<table>
<thead>
<tr>
<th>Title</th>
<th>Does regional anaesthesia and analgesia or opioid analgesia influence recurrence after primary cancer surgery? An update of available evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors(s)</td>
<td>Ash, Simon A.; Buggy, Donal J.</td>
</tr>
<tr>
<td>Publication date</td>
<td>2013-12</td>
</tr>
<tr>
<td>Publisher</td>
<td>Elsevier</td>
</tr>
<tr>
<td>Item record/more information</td>
<td>http://hdl.handle.net/10197/8242</td>
</tr>
<tr>
<td>Publisher's statement</td>
<td>This is the author's version of a work that was accepted for publication in Best Practice and Research Clinical Anaesthesiology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Best Practice and Research Clinical Anaesthesiology (VOL 27, ISSUE 4, (2013)) DOI: 10.1016/j.bpa.2013.10.005.</td>
</tr>
<tr>
<td>Publisher's version (DOI)</td>
<td>10.1016/j.bpa.2013.10.005</td>
</tr>
</tbody>
</table>

Downloaded 2019-03-05T19:02:51Z

The UCD community has made this article openly available. Please share how this access benefits you. Your story matters! (@ucd_oa)

Some rights reserved. For more information, please see the item record link above.
Title: Does regional anaesthesia & analgesia or opioid analgesia influence recurrence after primary cancer surgery? An update of available evidence

Article Type: Issue 27.4

Keywords: anaesthesia; metastases; recurrence; cancer; regional; opioids; NSAIDs

Abstract: Cancer continues to be a key cause of morbidity and mortality worldwide and its overall incidence continues to increase. Anaesthetists are increasingly faced with the challenge of managing cancer patients, either for surgical resection to debulk or excise the primary tumour, surgical emergencies in patients on chemotherapy, or for the analgesic management of disease- or treatment-related chronic pain. Metastatic recurrence is a concern. Surgery and a number of perioperative factors are suspected to accelerate tumour growth and potentially increase the risk of metastatic recurrence. Retrospective analyses have suggested an association between anaesthetic technique and cancer outcomes, and anaesthetists have sought to ameliorate the consequences of surgical trauma and minimize the impact of anaesthetic interventions. Just how anaesthesia and analgesia impact cancer recurrence and consequent survival is very topical, as understanding the potential mechanisms and interactions impacts on the anaesthetist's ability to contribute to the successful outcome of oncological interventions.
Does regional anaesthesia & analgesia or opioid analgesia influence recurrence after primary cancer surgery? An update of available evidence

Simon A. Ash (First Author)
BSc, MBBCh, DA, FCA, MMed
Research Fellow
Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
Email: sleepmerchant@icloud.com
Tel: +44 87 183 5715

Donal J. Buggy (Corresponding Author)
MD, MSc, Dip Med Eld, FRCPI, FCAI, FRCA
Professor of Anaesthesia, School of Medicine & Medical Science, University College Dublin
Consultant in Anaesthesia, Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
Email: donal.buggy@ucd.ie

Conflict of interest statement:
None
ABSTRACT

Cancer continues to be a key cause of morbidity and mortality worldwide and its overall incidence continues to increase. Anaesthetists are increasingly faced with the challenge of managing cancer patients, either for surgical resection to debulk or excise the primary tumour, surgical emergencies in patients on chemotherapy, or for the analgesic management of disease- or treatment-related chronic pain. Metastatic recurrence is a concern. Surgery and a number of perioperative factors are suspected to accelerate tumour growth and potentially increase the risk of metastatic recurrence. Retrospective analyses have suggested an association between anaesthetic technique and cancer outcomes, and anaesthetists have sought to ameliorate the consequences of surgical trauma and minimize the impact of anaesthetic interventions. Just how anaesthesia and analgesia impact cancer recurrence and consequent survival is very topical, as understanding the potential mechanisms and interactions impacts on the anaesthetist’s ability to contribute to the successful outcome of oncological interventions.

Keywords: anaesthesia; metastases; recurrence; cancer; regional; opioids; NSAIDs
Introduction:

Cancer continues to be a key cause of morbidity and mortality worldwide and its overall incidence continues to increase, despite growing efforts towards its prevention and considerable advances in its treatment.

Worldwide in 2008, it was estimated almost 13 million new cancer cases were diagnosed and over 7 million people died from cancer. In the UK, over a third of people will develop some form of cancer during their lifetime and over 150,000 people died from cancer in 2010 (http://www.cancerresearchuk.org/cancer-info/cancerstats/keyfacts [Accessed 20 July 2013]). In the USA in 2013, it is estimated that over 1.6 million new cases will be diagnosed, and every day over 1,500 people will die from cancer.[1]

Anaesthetists are increasingly faced with the challenge of managing cancer patients, either for surgical resection to debulk or excise the primary tumour, the mainstay of treatment in many forms of cancer (particularly solid tumours), or for the analgesic management of disease- or treatment-related chronic pain in a proportion of the increasing number of people living with or overcoming cancer, concurrent with improvements in oncological therapies.[2-4]

