<table>
<thead>
<tr>
<th>Title</th>
<th>Lower extremity function during gait in participants with first time acute lateral ankle sprain compared to controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors(s)</td>
<td>Doherty, Cailbhe; Bleakley, Chris J.; Hertel, Jay; Caulfield, Brian; Ryan, John; Delahunt, Eamonn</td>
</tr>
<tr>
<td>Publication date</td>
<td>2015-02</td>
</tr>
<tr>
<td>Publisher</td>
<td>Elsevier</td>
</tr>
<tr>
<td>Item record/more information</td>
<td>http://hdl.handle.net/10197/8361</td>
</tr>
<tr>
<td>Publisher's statement</td>
<td>This is the author s version of a work that was accepted for publication in Journal of Electromyography and Kinesiology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Electromyography and Kinesiology (VOL 25, ISSUE 1, (2015)) DOI: 10.1016/j.jelekin.2014.09.004.</td>
</tr>
<tr>
<td>Publisher's version (DOI)</td>
<td>10.1016/j.jelekin.2014.09.004</td>
</tr>
</tbody>
</table>

Downloaded 2019-07-17T11:07:35Z

The UCD community has made this article openly available. Please share how this access benefits you. Your story matters! (@ucd_oa)

Some rights reserved. For more information, please see the item record link above.
Title: Lower extremity function during gait in participants with first time acute lateral ankle sprain compared to controls.

Running title: The effect of acute ankle sprain on gait

Abstract word count: 237

Word count: 3927

1 table

7 figures

Authors:

Cailbhe Doherty

Chris Bleakley

Jay Hertel

Brian Caulfield

John Ryan

Eamonn Delahunt

1. School of Public Health, Physiotherapy and Population Science, University College Dublin, Dublin, Ireland.

2. Institute for Sport and Health, University College Dublin, Dublin, Ireland.

3. Sport and Exercise Sciences Research Institute, Ulster Sports Academy, University of Ulster, Newtownabbey, Co. Antrim, Northern Ireland.

4. Department of Kinesiology, University of Virginia, Charlottesville, VA, United States.

5. St. Vincent’s University Hospital, Dublin, Ireland.

Address for Correspondence:

Cailbhe Doherty
Conflicts of Interest and Source of Funding:

No conflicts of interest were associated with the authors and the results of this research. This study was supported by the Health Research Board (HRA_POR/2011/46) as follows: PI – Eamonn Delahunt; Co-investigators – Chris Bleakley and Jay Hertel; PhD student – Cailbhe Doherty).
ABSTRACT

Background: Laboratory analyses of chronic ankle instability populations during gait have elucidated a number of anomalous movement patterns. However, no current research exists analysing these movement patterns in a group in the acute phase of lateral ankle sprain injury. It is possible that participants in the acute phase of lateral ankle sprain injury may display movement patterns continuous with their chronically impaired counterparts.

Methods: Sixty eight participants with acute first-time lateral ankle sprain injury and nineteen non-injured participants completed gait trials at a self-selected walking velocity. 3D lower extremity temporal kinematic (angular displacement) and kinetic (moment of force) data were collected from 200ms pre- to 200ms post- heel strike (period 1) and from 200ms pre- to 200ms post- toe off (period 2).

Findings: During period 1, the lateral ankle sprain group displayed increased knee flexion with increased net extensor pattern at the knee joint, increased ankle inversion and reduced ankle plantar flexion, with a greater inversion moment, compared to the non-injured control group.

During period 2, the lateral ankle sprain group displayed decreased hip extension with a corresponding decrease in the extensor moment at the hip, and decreased ankle plantar flexion with a decrease in the net plantar flexion moment, compared to the non-injured control group.

Interpretation: Acute lateral ankle sprain participants display coordination strategies potentially conducive to minimising specific joint loading following injury, and which may play a role in the onset of chronicity or recovery.

Key words: ankle joint [MEsH]; biomechanics [MEsH]; kinematics [MEsH]; kinetics [MEsH]; gait [MEsH]
1.0 Introduction

Ankle sprain injury has consistently been reported to be a significant risk for participants of a wide range of activity types [1,2]. Indeed, ankle sprain accounts for between 11-12% of injuries in activities such as soccer, field hockey, basketball, volleyball and orienteering, with a collective incidence of between 3.9 and 4.9 ankle sprains per 1000 hours of exposure [1].

