschel and Granger (2005), the salivary cortisol levels of dogs from
multidog households increased significantly less than those from single dog
households after exposure to a recorded thunderstorm. However, owing to our small
sample size and the lack of a similar finding in our pooled subject groups, it is
difficult to interpret the significance of this result. Nonetheless, it would seem
sensible to minimise time regularly left alone, especially if the dog is living in a single
dog household, as chronic stress may be detrimental to health (Dreschel, 2010;
McEwen, 2005).
5. Conclusions

Hair cortisol analysis has the potential to be an excellent biomarker of canine chronic stress, as it is unaffected by acute stressors and can determine individual chronic stress levels from single samples. The results from our study suggest that on-going diseases do not cause chronic stress in dogs. However, additional research is required to confirm our findings in individual disease states and to investigate the effect of disease severity on canine chronic stress levels. Time regularly left alone may affect the chronic stress levels of both healthy and chronically ill dogs and living in a single dog household may interact with time regularly left alone to influence the chronic stress levels of healthy dogs. However, further research with a larger sample size is needed to support our results. Nonetheless, as chronic stress may be detrimental to the health of dogs, lifestyle factors, such as the social environment and time regularly left alone, should be taken into consideration when planning canine clinical care.
Acknowledgements

This research was undertaken by Sandra Nicholson and submitted as partial fulfilment of the requirements of a Master of Science Degree to Bishop Burton College and the University of Hull. We would like to thank the staff of Bishop Burton College for their advice and assistance, including Dr. Kelly Yarnell, Dr. Adele Lloyd, Sandra Parkinson, Paddy Driscoll and Julie Durham. We are also grateful to Dr. Bahman Honari for his assistance with statistics. Finally, we would also like to thank the staff, volunteers, clients and patients from the charity clinic of the North County Dublin Society for the Prevention of Cruelty to Animals (NDSPCA) for their participation in this study. All authors have consented to the publication of this article and approved the final article. The idea for the study was conceived by Sandra Nicholson. The experiments were designed by Sandra Nicholson and Dr. Joanne Meredith. The experiments were performed by Sandra Nicholson. The data were analysed by Sandra Nicholson and Dr. Bahman Honari. The article was written by Sandra Nicholson and Dr. Joanne Meredith.

Ethical considerations

The Ethics and Welfare committee of Bishop Burton College approved this study in advance.

Conflict of Interest statement

The authors declare that there is no known conflict of interest associated with this research and there has been no significant financial support for this work that could have influenced its outcome.

References