Metastatic recurrence is a concern and occurs commonly. While the pattern of tumour growth is usually non-linear, with periods of dormancy alternating with periods of growth [5-8], surgery potentially alters this pattern. Examination of the hazard rate of recurrence subsequent to primary tumour resection has shown that while progression of initially dormant micro-metastases does not seem to be subject to direct induction by surgery, early recurrence during
the first two postoperative years may be.[9-13]

As surgery is suspected to accelerate tumour growth and potentially increase the risk of metastatic recurrence, anaesthetists have sought to ameliorate the consequences of surgical trauma and minimize the impact of anaesthetic interventions.[14] A number of perioperative factors have been suggested to directly affect tumour cells and impact on cell-mediated immunity potentially enhancing the risk of metastatic recurrence.[15-17] There is, therefore, a strong rationale for the development of perioperative techniques to lower the risk of cancer recurrence.

How anaesthesia and analgesia impact cancer recurrence and consequent survival is very topical,[4, 18-21] as understanding the potential mechanisms and interactions impacts on the anaesthetist’s ability to contribute to the successful outcome of oncological interventions.

How does metastasis occur and how might it be influenced?:

The metastatic process is intricate. Beginning with the detachment of metastatic cells from the primary tumour, metastasis depends on the essential processes of first angiogenesis, to establish an independent blood supply, and evasion of the host’s immune mechanisms. This culminates in proliferation of metastasis within a distant organ(s).[15]

Cancer cells result from a single cell rendered ‘genetically unstable’ by multiple cycles of division, mutated and susceptible to the acquisition of further mutations.[22] Mutation renders this cell resistant to the normal regulation of cell division, enabling uncontrolled cellular proliferation.[23] However, an evolving tumour cannot progress beyond a 2mm
diameter without angiogenesis occurring to meet its increasing metabolic requirements.[24]

The tumour releases pro-angiogenic factors, including vascular endothelial growth factor (VEGF) and prostaglandin E₂ (PGE₂), to initiate and maintain vascular and lymphatic angiogenesis leading to the formation of a new capillary network.[25]

A collection of cancer cells may then separate from the primary tumour mass and penetrate the neighboring tissues. Tumour cells enter the systemic circulation by breaching the basement membranes of thin-walled vessels, including lymphatics, heralding the conversion from benign carcinoma in-situ to invasive malignant tumour. Once within the systemic circulation, these cells then migrate to the capillary bed of a distant organ, where proliferation continues resulting in the formation of a tumour secondary (metastasis).

The conclusion of the metastatic process depends on the specific cancer’s metastatic predisposition (type, stage and site) and on a multitude of interactions between the tumour cells and the host’s immune system.

Interaction between the immune system and cancer cells:

The developing tumour induces an inflammatory state resulting in the recruitment of immune cells. Cell-mediated immunity forms the principle defense against cancer cell invasion, with less than one in a thousand invading cancer cells viable after 24 hours. However, even with intact immunity, some cancer cells will elude the host’s defences and continue to grow.
The major components of cell-mediated immunity include natural killer (NK) cells, cytotoxic T-cells (CTC), mononuclear cells, macrophages, and dendritic cells. NK cells, CTC and dendritic cells are involved in controlling tumour development.\[26-28\] NK cells are large, granular cytotoxic lymphocytes that provoke the early lysis of tumour cells spontaneously, without requiring prior sensitization to these tumour cells.\[16, 29\] A decrease in NK cell activity has been associated with the promotion of breast cancer growth and metastasis in an experimental rat model.\[30\] Similarly decreased NK cell numbers have been associated with an increased susceptibility to cancer, or metastases post oncological surgery.\[31\] Increased NK cell activity correlates with resistance to metastasis.\[32-34\] CTC form part of adaptive immunity, becoming sensitized to tumour cells (via the presentation of tumour-specific antigens by dendritic cells) and lysing them. Tumour infiltration by CTC has been associated with a positive prognosis in colorectal cancer.\[35\]

However, recruited immune cells may not all favour tumour eradication. The CD11b+ subset of macrophages recognize metastatic breast cancer cells and these tumour-associated macrophages (TAM) aid their progression.\[36\] Tumour-associated neutrophils (TAN) produce reactive oxygen species, growth factors and PGE₂, aiding tumour growth and tumour spread.\[37, 38\] Myeloid-derived suppressor cells inhibit NK cell and CTC activities.\[39\]

Likewise, the immune system is modulated by multiple cytokines, which may paradoxically hinder or assist cancer progression.\[40\] Pro-inflammatory cytokines may favour tumour progression.\[41\] Inflammation may play a central role in cancer, with increased levels of interleukin (IL)-1, tumour necrosis factor alpha (TNF-α) and PGE₂ associated with negative effects on tumour progression.\[26\] PGE₂ inhibits the function of
dendritic cells and thereby CTC. [42, 43] It also inhibits the cytotoxic activity of NK cells and
CTC. [9] Inflammation also influences the differentiation and dissemination of cancer cells,
accelerating their growth rate, and potentially also inhibits anticancer immunity disrupting
the balance between proliferation and eradication. [26, 44, 45]