The consequences of this injury extend beyond acute maladies however, as it has been reported that 32-74% of individuals with a history of ankle sprain report and endure a range of residual and chronic symptoms including episodes of “giving-way” of the ankle joint, perceived instability, as well as recurrent sprain [3,4]. Chronic ankle instability (CAI) is the encompassing term used to classify these symptoms [5].

Aberrancy of sensorimotor variables of neuromuscular control as determined using biomechanical analysis is a characteristic feature associated with the CAI [6]. Biomechanical measures of CAI populations are typically laboratory based, and involve active movements such as gait [7-9]. For example, previous biomechanical analyses have shown that participants with CAI display increased inversion [7,8] and increased plantar flexion [9] angular displacements, with a greater concentric evertor moment at the ankle joint, in the time period from 200ms pre- to 200ms post heel strike (HS), at the beginning of the stance phase of gait, and reduced plantar flexion [9] at toe-off (TO) at the end of stance. However, research utilizing biomechanical measures to evaluate neuromuscular control during gait in populations prior to the development of CAI, specifically those in the acute phase of a first-time lateral ankle sprain (LAS) injury is sparse. It is possible that a sample group of participants with acute LAS may display movement insufficiencies that are continuous with, and therefore contribute to, those observed in their counterparts in the chronic phase of injury. As such, an evaluation of active movement patterns during gait in a group with first-
time acute LAS injury may advance current understanding of potentially anomalous
movement patterns that persist and contribute to the onset of the chronic sequelae of CAI.
Therefore, the objective of the current study was to determine if participants with acute LAS
display movement patterns continuous with their chronically impaired counterparts when
compared to a non-injured control group, using kinetic (joint moment) and kinematic
(angular displacement) laboratory measures during gait. It is plausible that these patterns may
preclude long-term recovery, and thus, the current analysis stands to advance current
understanding of the immediate adaptive motor control processes which develop following
acute LAS, and which may contribute to the onset of chronicity.

2.0 Methods

2.1 Participants
Sixty eight participants (forty-six males and twenty-two females; age 23.26 ± 4.94 years;
body mass 76.43 ± 14.33kg; height 1.74 ± 0.09m) were referred from a University-affiliated
hospital Emergency Department with acute, first time, LAS injury. Nineteen uninjured
participants (fifteen males and four females; age 22.5 ± 1.7 years; body mass 71.55 ± 11.30
kg; height 1.74 ± 0.1 m) were recruited from the hospital catchment area population using
posters and flyers to act as a control group. The injured group were recruited within 2-weeks
of sustaining their injury. The project was approved by the local ethics committee, and
written consent was obtained from each subject prior to data collection. The following
exclusion criteria were applied: (1) no previous history of ankle sprain injury (excluding the
recent acute episode for the injured group); (2) no other lower extremity injury in the last 6
months; (3) no history of ankle fracture; (4) no previous history of major lower limb surgery;
(5) no history of neurological disease, vestibular or visual disturbance or any other pathology
that would impair their motor performance [10].
2.2 Questionnaires

The activities of daily living and sports subscales of the Foot and Ankle Ability Measure (FAAMAdl and FAAMsport), and the Cumberland Ankle Instability Tool (CAIT), were used to quantify self-reported function, patient reported symptoms and functional ability as measures of LAS severity [11], and overall ankle joint function and symptoms [12] respectively. All participants completed the subscales of the FAAM and CAIT on arrival to the laboratory.

2.3 Swelling

Ankle joint swelling was assessed using the figure-of-eight method [13]. High intra-rater and inter-rater reliability has been reported using this technique (ICC = 0.99) [14]. To determine the degree of swelling, the mean value (of 2 measures) was subtracted from the mean value of the non-injured ankle. For control participants the mean value of the non-dominant limb was subtracted from the mean value of the dominant limb.

