Surprising findings: Comparing patterns of surprise, explanation, and probability

Meadhbh I. Foster (meadhbh.foster@ucdconnect.ie)
Mark T. Keane (mark.keane@ucd.ie)
Department of Computer Science & Informatics, University College Dublin

Background

Why are some events more surprising than others? We suggest that some surprises are more surprising because they are harder to explain.

Two factors impacting surprise are explored here:

• different classes of surprising outcome (Outcome-Type)
• increasing/decreasing the difficulty of explaining with added cues (Keywords)

Three experiments using the same materials but different measures: 1) produced explanations, 2) surprise ratings, and 3) subjective probability ratings.

Current Theories

One group of theorists1,2,3 focus on the properties of surprising outcomes:

• low-probability events
• disconfirmed expectations
• schema-disruptant events

Another group of theorists4,5,6 focus on making sense of surprising events:

• (often retrospective) sense-making
• Integration with previous events

Outcome-Type

Not all surprising outcomes are equal - we know more about some events than others, more surprising events.

Imagine realising that you have lost your wallet (known surprising outcome), or that you have lost your belt (less-known surprising outcome).

Key word

Some scenarios cue knowledge that helps to explain the target event, making it less surprising.

Conversely, parts of a scenario could direct retrieval and explanation processes to a “less-productive” region of activated knowledge, making explanation more difficult, and the event more surprising.

We added keywords that were either supportive (cue) or unsupportive (miscue) for explaining why the event occurred.

Table 1. Examples of materials used (labels and italics were not shown in presented materials).

<table>
<thead>
<tr>
<th>Setting</th>
<th>Known</th>
<th>Less-Known</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gary is on holidays in a small village in West France. He is sitting in a café near his hotel.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keyword</td>
<td>Cue</td>
<td>Miscue</td>
</tr>
<tr>
<td>circum</td>
<td>circus</td>
<td></td>
</tr>
<tr>
<td>Outcome</td>
<td>He looks up and sees his next door neighbour walk by. He looks up and sees a rhino charging through the café.</td>
<td></td>
</tr>
</tbody>
</table>

Explanations and reductions of surprise were seen: “As surprise is excited by something unexpected or unknown, we naturally desire, when startled, to perceive the cause as quickly as possible.”

Experimental Procedure

• Instructions
 • Read scenario setting and keyword (8 in total, a mix of known and less-known outcomes, each with a consistent/inconsistent keyword)
 • Complete task (produce Explanations/Surprise rating/Probability rating)
 • Repeat

Discussion & Conclusions

Outcomes that are more known are easier to explain, and are judged to be less surprising.

Providing keywords to ease the explanation process increases produced explanations and reduces surprise, but not probability judgments.

Surprising events are those which are difficult to explain; Ease of explanation building may be the key factor in experienced surprise.

References

Contact

Meadhbh I. Foster
School of Computer Science & Informatics
University College Dublin, Belfield
Dublin 4
Ireland
Email: meadhbh.foster@ucdconnect.ie

Acknowledgments

This research was supported by a PhD Scholarship to the first author from the School of Computer Science & Informatics, University College Dublin, Ireland.

Figure 1. Mean standardized scores for each level of Outcome-Type and Keyword (known [K], cue [C] vs. less-known [LK], cue [C] vs. miscue [MC]) for surprise ratings, inverse explanation productivity, and inverse probability ratings (n=32, N=.96). Note, that the pattern of results across experiments show that explanation productivity, not probability ratings, parallel surprise ratings.

Results

Outcome-Type: participants produced more explanations to known outcomes (M = 1.73, SD = .599), rated them less surprising (M = 3.84, SD = .97) and more probable (M = 37.40, SD = 22.02), than less-known outcomes; explanations (M = 1.48, SD = .49), surprise (M = 6.05, SD = .93), probability (M = 9.72, SD = .118).

Keyword: participants produced more explanations with cues (M = 1.73, SD = .715), and lower surprise ratings (M = 4.52, SD = .96), than miscue keywords; few explanations (M = 1.48, SD = .45), and higher surprise ratings (M = 5.37, SD = .83). For the surprise ratings, there was a larger effect of Keyword on known than less-known outcome-types (p<.05).

For probability judgments, no main effect of Keyword or interaction between Keyword and Outcome-Type was found (p’s > .05).