Manipulation of the immune system may form the basis of neoadjuvant oncological therapies,
aimed at increasing the anticancer response. For example, perioperative immune stimulation
has shown a potential survival benefit in a rat model [46] and recombinant NK cells could
have therapeutic potential. [47]

In the same manner, the mechanisms by which surgery, anaesthesia and analgesia may affect
the immune response and cancer cellular pathways are complex and multi-factorial. [48]
These mechanisms may include direct and/or indirect effects on cellular immunity (whether
impeding or facilitating tumour growth), tumour cells themselves (affecting metabolism and
mitotic capacity), extracellular matrix and the balance of angiogenic factors (influencing
metastatic capability).

Several studies have demonstrated the effects of anaesthesia and analgesia on host defences
and their possible effect on tumour growth and spread. [32, 49, 50] This immune modulation
combined with the surgical stress and inflammatory response and possible direct effects
of drugs on the cancer cells themselves may create perioperative conditions advantageous
to cancer cells. [51-53] Additionally adjuvant oncological treatment tends not to be
commenced in the immediate postoperative period to facilitate patient’s recovery, allowing for
the establishment and spread of perioperative micro-metastases. [16, 54, 55]
This has led to a focus on perioperative factors that may be modified in order to tip the balance in favour of reduced cancer spread and recurrence.[31]

How surgery may influence recurrence:

While the surgical excision of a primary tumour forms an essential part of multimodal oncological treatment, offering a particular prognostic advantage in the treatment of solid tumours, the surgical process can inadvertently aid the metastatic process.[56] Animal models have demonstrated surgical enhancement of tumour growth and metastasis, including a significant increase in number of metastases and tumour retention.[32-34, 57, 58] Colorectal cancer metastases to the liver have also been shown to have accelerated growth rate after surgery.[59]

The presence of circulating cancer cells after excision of histologically negative margins, whether pre-existing micro-metastases escaping dormancy or the additional unintentional dissemination of tumour emboli during surgery, is independently associated with increased risk of cancer recurrence and decreased disease-free survival in colorectal[60-62] and breast cancer.[63-65]

The consequence of these residual cancer cells depends on the tumour’s genotype,[5] phenotype and environment, as influenced by the host’s immune competence,[26] as outlined above. However, the inflammatory reaction triggered by surgery potentially plays a major role in the early risk of recurrence during the first two postoperative years.[10-13] Major surgery, which cancer surgery typically is, is characterised by both a neuroendocrine (hypothalamic-pituitary axis and sympathetic nervous system) and a cytokine mediated stress response [66]
commensurate to the degree of surgical trauma, transiently suppressing cell-mediated immunity, particularly NK cell activity, in the host (in direct proportion to the magnitude of the stress response) during the critical period when fate of residual cancer cells may be determined.[67]

Additionally, surgery may, again inadvertently, facilitate the metastatically essential process of lymphovascular angiogenesis. The process of angiogenesis is regulated by pro-angiogenic factors [including VEGF, fibroblast growth factor and transforming growth factor beta (TGF β)] and anti-angiogenic factors [including endostatin (an endogenous mediator formed by the fragmentation of collagen) and angiostatin], which exist in a fragile balance. Growth factors and inflammatory mediators, including PGE₂, are involved after tissue injury during postoperative wound healing and may mediate metastatic progression.[62, 68, 69]

Anti-angiogenic factors have been shown to decrease metastasis of lung cancer cells in a mouse model.[70] However, surgery potentially lowers these anti-angiogenic factors and has been shown to increase pro-angiogenic factors in patients undergoing mastectomy for breast cancer [71] and animal models of ovarian cancer.[72, 73] Furthermore, surgical stress has an effect on matrix-metalloproteinases (MMPs), the proteolytic enzymes that facilitate the penetration of the extracellular matrix and basement membrane during the metastatic process.[53]

Concurrent factors also need consideration, some of which may neither be directly related to surgery nor amenable to the anaesthetist’s intervention. Older age, female gender and tumour node metastasis status are associated with decreased cancer-free survival.[74] A history of depression may predict tumour recurrence and overall survival.[75] Presumably secondary to
the effects of perioperative psychological stress and anxiety on the neuroendocrine stress response exerting a significant effect on the micro-environment of the tumour or micro-metastases. Barron and colleagues, in a small retrospective study that should be interpreted cautiously, [76] found that the non-selective β-adrenoreceptor antagonist, propranolol, is associated with a diminution in the proportion of detrimental stress effects thereby lowering the incidence of cancer-related mortality.