2.4 Experimental procedures

Gait analysis data acquisition was made using 3 Codamotion cx1 units (Charnwood Dynamics Ltd, Leicestershire, UK). This system was fully integrated with two AMTI walkway embedded force plates (Watertown, MA); the Codamotion cx1 units were time synchronized with the force-plates. Kinematic data acquisition was made at 250 Hz and kinetic data at 1000 Hz. Ground reaction force (GRF) data were passed through a fourth-order zero phase Butterworth low-pass digital filter with a 6-Hz cut-off frequency [15]. Joint moments at the hip, knee and ankle were calculated from force plate, lower extremity kinematic, and anthropometric data using an inverse dynamic procedure [16].
Participants were familiarised with testing procedures prior to commencement. Anthropometric data were obtained for the calculation of internal joint centres at the hip, knee, and ankle joints, after the participants’ height and weight were recorded, and motion analysis system markers and marker wands were subsequently placed according to manufacturer guidelines by the same investigator in all participants as previously described [8]. A neutral stance trial was used to align the participant with the laboratory coordinate system and to function as a reference position for subsequent kinematic analysis [17]. During testing, participants walked barefoot across the 10 m walkway at a self-determined speed. Each participant was instructed to look at a distant mark to inhibit them from looking down at the floor. Five ‘clean’ gait cycles, defined by both the participant’s feet landing fully on each of the force plates, were identified and saved for future analysis. Any data obtained whereby the participant did not strike the force plate fully was discarded. Prior to data analysis all values of force were normalised with respect to each subject’s body mass (BM).

2.5 Data analysis

Kinematic data were calculated by comparing the angular orientations of the co-ordinate systems of adjacent limb segments. Kinetic data were calculated using a seven-segment rigid body model based on the principles of inverse dynamics. A vertical component GRF threshold of 10N was used to identify foot contact with the force plate. Kinematic and kinetic data relating to two periods for both limbs were analysed using the Codamotion software: period 1 extended from 200ms pre-HS to 200ms post-HS (coinciding with terminal swing, HS, loading response and mid-stance) and period 2 extended from 200ms pre-toe off (TO) to 200ms post-TO (coinciding with terminal stance, pre-swing, TO and initial swing). These time windows were chosen for analysis as they have previously been used to investigate CAI-associated movement pattern anomalies during gait [7-9], thus fulfilling our primary
objective. Furthermore, these time-windows, which chart the interaction between the motor apparatus and its external environment by quantifying the transitions between stance (closed kinetic chain) and swing (open kinetic chain), consummate an important period within which the motor control system must integrate afferent feedback with an appropriate efferent motor response [18]; accurate positioning at HS and TO are very important in the interest of maintaining safe locomotion of the motor apparatus as increased plantar flexion as well as inversion of the ankle joint stand to increase ground reaction force moments about the subtalar joint with significant potential for re-sprain of the injured ankle [19,20].

See figure 1 for an illustration of period 1 and period 2.

The following axis conventions were utilised for kinematic and kinetic data: x axis = frontal-plane motion; y = sagittal-plane motion; z = transverse-plane motion. After analysis in the Codamotion software, data were then converted to Microsoft Excel file format with the number of output samples per trial set at 100 + 1 in the data-export option of the Codamotion software, which represented each gait period as 100%, for averaging and further analysis. Time-averaged 3-dimensional angular displacement profiles for hip, knee, and ankle joints were calculated for each limb of all participants in the specified gait periods. Time averaged, sagittal plane hip, knee and ankle moments, in addition to frontal plane ankle moments were identified from the kinematic and force plate data during the specified gait periods. A net sagittal-plane supporting moment profile of all three joints was then identified for each limb of all participants to identify the net-flexor/extensor pattern of all three joints [21]. Net internal moments are described and represent the body’s reaction to the external load on each joint. The supporting moment, Ms, during gait was defined as Ms = Mk – Ma - Mh, where Mk, Ma and Mh are the moments at the knee, ankle and hip respectively [22].

2.6 Statistics
For the injured group, the injured limb was labelled as “involved” and the non-injured limb as “uninvolved”. Limbs in the control group were side-matched to limbs in the injured group as “involved” and “uninvolved”.

Participant characteristics and swelling were compared between the LAS and control groups using multivariate analysis of variance. The dependent variables were age, mass, sex, height and ankle joint swelling. The independent variable was status (injured vs non-injured). The significance level for this analysis was set a priori with a bonferroni alpha level of p < 0.01.

To determine whether the injured group would demonstrate decreased function compared to the control group a multivariate analysis of variance was undertaken. The independent variable was group (injured vs. control). The dependent variables were CAIT score, FAAMadl score and FAAMsport score for the involved limb. The significance level this analysis was set a priori with a bonferroni adjusted alpha level of p < 0.017.

Between-group differences in involved and uninvolved limb 3-dimensional, time-averaged angular displacement profiles were tested for statistical significance using independent-samples t-tests for each data point for each period of gait. Similarly, between-group differences in involved and uninvolved limb sagittal plane time-averaged net supporting moment profiles with their hip, knee and ankle constituents, in addition to frontal plane ankle moment profiles, were tested for statistical significance using independent-samples t-tests for each data point for each period of gait. The significance level for these temporal analyses was set a priori at p < 0.05. Effect sizes were not calculated secondary to the number of separate comparisons for each variable.

All data were analyzed using Predictive Analytics Software (Version 18, SPSS Inc., Chicago, IL, USA).
3.0 Results

There was no statistically significant difference between the injured and control groups on the combined dependent variables of age, sex, height and body mass, $F(4, 82) = 1.639, p = 0.17$; Wilk’s Lambda = 0.926; partial eta squared = 0.07.

Regarding participant characteristics and swelling there was a statistically significant difference between the injured and control groups on the combined dependent variables, $F(81,5) = 4.24, p = 0.002$; Wilk’s Lambda = 0.79; partial eta squared = 0.21. When the results of the dependent variables were considered separately, swelling ($F[1, 85] = 17.34, p = 0.000$, partial eta squared = 0.17) was the only differences to reach statistical significance. An inspection of the mean scores indicated that injured participants had increased swelling on their involved limb compared to controls (11.09 [SD: 8.8cm] vs 2.47 [SD: 3.4cm]).

Regarding function a statistically significant main effect was observed for the combined dependent variables, $F(3, 77) = 75.147, p < 0.01$, Wilks’ Lambda = 0.255, partial eta squared = 0.745. Questionnaire results are detailed in Table 1.

Time-averaged 3-dimensional kinematic profiles revealed that the injured displayed increased hip adduction on their involved limb, increased knee varus on their involved limb and bilateral increases in knee flexion and reductions in ankle plantar flexion compared to the control group in the time period from 200ms pre HS to 200ms post HS (specific details of angular displacement data for period 1 are presented in Figure 2).

In the period from 200ms pre TO to 200ms post TO, the injured group displayed reduced hip extension on their involved limb and bilateral increases in ankle inversion and reductions in ankle plantarflexion compared to the control group (specific details of angular displacement data for period 2 are presented in Figure 3).

Time-average sagittal plane moment of force profiles revealed that the injured group displayed reduced hip extension moment on their involved limb and bilateral increases in
knee extension moment and ankle flexor moment compared to control participants in the time
period from 200ms pre HS to 200ms post HS (specific details of moment of force data for all
lower extremity joints for period 1 are presented in Figure 4). The overall support moment
profile for this period revealed a pattern of bilateral greater extension in injured participants
compared to control participants. Furthermore, there was a bilateral increase in ankle
inversion moment in this time period (specific details of moment of force data for the ankle
joint during period 1 are presented in Figure 5).

In the period from 200ms pre TO to 200ms post TO, the injured group displayed bilateral
reductions in hip flexor moment, increases in knee extension moment and reductions in ankle
extension moment (specific details of moment of force data for all lower extremity joints for
period 2 are presented in Figure 6). The overall support moment profile transitioned from
reduced flexor moment to reduced extension moment in injured participants compared to
control participants. Furthermore, there was a bilateral increase in ankle inversion moment in
this time period (specific details of moment of force data for the ankle joint during period 2
are presented in Figure 7).