Other concurrent perioperative factors can potentially be ameliorated by the anaesthetist’s actions, including hypoxia, hyperglycaemia, hypotension, allogeneic blood transfusion and inadvertent intraoperative hypothermia.[4] As allogeneic blood transfusion modulates the host immune system, it may also influence cancer recurrence.[77] As transfused leucocytes potentially alter circulating lymphocyte ratios and function, irradiated or leucocyte-depleted red-cells are frequently preferentially administered to oncology patients. However, even where leucocyte-depleted red cells are used, transfusion has been associated with decreased cancer-free survival and decreased overall survival in lung cancer [78] and a recent meta-analysis by Churchhouse and colleagues [79], while not reaching definitive conclusions, suggested an association between transfusion and decreased cancer-free survival. Interestingly, a recent animal study found that erythrocytes rather than leucocytes are implicated in the cancer-promoting effects of both autologous and allogeneic blood transfusions.[80]

Intraoperative hypothermia is common, whether as a result of blunted thermoregulation or the theatre environment, and alters host immunity at a cellular level with inhibition of antigen presentation and decreased cytokine secretion. Moslemi-Kebria and colleagues, in a
retrospective study,[81] demonstrated a significant decrease in overall survival for a cohort of patients experiencing hypothermia (< 36°C) during debulking of advanced ovarian cancer.

How anaesthesia and analgesia may influence recurrence:

Before discussing the potential mechanisms how anaesthesia and analgesia may affect cancer recurrence, with or without modulation of the immune system, it is important to note that effective postoperative analgesia may facilitate resistance to metastasis [82] and that a high level of perioperative immune-suppression has been observed in animal models where acute postoperative pain was highest.[34, 83-86]

Several studies [11, 74, 87-93] have suggested that perioperative anaesthetic and analgesic techniques and drugs may affect postoperative inflammation and immune function.

Volatile agents

Volatile agents have been associated with immune-modulation and potentially increased tumour metastasis in-vitro and in experimental animal models. The possible mechanisms are multiple: decreasing NK cell activity,[94] interfering with lymphocyte antigen activity [95] and inducing apoptosis in T-lymphocytes [96] and B-lymphocytes.[97]

Furthermore, volatile agents may have direct effects on cancer cells. Volatile agents have been shown to alter cancer cell gene expression in-vitro.[98] Tavare and colleagues [99] have suggested that volatile agents upregulate hypoxia-inducible factor (HIF-1α) in cancer cells. HIF-1α increases angiogenesis and has a resultant association with poor prognosis. However,
vola
tile agents may also have positive effects: migration of colon cancer cells was decreased,
following the inhibition of MMPs release from neutrophils pre-treated with sevoflurane and
desflurane.[100]

Non-volatile agents

The non-volatile anaesthetic gas, nitrous oxide (N\textsubscript{2}O), and the anaesthetic induction agents
have also received scrutiny of their immune modulating effects and potential effects on cancer
recurrence. Used concurrently with isoflurane and remifentanil, N\textsubscript{2}O demonstrated no
difference in cancer recurrence in patients undergoing colectomy for cancer.[101] Ketamine
and thiopentone, in an inoculation animal model of breast cancer, have been shown to
suppress NK cell activity with a related increase in breast cancer tumour metastasis.[94]
Ketamine has demonstrated effects on cellular immunity in laboratory models, including
inhibition of T lymphocyte maturation [102] and NK cell cytotoxicity,[32] both albeit at
supraclinical concentrations. Clinically, low dose ketamine (0.15mg/kg) has been shown to
suppress NK cell cytotoxicity and inhibit the production of pro-inflammatory cytokines
(IL-6 and TNF-α).[103]

On the other hand, propofol may have an anti-neoplastic effect, decreasing the production of
PGE\textsubscript{2} by monocytes in vitro.[104] It did not suppress NK cell cytotoxicity in a rat model of
breast cancer, nor was it associated with an increase in tumour recurrence.[94]

Local anaesthetics
Local anaesthetics (LAs) are suggested to have anti-proliferative and cytotoxic effects on cancer cells in a number of in-vitro studies. Lidocaine has been shown to inhibit epidermal growth factor in-vitro, decreasing the proliferation of tongue cancer cells.[105] It has also been shown to alter the DNA methylation status of certain breast cancer cell lines and is associated with the re-activation of tumour suppressor genes.[106] Lidocaine and bupivacaine (racemic and isomer specific) inhibited transcription pathways associated with the initiation and metastasis of cancer and decreased mesenchymal stem cell proliferation in-vitro.[107] Werdehausen and colleagues [108] demonstrated the cytotoxicity of eight local anaesthetic agents on T-lymphoma cells in-vitro, with the magnitude of their cytotoxicity correlating with individual potency and lipophilicity.

Adjuncts

Lastly, the anaesthetic adjunct clonidine, an α_2-adrenoceptor agonist, has been shown to alter NK cell activity and augment cellular proliferation in-vitro and in experimental animals.[32] The stimulation of α_2-adrenoceptors, present on certain breast cancer cells, increases proliferation of these cells.[109] Of particular interest is the anaesthetist’s approach towards analgesia, perhaps beginning with opioid use as the effects of morphine on cancer appeared in the literature as early as 1962.[110]

How opioids may influence cancer recurrence:
Opioids are routinely used as postoperative analgesics, forming a key part of the armamentarium for the management of cancer pain, whether disease or treatment-related chronic pain or acute postoperative pain.

Clinical evidence surrounding the effect of opioids on cancer processes is limited. However, in addition to their analgesic effects, opiates are known to exert immunomodulatory effects which may impact on cancer progression and recurrence. A range of mechanisms and cancer effects have been suggested, both beneficial and detrimental. Immunosuppression has been documented in-vitro and in-vivo, in both animal models and humans. Opioids suppress immune function via inhibition of both humoral and cell-mediated immunity,[18, 111] however, not all to the same degree or in the same way (with morphine being the most studied). Fentanyl has been shown to decrease NK cell function in a rat model for up to 8 days.[32] Franchi and colleagues [112] demonstrated a mu opioid receptor (MOR)-mediated reduction of toll-like receptor expression by morphine in a mouse model. Both the promotion and inhibition of tumour cell growth has been shown.[50, 113-117]

The evidence overall is conflicting, with discrepant results prevalent.[9, 48, 74, 88-93] Interpretation of the evidence is complicated by the fact that much of the literature is retrospective and comprehensive data on actual opioid use is variable, with the potential confounding influences of opiate type, dose, route of administration, duration of exposure unknown.[9, 18] The effect of tolerance or withdrawal and tumour cell specificity have also been proposed to account for the conflicting evidence.[118] Similarly, it may not be possible to create a tumour environment completely devoid of the influences of opioids, as human physiology includes an endogenous opioid system.
The pro- or anti-cancer effects of this endogenous opioid system remain poorly understood. The endogenous pathways point predominantly to anti-cancer effects and exogenous opioids to pro-cancer effects. The reason is unclear, given that both endogenous and exogenous opioids act on the MOR. β-Endorphin has effects on immunity and the surgical stress response, and has been touted as possible anti-cancer therapeutic agent.[119] Potential anti-neoplastic effects of increased β-endorphin include the augmentation of NK cell cytotoxicity and attenuation of the stress response (by favouring anti-inflammatory cytokines).

The potential effects of the endogenous opioid system are not limited to the endogenous hormones. Indeed, changes at a receptor level may also have an impact on the effects of both endogenous and exogenous opioids. The MOR has been studied in this regard.

Stressing the interaction between the opioid and immune systems, inflammatory cytokines (IL-1, IL-4, IL-6 and TNF) have been shown to regulate MOR gene expression.[120] In-vitro and in-vivo rodent models of subtypes of lung cancer have demonstrated upregulation of MOR, resulting in amplified tumour growth and metastases. Silencing MOR expression or using methylnaltrexone, a peripheral MOR antagonist, appeared to negate the opioid-induced effects on tumour growth and metastasis.[121-123] A synergistic effect between methylnaltrexone and other chemotherapeutic agents has been demonstrated, potentially decreasing unwanted side-effects of cytotoxic agents by reducing the therapeutic dose required.[124]
Polymorphisms of the MOR gene are also relevant. A single-nucleotide polymorphism of the MOR gene (A118G), already shown to decrease the analgesic response to opioids,[125, 126] has been associated with a significantly increased probability of survival at 10 years in a recent study of 2,039 women with breast cancer by Bortsov and colleagues.[127] However, cautious interpretation is recommended because of a number of limiting factors, including omission of data on patient perception of pain, adequacy of pain control, the use of strong opioids and ongoing oncological treatments.[18]

Opioids, particularly morphinergic pathways through their stimulation of MOR, have been suspected to directly increase tumour growth rate.[123] Morphine has been shown to stimulate tumour cell migration and proliferation in human endothelial cells in-vitro.[128] Proposed mechanisms for effects of tumour growth rate include enhanced angiogenesis, including enhancing cyclooxygenase-2 (COX-2) and increased PGE$_2$ production,[129] and activation of VEGF and epidermal growth factor.[130] When studied in a breast cancer cell line, while demonstrating no direct proliferative effect, morphine has also been linked to augmented production of urokinase plasminogen activator (UPA).[131] With a similar morphine-induced increase in secretion of UPA in human colon cancer cells,[132] an association between morphine and the metastatic potential of these tumours may exist as UPA promotes tumour invasion and metastasis. There is some evidence that aprotinin, a serine protease inhibitor with UPA-inhibitory effects, may improve cancer survival if used in the perioperative setting.[133]

Moreover, the activation of specific genes (“genetic switching”) during the perioperative period is theorised to contribute to cancer recurrence. Breast cancer cells, which express MOR, demonstrated a morphine-induced increase in cell migration, possibly mediated by the
activation of the NET1 gene. [51] The NET1 gene has been shown to promote cancer cell migration in adenocarcinoma. “Genetic switching” at tumour microvascular level triggered by opioids is also mediated by TAMs, likely via adrenergic signalling.