4.0 Discussion

The current investigation has elucidated injury-associated movement patterns in a group
reporting significant functional impairment (as determined by the CAIT and subscales of the
FAAM) following first-time acute LAS during gait by comparing them to a non-injured
control group. This analysis was exploratory in nature in that we considered participants with
acute LAS may display movement patterns similar to their chronically impaired counterparts.
Monaghan et al. [23], Drewes et al. [24] and Delahunt et al. [7] have previously reported that
participants suffering recurrence following an acute LAS display increased inversion at the
ankle joint around HS (the equivalent of period 1 in the current study), while Chinn et al. [25]
previously reported no differences in this time window in the same group. In the current analysis, we did not observe any significant differences between LAS and control participants for frontal plane ankle motion around HS, however the injured group did display a significant increase in ankle joint inversion (bilaterally) around TO which is in agreement with the findings of Drewes et al. [24]. This coincided with a motor pattern of increased inversion moment at the ankle joint in both limbs prior to, and following, TO. LAS participants also displayed a bilateral reduction in ankle joint plantar flexion during both period 1 and period 2 of the current analysis, which is in contrast with the findings of Spaulding et al. [9] and Chinn et al.[25], who evaluated movement patterns on the involved limb only, both finding increased plantar flexion in CAI participants during the stance phase of gait. To the authors’ knowledge to date, changes in inversion and plantar flexion at the ankle joint during the stance phase of gait are the only laboratory-analysis derived movement pattern differences unique to the gait of participants with CAI compared to non-injured controls, based on previous research [6].

These movement patterns may be adopted in the interest of minimising perceived risk during task performance; the net displacement of the body constitutes a summation of all the forces and motions acting upon, and concerned with, its safe translation during locomotion [26]. These forces however are limited by the anatomical constraints within which they operate [27]. Hence, this translation is potentially altered by acute LAS, and can be seen to be evident in the kinematic and kinetic findings of the current investigation.

The disruption caused by acute insult to the foot and ankle in injured participants can be seen to have been compensated for by local and global modifications which may have been adopted in the aim of minimising risk of further injury; to protect the vulnerable ankle joint, there developed an increased reliance on more proximal structures to absorb impact force.
with a concurrent decrease in the propulsive forces that have the potential to augment the
magnitude of these impacts [26]. Specifically, with regards to period 1, functional
impairment at the ankle joint may have stimulated the knee joint to exaggerate its primary
role in the attenuation of impact forces, as displayed by the bilateral increase in LAS
participants’ knee flexion, and greater knee extensor moment pattern at HS (≃ 0.2 in LAS
participants vs ≃ -0.17 Nm/kg in controls, at HS); the ankle plantar flexors, hip flexors, and
hip extensors are the main muscle groups that contribute to energy generation in the sagittal
plane [28-30], while the knee joint muscles act mainly eccentrically in the absorption of
impact energy [26,29]. The implications of the exaggerated motor pattern of absorption at the
knee are two-fold: first, increased knee flexion will amplify the descent of the body’s centre
of gravity, thus limiting gait efficiency, and this must be accounted for using compensatory
mechanisms that heighten it: a decrease in the hip adduction and knee varus angular
displacement, with a coinciding reduced extensor pattern at the hip (≃ 0.1 in LAS
participants vs ≃ 0.2 Nm/kg in controls, at HS) on the involved limb may be the
manifestation of this appropriated compensatory mechanism. Indeed frontal plane hip motion
(with its corollary of frontal plane knee motion) is one of the primary determinants of the
rhythmic displacement of the body’s centre of gravity during gait [26], and a reduced
extensor pattern at the hip facilitates collapse and thus lowering of the extremity [22]. The
bilateral greater net extensor pattern of the lower extremity joints in this period (≃ 0.4 in LAS
participants vs ≃ -0.4 Nm/kg in controls, at HS) could reflect the motor pattern at the knee
and may also give an overall indication of the compensatory tendency of injured participants
to prevent collapse of the total lower extremity (which has connotations of the recently
endured injury event). Secondly, the increase in the knee flexion was precipitous to ankle
motion, with a decrease in the observed plantar flexion, and the net extensor pattern of the
ankle joint in LAS participants (≃ -0.4 in LAS participants vs ≃ 0.01 Nm/kg in controls, at
HS). This resultant ‘closed-pack’ position of reduced plantar flexion, which is closer to sagittal plane neutral, provides the ankle joint of LAS participants with greater stability, secondary to an increase in the congruity between the inferior aspects of the tibia and fibula, and the superior aspect of the talus [31]. Overall, this could reflect a compensatory mechanism to maintain the integrity of the vulnerable ankle joint by using a global strategy of attenuating impact forces using joints proximal to the ankle. Muscle model driven computer simulations have previously shown that an increased HS plantar flexion may cause an increased likelihood of an ankle sprain [32]. Thus, the motor apparatus of LAS participants may have organised its proximal component (in this case, the knee joint), to adjust to the injury constraint.