Avoiding opioids may positively impact cancer recurrence when alternative pain management strategies are possible. However, while single-dose or low-dose opioids can potentially promote tumour growth, extended exposure to high concentrations may suppress tumour growth. [117] Chronic high-dose morphine has been shown to attenuate angiogenesis in an in vitro murine model of lung cancer, with decreased tumour progression and an associated significant reduction in VEGF secretion under hypoxic conditions. [118]

Opioids may also decrease tumour adhesion, migration and proliferation. Morphine has been shown to decrease MMPs and increase MMP inhibitors in a dose-dependent manner. Potentially mediated by the nitric oxide (NO) system, morphine has inhibited MMP production in breast cancer cell lines (MMP-2 and MMP-9) [115] and colon cancer cancer cells. [134]

Moreover, the NO pathway is associated with morphine’s induction of apoptosis in human endothelial cells, with activation of nuclear factor (NF)-κB. [135] NF-κB is a potent transcription factor in the regulation of inflammation and apoptosis. At clinically relevant doses, morphine also induces in-vitro apoptosis in lung cancer and promyelocytic leukaemia cell lines. [136]

Given that there may be a rationale for avoiding or minimizing opioid use, there has been investigation into whether the opioid-sparing effects of non-steroidal anti-inflammatory
drugs (NSAIDs) and regional anaesthesia and analgesia may have beneficial anti-cancer effects.

How NSAIDs may influence cancer recurrence:

Owing to their effects on COX-2 and PGE$_2$, major mediators in cancer progression,[38] NSAIDs have a strong potential anti-cancer effect.[27] The inhibition of PGE$_2$ production, secondary to COX-2 inhibition, may have direct impact on cancer cell mutation, proliferation and survival. Its suppression may also have beneficial effects on cell-mediated immunity, increasing the cytotoxicity of NK cells and CTC.[9] Key enzymes that control the production of prostaglandins, cyclooxygenases (COX-1 and COX-2), prototypic targets of the NSAIDs, are frequently over-expressed or deregulated in the progression of cancer.

COX-2 expression has been linked to multiple aspects of the metastatic process, including bone marrow metastasis.[137-141] In murine models of breast cancer, COX-2 has been shown to be involved in osteoclastogenesis (via IL-11)[138] and stimulation of osteoclasts to resorb bone (via PGE2 and IL-8).[139] It has also been associated with increased tumourigenicity and clonogenicity, conferring genomic instability and changes in cell cycle regulation, including resistance to anoikis, as well as resistance to chemotherapeutic agents (including doxorubicin).[142-146] COX-2 has also been associated with cancer cell migration.[146] Recent data also suggest an intersection of lymphangiogenic growth factor signaling and the prostaglandin pathways in the control of metastatic spread via the lymphatic vasculature.[38]
The association between COX-2 expression and cancer recurrence and survival has been studied recently in a number of cancer types. COX-2 expression has been associated with increased cancer recurrence and forms a prognostic marker of poor outcome. Its expression has been associated with decreased survival and its inhibition with decreased mortality. A recent meta-analysis of observational studies in patients with ovarian cancer by Lee and colleagues suggested that increased COX-2 expression may be an independent risk factor for decreased overall survival.

The use of NSAIDs, most commonly aspirin, to inhibit COX-2 and the subsequent effects on cancer outcomes have also been studied. Aspirin has been associated with reduced all-cause and colorectal cancer-specific mortality. It has also been associated with better outcomes following prostate radiation therapy and lower recurrence in patients with colorectal cancer.

Rothwell and colleagues recently conducted a pooled analysis of 51 randomised, controlled trials studying the effects of daily aspirin use in the prevention of vascular events and found a significant decrease in overall cancer mortality in both men and women after three to five years of aspirin use. Similarly, Jacobs and colleagues demonstrated a reduction in cancer mortality associated with daily aspirin use, regardless of duration, in their retrospective analysis of a pooled US cohort (over 100,000 individuals).

The role of NSAIDs in anti-cancer therapy, including its role as a perioperative strategy (likely mediated through a reduction in inflammation), remains unclear, with the choice
of drug, optimum dose, optimum timing and ideal duration unknown. Their utilisation
seems primarily limited by the unwanted side-effects associated with chronic use.[151,
159-164] More research is needed into various non-specific and COX-2 specific
NSAIDs, safer enteric and non-enteric delivery mechanisms and timing and duration of
treatment.

Given concerns over the side-effects of chronic NSAID use, there is particular interest as to
whether or not regional anaesthesia offers an advantage over traditional general anaesthesia
techniques and whether the avoidance of opioid analgesia through regional analgesia
techniques, often to decrease non-cancer related opioid side effects, offers an advantage with
regards to cancer outcome and recurrence.

How regional anaesthesia and analgesia may influence cancer recurrence:

Proposed theoretical benefits of regional anaesthesia may be indirect, including a decreased
surgical stress response with subsequent amelioration of the associated effects on host
immunity, reduced opioid and intraoperative volatile anaesthetic requirements, optimised
analgesia and the aforementioned potential anti-cancer effects of the local anaesthetic agents
themselves.[107, 165, 166] The combination of some or all of these proposed effects could
theoretically alter the perioperative balance of pro-tumour and anti-tumour influences.