With regards to period 2, the propulsion of body through space is achieved primarily via the output of the hip and ankle [26,29,33]. LAS participants displayed movement and motor patterns conducive to a reduction in propulsion: the bilateral decrease in hip extension observed in LAS participants compared to control participants, with a coinciding reduction in the net extensor pattern at the hip joint (≃ -0.4 in LAS participants vs ≃ -0.6 Nm/kg in controls, 100ms pre-TO), and ankle plantar flexion, with a coinciding reduction in the net extensor pattern at the ankle joint prior to TO (≃ 0.75 in LAS participants vs ≃ 1.2 Nm/kg in controls) combine to indicate a reduction in propulsive motor patterns during terminal stance in injured participants. This shift may be part of a strategy to reduce ankle joint loading by reducing the forces associated with locomotion. The increase in ankle inversion moment at TO previously described could be a compensatory mechanism to restore normal propulsive patterns at the ankle joint: the reduction in propulsive sagittal hip and ankle function may have been compensated for using the rigidity of inversion in the supinating ankle joint, as an assistant to push-off [20]. Combined with a more inverted positioning prior to TO, this may
indicate that injured participants load the lateral column of their foot to a greater extent during the latter part of stance [31,34]. Recent research has demonstrated that CAI participants activate their peroneus longus (PL) prior to HS which is in contrast to healthy controls, thus preventing sufficient medial displacement of the centre of pressure during loading response [34,35]. This may manifest in CAI participants bearing weight more laterally on their foot during stance, which then persists into TO [36]. The current study has elucidated an increase in inversion moment with a coinciding increase in ankle inversion around TO; one could speculate that the increased inversion positioning seen in late stance and early swing is a consequence of the abnormal loading response, and may be predicated by early activation of the PL in the swing phase of gait, which has been demonstrated in CAI participants [25]. Greater inversion around the sub-talar joint axis is likely to produce an external load that further forces the foot into inversion, with increasing the potential risk of lateral ligamentous trauma[20]. The reduction in overall propulsion during TO can be seen to be reflected in the overall extensor pattern, where the flexion-to-extension range in injured participants is significantly reduced compared to that of control participants. The bilateral nature of the observed results is in agreement with previous findings in participants with recurrance following LAS [37,38], and are the first indication that these deficits may present immediately following the acute injury during gait. That unilateral injury had bilateral manifestations may be linked to an alteration in alpha motoneuron pool excitability [39], suggesting that spinal-level motor control mechanisms have changed. We concur with the speculations of previous researchers who have theorised that because in vivo measures of sensoriotor function require conscious perception of peripheral joint and muscle information, supraspinal aspects of motor control are also altered [37,40]. From a rehabilitation perspective, the findings of the current investigation imply that it may be
pertinent to concentrate on the restoration of proximal neuromuscular control strategies using gait-retraining programmes that are bilaterally applied.

While our results are important, this study was not without its limitations. Due to the design of the current study, it is unknown as to whether the movement patterns observed preceded or occur as a result of LAS, and whether they actually have any implication for the onset of CAI in the longer term recovery of these participants. Future studies would benefit from a longitudinal follow-up period to determine the gait-related movement risk factors for LAS, and subsequently the movement characteristics that are associated with recovery or chronicity.

5.0 Conclusion

The findings of this study advance current understanding of the effects of LAS on gait. The results suggest that participants with acute LAS demonstrate bilateral differences in gait coordination strategies to non-injured controls that adhere intuitively to the fundamental goals of safe and efficient locomotion, with potential links to the progression of chronic sequelae.

Acknowledgements

This study was supported by the Health Research Board (HRA_POR/2011/46) as follows: PI – Eamonn Delahunt; Co-investigators – Chris Bleakley and Jay Hertel; PhD student – Cailbhe Doherty). The results of the present study do not constitute endorsement by ACSM.
References

Figure legends

Figure 1. Illustrative depiction of a link segment model completing period 1 (200ms pre-HS to 200ms post-HS), and period 2 (200ms pre-TO to 200ms post-TO) of the gait cycle.

Abbreviations: HS = heel strike; TO = toe off.

Stance limb = limb in bold.

Figure 2. Hip-joint adduction-abduction, knee joint varus-valgus and flexion-extension, and ankle joint plantarflexion-dorsiflexion angular displacement during period 1 of the gait cycle from 200ms pre-HS to 200ms post-HS for the involved and uninvolved limbs of LAS and control groups. Adduction, varus, flexion and dorsiflexion are positive; Abduction, valgus and plantarflexion are negative. Black line with arrow=initial contact. Shaded area = area of statistically significant difference between LAS and control groups. Abbreviations: HS = heel strike; LAS = lateral ankle sprain.

Figure 3. Hip-joint flexion-extension, ankle joint inversion-eversion and plantarflexion-dorsiflexion angular displacement during period 2 of the gait cycle from 200ms pre-TO to 200ms post-TO for the involved and uninvolved limbs of LAS and control groups. Flexion, inversion, dorsiflexion are positive; Extension, eversion and plantarflexion are negative. Black line with arrow=initial contact. Shaded area = area of statistically significant difference between LAS and control groups. Abbreviations: TO = toe off; LAS = lateral ankle sprain.

Figure 4. Sagittal plane joint moment-of-force profiles for the hip, knee and ankle during period 1 of the gait cycle from 200ms pre-HS to 200ms post-HS for the involved and uninvolved limbs of the LAS and control groups. Extension moments are positive; flexion moments are negative. Black line with arrow=initial contact. Shaded area = area of
statistically significant difference between LAS and control groups. Abbreviations: HS = heel strike; LAS = lateral ankle sprain; Mh = Hip Moment; Mk = Knee Moment; Ma = Ankle moment; Ms = Support moment (Mk-Mh-Ma).

Figure 5. Frontal plane joint moment-of-force profiles for the ankle joint during period 1 of the gait cycle from 200ms pre-HS to 200ms post-HS for the involved and uninvolved limbs of the LAS and control groups. Inversion moments are positive; eversion moments are negative. Black line with arrow=initial contact. Shaded area = area of statistically significant difference between LAS and control groups. Abbreviations: HS = heel strike; LAS = lateral ankle sprain.

Figure 6. Sagittal plane joint moment-of-force profiles for the hip, knee and ankle during period 2 of the gait cycle from 200ms pre-TO to 200ms post-TO for the involved and uninvolved limbs of the LAS and control groups. Extension moments are positive; flexion moments are negative. Black line with arrow=initial contact. Shaded area = area of statistically significant difference between LAS and control groups. Abbreviations: TO = toe off; LAS = lateral ankle sprain; Mh = Hip moment; Mk = Knee Moment; Ma = Ankle moment; Ms = Support moment (Mk-Mh-Ma).

Figure 7. Frontal plane joint moment-of-force profiles for the ankle joint during period 2 of the gait cycle from 200ms pre-TO to 200ms post-TO for the involved and uninvolved limbs of the LAS and control groups. Inversion moments are positive; eversion moments are negative. Black line with arrow=initial contact. Shaded area = area of statistically significant difference between LAS and control groups. Abbreviations: TO = toe off; LAS = lateral ankle sprain.
Suggested reviewer #1: Dr Cathleen Brown.

Dr Brown is an associate professor at the Department of Kinesiology in the University of Georgia.

She has published a large number of articles pertaining to the effects of ankle sprain injury on coordination strategies during a wide range of dynamic tasks.

These articles have established her as a leading researcher in the field of ankle sprain injury and neuromuscular control.

We believe Dr Brown would be a suitable potential reviewer for the current manuscript.