Regional anaesthesia may influence the expression of several cytokines expressed
perioperatively, including IL-4 and IL-10 [167], which may directly or indirectly influence
the immune system response to residual cancer cells post-surgery.
There are a number of studies suggesting regional anaesthesia exerts a positive effect on anti-cancer immunity and cancer metastasis.[33, 34, 58, 83-86] Bar-Yosef and colleagues [84] found that the addition of spinal anaesthesia to general anaesthesia, compared with general anaesthesia alone, decreased lung metastasis post laparotomy in a rat model. Similarly, spinal anaesthesia has been associated with preservation of NK cell function in a mouse model.[58]

However, conflicting evidence regarding the anti-cancer effect of regional anaesthesia exists. With regards to the mechanism whereby regional anaesthesia may mediate an anti-cancer effect, Conrick-Martin and colleagues [29] conducted a recent meta-analysis which found, when compared with general anaesthesia, there was no association between regional anaesthesia and the retention of NK cell function. Similarly, the presence of a regional anaesthetic technique (a continuous paravertebral block) was not associated with an alteration in the concentrations of pro-angiogenic factors (VEGF and PGE$_2$), associated with cancer metastasis and subsequent recurrence, in patients undergoing surgery for breast cancer.[25]

As even a small improvement in cancer recurrence attributable to anaesthesia technique would potentially bring large benefits for patients and cost-savings for healthcare systems,[168] the literature contains a number of retrospective analyses of the potential association between regional anaesthesia and cancer recurrence.[87-92, 169-181] A renewed interest was brought about by a retrospective study by Exadaktylos and colleagues [87] which found an association between reduced recurrence in breast cancer patients undergoing mastectomy and axillary node clearance receiving paravertebral anaesthesia and analgesia compared with patients who received GA and opioid analgesia, subsequent retrospective analyses across a variety of cancer surgery types has yielded conflicting results.
While an association with decreased cancer recurrence or recurrence risk has been demonstrated in several cancers (breast cancer,[87] prostate cancer,[88] ovarian cancer,[172] laryngeal cancer,[178] melanoma[175] and a subset of colon cancer patients [91]), no difference in cancer recurrence has been shown in others (localised prostate cancer,[92] cervical cancer,[169] colon cancer [74, 91, 176]) and ovarian cancer [177]).

Likewise, while investigators have demonstrated improved survival or a trend towards improved survival,[90, 92, 170, 171, 175, 176, 178, 181, 182] others have found no change in survival rates,[74, 89, 169, 170, 174, 177, 179] or found the demonstrated improved survival absent in the presence of pre-existing metastases.[90]

Results within a study may also be counter-intuitive or conflicting. Cummings and colleagues [176] conducted a large database study of a retrospective population of over 42,000 patients and found that while there was no difference in cancer recurrence associated with the addition of epidural analgesia compared with general anaesthesia alone, there was a significant improvement in five-year survival. Wuethrich and colleagues [92] found an improvement in clinical progression-free survival, but not in recurrence-free, cancer-specific or overall survival in prostate cancer patients. A further retrospective analysis by members of the same group concluded that regional anaesthesia (epidural) was not associated with a decreased risk of cancer progression nor increased survival after radical prostatectomy in prostate cancer patients at high risk of progression.[179]

Possible variations in the perioperative milieu that potentially alter cancer outcomes (whether surgical or anaesthetic) and the fact that patient groups are in-homogenous, with different grades of histology, stage, and presence or absence of lymphovascular space infiltration
(LVSI), create difficulty in the interpretation of retrospective studies and the follow-up analyses of multicentre trials. It remains unclear what factors associated with regional anaesthesia techniques are most likely to impact outcomes, including duration and effectiveness of epidural, degree of opioid-sparing effect and degree of sympatholysis. In addition, the perioperative care that a patient receives is multidisciplinary. Multifactorial elements of pre- and postoperative care aimed at surgical recovery, including nutrition and fluid management, may influence outcomes.[183]

Several potential confounding factors affect the interpretation of the existing evidence. These may be potential methodological problems, including with outcome measures and end-point choices, whether in the assessment of recurrence (e.g. biochemical [88, 92] vs. referral for oncological treatment [176]) or the absence of a standardized definition of survival (clinical progression free [92] vs. recurrence-free vs. overall).[184] Likewise, survival or recurrence data does not differentiate between the early recurrence thought to be due to perioperative factors and later recurrence due to reactivation of dormant micro-metastases not influenced by the perioperative period.[9] Analytical anomalies may also occur, such as overfitting in multivariate analyses [9, 93, 184] and selection bias, to which retrospective studies are inherently susceptible.

Failure to report, analyse or control for potentially clinically significant impact factors as mentioned above (duration and effectiveness of regional anaesthesia, whether initiated pre-intra- or postoperatively, cancer stage and LVSI state) is also problematic. Unintentional hypothermia, allogenic blood transfusion and aforementioned anaesthesia- and surgery-independent influencers of cancer-free survival aside, opioids, NSAIDs, β-blockers and α-agonists, which may themselves impact cancer outcomes, may have been given during the
perioperative period, whether as part of multimodal analgesia protocols, rescue analgesia for inadequate regional anaesthesia or, indeed, as a part of the regional anaesthetic technique.