Suggested reviewer #2: Dr Claire Hiller

Dr Hiller has published a wide range of articles on the deficits associated with Chronic Ankle Instability, many of which are considered landmark papers in the field.

She is widely regarded as an expert in the field of ankle sprain research, with a particular focus on objective measures of CAI, and the aberrant movement characteristics of this population.

As the current paper is an exploratory analysis of participants with acute ankle sprain injury during gait to determine if their movement patterns are continuous with their chronically impaired counterparts, and as we incorporated several objective measures commonly used in CAI investigations to quantify acute dysfunction, we believe Dr Hiller would be well-placed to review the current article.
Table 1. Questionnaire scores (mean ± SD with 95% CIs) for the LAS and control groups.

<table>
<thead>
<tr>
<th></th>
<th>CAIT</th>
<th>FAAMadl</th>
<th>FAAMsport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injured</td>
<td>11.60 ± 7.21(^a)</td>
<td>56.77 ± 13.85(^a)</td>
<td>39.80 ± 28.71(^a)</td>
</tr>
<tr>
<td>Control</td>
<td>30 ± 0(^b)</td>
<td>100 ± 0(^b)</td>
<td>100 ± 0(^b)</td>
</tr>
</tbody>
</table>

\(^a\) significantly different from control group;

\(^b\) significantly different from injured group;
Stance phase of gait

Period 1

HS - 200ms
HS
HS + 200ms
Period 1

Period 2

TO - 200ms
TO
TO + 200ms

Stance phase of gait

Figure 1
Figure 2

- Hip abduction/adduction angle, °
- Knee Valgus/varus angle, °
- Knee extension/flexion angle, °
- Ankle plantar/dorsiflexion angle, °

- “Involved” limb
- “Uninvolved” limb

Heel strike:
- 120 post-HS to 160 ms post-HS
- 64 ms pre-HS to 200 ms post-HS
- 200 ms pre-HS to 136 ms pre-HS
- 36 ms pre-HS to 136 ms post-HS
- 52 ms pre-HS to 40 ms post-HS
- 40 ms pre-HS to 16 ms pre-HS
- 20 ms post-HS to 100 ms post-HS
- 100 ms pre-HS to 172 ms pre-HS
- 48 ms post-HS to 84 ms post-HS

- LAS
- Control
Figure 3

“Involved” limb

“Uninvolved” limb

Hip extension/flexion angle, °

Ankle eversion/inversion angle, °

Ankle plantar/dorsiflexion angle, °

200ms pre-TO to TO

20ms pre-TO to 15ms post-TO

88ms post-TO to 152ms post-TO

8ms pre-TO to 16ms post-TO

68ms pre-TO to 144ms post-TO

8ms pre-TO to 200ms post-TO

Toe off

Toe off

LAS Control

Figure 3
Figure 4

Joint moments of force (N.m/kg)

Ms = Mk - Ma - Mh

Heel strike
Figure 5

Ankle Joint moments of force (N.m/kg)

"Involved" limb

200ms pre-HS to 64ms pre-HS

"Uninvolved" limb

200ms pre-HS to 40ms pre-HS
Figure 6

Joint moments of force (N m/kg)

Ms = Mk - Ma - Mh

"Involved" limb

"Uninvolved" limb

Joint moments of force (N m/kg)

Ms

Mh

Mk

Ma

200ms pre-TO to 132ms pre-TO

40ms pre-TO to 112ms post-TO

200ms pre-TO to 124ms pre-TO

52ms pre-TO to 104ms post-TO

200ms pre-TO to 168ms pre-TO

40ms pre-TO to 20ms pre-TO

200ms pre-TO to 140ms pre-TO

68ms pre-TO to 84ms post-TO

200ms pre-TO to 96ms pre-TO

32ms pre-TO to 136ms post-TO

200ms pre-TO to 88ms pre-TO

36ms pre-TO to 84ms post-TO
Figure 7

Ankle Joint moments of force (N.m/kg)

"Involved" limb

56ms pre-TO to 200ms post-TO

"Uninvolved" limb

60ms pre-TO to 200ms post-TO

Toe off

LAE Control