Likewise, the type and amount of intra-operative volatile anaesthetic, or absence thereof with total intravenous anaesthesia (TIVA), used for maintenance of general anaesthesia may have an impact. Finally, as the patient’s perioperative inflammatory status may be a major prognostic determinant[185], the absence of its assessment is noteworthy.

While the effects of regional anaesthesia may ultimately be tumour or tumour cell specific, as suggested by increased inhibitory effects of propofol-paravertebral anaesthesia/analgesia on oestrogen-receptor negative breast cancer,[52] the current literature is useful only in the formulation of hypotheses by underscoring the associations that exist.

A causal link, if it exists, will only be confirmed by prospective, randomised control trials, which are urgently needed. Controlling for confounding factors, whether by matching groups for surgery-independent and anaesthesia-independent factors or analysing the effects of individual drugs, will hopefully broaden our understanding of this topic.

Conclusion:

There is some in-vitro and in-vivo experimental and retrospective clinical evidence linking anaesthetic/analgesic techniques with cancer outcomes and recurrence. Opioids, LAs and NSAIDs exert effects on cancer biology and NSAIDs and regional techniques may be beneficial through their avoidance of opioids. However, it is unclear as to whether avoidance of opioid analgesia may always benefit cancer patients, whether
NSAIDs can be safely used or how regional anaesthesia and analgesia should be used to have a potential benefit.

The avoidance of opioids and, indeed, the suggestion that they may be detrimental in the absence of conclusive evidence, may have a negative impact on patient care. The denial of adequate analgesia and consequent potential increase in surgical stress response and chronic pain is especially noteworthy, as, while the exact cause/effect relationship remains unclear, cancer patients without chronic pain have a lower mortality than those who do.[186]

Because only prospective, randomised, control trials can provide or prove a causal link, more research is urgently required. We eagerly await the results of current ongoing clinical trials, although we may only see them in a half a decade.

Currently, none of the evidence conclusively supports changing routine anaesthetic practice for oncology patients undergoing surgery, nor does the evidence preclude anaesthesiologists from using multimodal analgesic techniques to improve pain control, reduce opioid requirements, reduce the surgical stress response and decrease inflammation.

Practice Points:

- Cancer-associated pain, whether acute or chronic, requires treatment.
- While there is ongoing research on the potential effect of anaesthesia and analgesia on recurrence or metastasis, there is currently no evidence to justify altering anaesthetic technique in cancer patients.
• Cancer patients should continue to receive best practice anaesthetic technique in accordance with their own decisions and co-morbidities, as discussed with their individual anaesthetist.

• The focus should be on good analgesia, amelioration of the stress response and reduction of inflammation as best practice.

Research Agenda:

• Completion of ongoing prospective randomized trials on the effect of anaesthetic technique on cancer outcome.

• Evaluating an animal model of the effect of local anaesthetic lidocaine on cancer recurrence and, if promising, progressing to a clinical randomized trial of the effect of IV lidocaine on cancer outcome.

• Translational and experimental investigation of the effect of anaesthetics and analgesics on cancer cell biology and the human immune response to it.
References:

86. Liljefors M, Nilsson B, Hjelm Skog AL et al. Natural killer (NK) cell function is a strong prognostic factor in colorectal carcinoma patients treated with the monoclonal antibody 17-1A. *Int J Cancer* 2003; **105**(5):717-723.

94. Melamed R, Bar-Yosef S, Shakhar G et al. Suppression of natural killer cell activity and promotion of tumor metastasis by ketamine, thiopental, and halothane, but not by

161. Burn J, Gerdes AM, Macrae F et al. Long-term effect of aspirin on cancer risk in
carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised

162. Wang D, Dubois RN. The role of COX-2 in intestinal inflammation and colorectal

164. Ferrandez A, Piazuelo E, Castells A. Aspirin and the prevention of colorectal cancer.

165. Lopes AG, Jr., Rodrigues CJ, Lopes LH et al. Differences in tumour growth, tumour
cell proliferation and immune function after laparoscopy and laparotomy in an animal

166. Sessler DI. Does regional analgesia reduce the risk of cancer recurrence? A

167. Moselli NM, Baricocchi E, Ribero D et al. Intraoperative epidural analgesia prevents
the early proinflammatory response to surgical trauma. Results from a prospective

168. Yeager MP, Rosenkranz KM. Cancer recurrence after surgery: a role for regional

169. Ismail H, Ho KM, Narayan K, Kondalsamy-Chennakesavan S. Effect of neuraxial
anaesthesia on tumour progression in cervical cancer patients treated with

170. Gupta A, Bjornsson A, Fredriksson M et al. Reduction in mortality after epidural
anaesthesia and analgesia in patients undergoing rectal but not colonic cancer surgery:

178. Merquiol F, Montelimard AS, Nourissat A et al. Cervical epidural anesthesia is associated with increased cancer-free survival in laryngeal and hypopharyngeal cancer

